Skip to main content

Retinal Bioengineering

  • Chapter
Neural Engineering

Part of the book series: Bioelectric Engineering ((BEEG))

Abstract

The retina is a tiny piece of neural tissue, with ech retina being only about 250 jjm thick at the thickest point and weighing less than 100 mg in humans. The retina's importance is out of proportion to its size for two reasons. First, the retina has long served as a model for understanding complex parts of the nervous system, and it has attracted a great deal of attention from neuroscientists from all fields, including bioengineers. Many of its properties hold up well in vitro, and it is accessible to microelectrodes both in vivo and in vitro. It has a modest number of principal cell types, and the total number of output neurons (ganglion cells) in each eye is about 1 million in humans, and much less in other mammals, numbers that are almost manageable by comparison with the outputs of other parts of the central nervous system. The retina can be studied while it responds to its natural input, light, which can be controlled easily. For deeper neural structures, one often has to make the choice between studying responses to electrical stimulation, which is unnatural, or responses to natural inputs from other locations in the nervous system that may be difficult to control or completely characterize. The retina is also simpler than many areas of the brain because there is no significant feedback from the brain to the retina. In short, no other region of comparable complexity provides the advantages for study that the retina does, and this has allowed bioengineers to make considerable progress in understanding the retina in quantitative ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelsalam, A., Del Priore, L., and Zarbin M. A., 1999, Drusen in age-related macular degeneration: Pathogenesis, natural course, and laser photocoagulation-induced regression, Surv. Ophthalmol. 44:1–29.

    Google Scholar 

  • Acland, G. M., Aguirre, G. D., Ray, J., Zhang, Q., Aleman, T. S., Cideciyan, A. V., Pearce-Kelling, S. E., Anand, V., Zeng, Y., Maguire, A. M., Jacobson, S. G., Hauswirth, W. W., and Bennett, J., 2002, Gene therapy restores vision in a canine model of childhood blindness, Nat. Genet. 28:92–95.

    Google Scholar 

  • Adamis, A. P., Miller, J. W., Bernal, M.-T., D’Amico, D. J., Folkman, J., Yeo, T. K., and Yeo, K. T., 1994, Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy, Am. J. Ophthalmol. 118:445–450.

    Google Scholar 

  • Adamis, A. P., Shima, D. T., Tolentino, M. J., Gragoudas, E. S., Ferrara, N., Folkman, J., D’Amore, P. A., and Miller, J. W., 1996, Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate, Arch. Ophthalmol. 114:66–71.

    Google Scholar 

  • Aguirre, G., Farber, D., Lolley, R., Fletcher, R. T., and Chader, G. J., 1978, Rod-cone dysplasia in Irish Setters: A defect in cyclic GMP metabolism in visual cells, Science 201:1133–1134.

    Google Scholar 

  • Ahmed, J., Pulfer, M. K., and Linsenmeier, R. A., 2001, Measurement of blood flow through the retinal circulation of the cat during normoxia and hypoxemia using fluorescent microspheres, Microvasc. Res. 62:143–153.

    Google Scholar 

  • Alder, V. A., Cringle, S. J., and Constable, I. J., 1983, The retinal oxygen profile in cats, Invest. Ophthalmol. Visual Sci. 24:30–36.

    Google Scholar 

  • Alm, A., 1992, Ocular circulation, In: Adler’s Physiology of the Eye: Clinical Application, 9th ed. (W. M. Hart Jr., ed.), Mosby Year Book, St. Louis, pp. 198–325.

    Google Scholar 

  • Alm, A., and Bill, A., 1972, The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats: A study with radioactively labeled microspheres, including flow determination in brain and some other tissues, Acta Physiol. Scand. 84:306–319.

    Google Scholar 

  • Asher, H., 1951, The electroretinogram of the blind spot, J. Physiol. 112:40P.

    Google Scholar 

  • Barnes, S., and Hille, B., 1989, Ionic channels of the inner segment of tiger salamander cone photoreceptors, J. Gen. Physiol. 94:719–743.

    Google Scholar 

  • Baylor, D. A., 1987, Photoreceptor signals and vision, Invest. Ophthalmol. Visual Sci. 28:34–49.

    Google Scholar 

  • Baylor, D. A., Nunn, B. J., and Schnapf, J. L., 1984, The photocurrent, noise, and spectral sensitivity of rods of the monkey Macaca fascicularis, J. Physiol. 357:575–607.

    Google Scholar 

  • Belgum, J. H., Dvorak, D. R., and McReynolds, J. S., 1982, Sustained synaptic input to ganglion cells of mudpuppy retina, J. Physiol. 326:91–108.

    Google Scholar 

  • Bill, A., 1984, Circulation in the eye, In: Handbook of Physiology. The Cardiovascular System IV (E. M. Renkin and C. C. Michel, eds.), American Physiological Society, Bethesda, MD, pp. 1001–1034.

    Google Scholar 

  • Bill, A., and Sperber, G. O., 1990, Control of retinal and choroidal blood flow, Eye 4:319–325.

    Google Scholar 

  • Birch, D. G., Hood, D. C., Nusinowitz, S., and Pepperberg, D. R., 1995, Abnormal activation and inactivation mechanism of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation, Invest. Ophthalmol. Visual Sci. 36:1603–1614.

    Google Scholar 

  • Bloomfield, S. A., 1996, Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina, J. Neurophysiol. 75:1878–1893.

    Google Scholar 

  • Bloomfield, S. A., and Dacheux, R. F., 2001, Rod vision: Pathways and processing in the mammalian retina, Prog. Retin. Eye Res. 20(3):351–384.

    Google Scholar 

  • Bloomfield, S. A., and Xin, D. Y., 2000, Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina, J. Physiol. 523:771–783.

    Google Scholar 

  • Boycott, B. B., and Wassle, H., 1974, The morphological types of ganglion cells of the domestic cat’s retina, J. Physiol. 240:397–419.

    Google Scholar 

  • Boynton, R. M., and Riggs, L. A., 1951, The effect of stimulus area and intensity upon on the human retinal response, J. Exp. Psych. 42:217–226.

    Google Scholar 

  • Braille Institute/ Braille Press, 2000, Los Angeles (July 31, 2002); http://www.brailleinstitute.org.

    Google Scholar 

  • Braun, R. D., Linsenmeier, R. A., and Goldstick, T. K., 1995, Oxygen consumption in the inner and outer retina of the cat, Invest. Ophthalmol. Visual Sci. 36:542–554.

    Google Scholar 

  • Breton, M. E., Schueller, A. W., Lamb, T. D., and Pugh, E. N., Jr., 1994, Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction, Invest. Ophthalmol. Visual Sci. 35:295–309.

    Google Scholar 

  • Brindley, G., and Rushton, D., 1974, Implanted stimulators of the visual cortex as visual prosthetic devices, Trans. Am. Acad. Ophthalmol. Otolaryngol. 78:741–745.

    Google Scholar 

  • Brown, G. C., 1999, Arterial occlusive disease, In: Vitreoretinal Disease: The Essentials (C. D. Regillo, G. C. Brown, and H. W. Flynn, eds.), Thieme, New York, pp. 97–115.

    Google Scholar 

  • Cao, W., Govardovskii, V., Li, J.-D., and Steinberg, R. H., 1996, Systemic hypoxia dehydrates the space surrounding photoreceptors in the cat retina, Invest. Ophthalmol. Visual Sci. 37:586–596.

    Google Scholar 

  • Cha, K., Horch, K. W., and Normann, R. A., 1992a, Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system, Ann. Biomed. Eng. 20:439–449.

    Google Scholar 

  • Cha, K., Horch, K. W., and Normann, R. A., 1992b, Mobility performance with a pixelized vision system, Vision Res. 32:1367–1372.

    Google Scholar 

  • Cha, K., Horch, K. W., Normann, R. A., and Boman, D. K., 1992c, Reading speed with a pixelized vision system, J. Opt. Soc. Am. 9:673–677.

    Google Scholar 

  • Chan, L. H., Freeman, A. W., and Cleland, B. G., 1992, The rod-cone shift and its effect on ganglion cells in the cat’s retina, Vision Res. 32:2209–2219.

    Google Scholar 

  • Chase, H. P., Jackson, W. E., Hoops, S. L., Cockerham, R. S., Archer, G., O’Brien, D., 1989, Glucose control and the retinal and retinal complications of insulin-dependent diabetes, JAMA 261:1155–1160.

    Google Scholar 

  • Chen, E. P., and Freeman, A. W., 1989, A model for spatiotemporal frequency response in the X cell pathway of the cat’s retina, Visual Res. 29:271–291.

    Google Scholar 

  • Chen, E. P.-C., and Linsenmeier, R. A., 1989, Centre components of cone-driven retinal ganglion cells: differential sensitivity to 2-amino-4-phosphonobutyric acid, J. Physiol. 419:77–93.

    Google Scholar 

  • Cho, E., Hung, S., and Seddon, J. H., 1999, Nutrition, In: Age-Related Macular Degeneration (J. W. Berger, S. L. Fine, and M. G. Maguire, eds.), Mosby, St. Louis, pp. 57–67.

    Google Scholar 

  • Chow, A. Y., Pardue, M. T., Chow, V. Y., Peyman, G. A., Liang, C., Perlman, J. I., and Peachey, N. S., 2001, Implantation of silicon chip microphotodiode arrays into the cat subretinal space, IEEE Trans. Neural Syst. Rehabil. Eng. 9:86–95.

    Google Scholar 

  • Chow, A. Y., Peyman, G. A., Pollack, J. S., and Packo, K. H., 2002, Safety, feasibility, and efficacy of subretinal artificial silicon retina prosthesis for the treatment of patients with retinitis pigmentosa, Association for Research in Vision and Ophthalmology Abstracts, no. 2849. www.arvo.org.

    Google Scholar 

  • Chow, A. Y., Packo, K. H., Pollack, J. S., and Schuchard, R. A., 2003, Subretinal artificial silicon retina microchip implantation in retinitis pigmentosa patients: Long term follow-up. Association for Research in Vision and Ophthalmology Abstracts, no. 4205. www.arvo.org.

    Google Scholar 

  • Cideciyan, A. V., and Jacobson, S. G., 1996, An alternative phototransduction model for human rod and cone ERG a-waves: Normal parameters and variation with age, Vision Res. 16:2609–2621.

    Google Scholar 

  • Citron, M. C., Emerson, R. C., and Levick, W. R., 1988, Nonlinear measurement and classification of receptive fields in cat retinal ganglion cells, Ann. Biomed. Eng. 16:65–77.

    Google Scholar 

  • Clarkson, J. G., 1994, Central retinal vein occlusion, In: Retina, 2nd ed., Vol. 2 (S. J. Ryan, ed.), Mosby, St. Louis, pp. 1379–1385.

    Google Scholar 

  • Cleland, B. G., Harding, T. H., and Tulunay-Keesey, U., 1979, Visual resolution and receptive field size: Examination of two kinds of cat retinal ganglion cell, Science 205:1015–1017.

    Google Scholar 

  • Cleland, B. G., and Levick, W. R., 1974, Brish and sluggish concentrically organized ganglion cells in the cat’s retina, J. Physiol. 240:421–456.

    Google Scholar 

  • Cobbs, W. H., and Pugh, E. N., Jr., 1987, Kinetics and components of the flash photocurrent of isolated retinal rods of the larval tiger salamander, Ambystoma tigrinum, J. Physiol. 394:529–572.

    Google Scholar 

  • Cornsweet, T. N., 1970, Visual Perception, Academic Press, New York, pp. 387–392.

    Google Scholar 

  • Cringle, S. J., Yu, D.-Y., Alder, V., Su, E.-N., and Yu, P. K., 1996, Oxygen consumption in the avascular guinea pig retina, Am. J. Physiol. 271:H1162–H1165.

    Google Scholar 

  • Cringle, S. J., Yu, D.-Y., Yu, P. K., and Su, E.-N., 2002, Intraretinal oxygen consumption in the rat in vivo, Invest. Ophthalmol. Visual Sci. 43:1922–1927.

    Google Scholar 

  • Croner, L. J., and Kaplan, E., 1995, Receptive fields of P and M ganglion cells across the primate retina, Vision Res. 35:7–24.

    Google Scholar 

  • Dawis, S., Shapley, R., Kaplan, E., and Tranchina, D., 1984, The receptive field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry, Vision Res. 24:549–564.

    Google Scholar 

  • DCCT (Diabetes Control and Complications Trial) Research Group, 1993, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, N. Eng. J. Med. 329:977–986.

    Google Scholar 

  • DeMonasterio, F. M., 1978a, Properties of concentrically organized X and Y ganglion cells of macaque retina, J. Neurophysiol. 41:1394–1417.

    Google Scholar 

  • DeMonasterio, F. M., 1978b, Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques, J. Neurophysiol. 41:1418–1434.

    Google Scholar 

  • DeMonasterio, F. M., and Gouras, P., 1975, Functional properties of ganglion cells of the rhesus monkey retina, J. Physiol. 251:167–195.

    Google Scholar 

  • Derrington, A. M., and Lennie, P., 1982, The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat, J. Physiol. 333:343–366.

    Google Scholar 

  • Diabetic Retinopathy Research Group, 1976, Preliminary report on the effects of photocoagulation therapy, Am. J. Ophthalmol. 81:383–396.

    Google Scholar 

  • Dmitriev, A. V., Govardovskii, V. I., Schwahn, H. N., and Steinberg, R. H., 1990, Light-induced changes of extracellular ions and volume in the isolated chick retina-pigment epithelium preparation, Visual Neurosci. 16:1157–1167.

    Google Scholar 

  • Dmitriev, A. V., and Mangel, S. C., 2000, A circadian clock regulated the pH of the fish retina, J. Physiol. 522:77–82.

    Google Scholar 

  • Dmitriev, A. V., and Mangel, S. C., 2001, Circadian clock regulation of pH in the rabbit retina, J. Neurosci. 21:2897–2902.

    Google Scholar 

  • Dobelle, W. H., 2000, Artificial vision for the blind by connecting a television camera to the visual cortex, ASAIO J. 46:3–9.

    Google Scholar 

  • Dollery, C. T., Bullpit, C. J., and Kohner, E. M., 1969, Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions, Invest. Ophthalmol. 8:588–594.

    Google Scholar 

  • Dowling, J., 1987, The Retina: An Approachable Part of the Brain, Belknap Press, Cambridge, MA.

    Google Scholar 

  • Eckmiller, R., 1997, Learning retina implants with epiretinal contacts, Opthalmic Res. 29:281–289.

    Google Scholar 

  • Engerman, R., Finkelstein, D., Aguirre, G., Diddie, K. R., Fox, R. R., Frank, R. N., and Varma, S. D., 1982, Ocular complications, Diabetes 31(Suppl. 1):82–88.

    Google Scholar 

  • Enroth-Cugell, C., and Robson, J. G., 1966, The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol. 187:517–552.

    Google Scholar 

  • Enroth-Cugell, C., and Robson, J. G., 1984, Functional characteristics and diversity of cat retinal ganglion cells, Invest. Ophthalmol. Visual Sci. 25:250–267.

    Google Scholar 

  • Enroth-Cugell, C., Robson, J. G., Schweitzer-Tong, D. E., and Watson, A. B., 1983, Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation, J. Physiol. 341:279–307.

    Google Scholar 

  • Enroth-Cugell, C., and Shapley, R. M., 1973, Adaptation and dynamics of cat retinal ganglion cells, J. Physiol. 233:271–309.

    Google Scholar 

  • Eperon, G., Johnson, M., and David, N. J., 1975, The effect of arterial PO2 on relative retinal blood flow in monkeys, Invest. Ophthalmol. 14:342–352.

    Google Scholar 

  • Fain, G. L., Quandt, F. N., Bastian, B. L., and Gerschenfeld, H. M., 1978, Contribution of cesium sensitive conductance increase to the rod photoresponse, Nature 272:467–469.

    Google Scholar 

  • Faktorevitch, E. G., Steinberg, R. H., Yasumura, D., Matthes, M. T., and LaVail, M. M., 1990, Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor, Nature 347:83–86.

    Google Scholar 

  • Farber, D. B., and Lolley, R. N., 1973, Cyclic guanosine monophosphate: Elevation in degenerating photoreceptor cells of the C3H mouse retina, Science 186:449–450.

    Google Scholar 

  • Foerster, M. H., van de Grind, W. A., and Grusser, O.-J., 1977, Frequency transfer properties of three distinct types of cat horizontal cells, Exp. Brain Res. 29:347–366.

    Google Scholar 

  • Forti, S., Menini, A., Rispoli, G., and Torre, V., 1989, Kinetics of phototransduction in retinal rods of the newt Triturus cristatus, J. Physiol. 419:265–295.

    Google Scholar 

  • Fox, D. A., Poblenz, A. T., and He, L., 1999, Calcium overload triggers rod photoreceptor apoptotic cell death in chemical-induced and inherited retinal degenerations, Ann. N. Y. Acad. Sci. 893:282–285.

    Google Scholar 

  • Frishman, L. J., Freeman, A. W., Troy, J. B., Schweitzer-Tong, D. E., and Enroth-Cugell, C., 1987, Spatiotemporal frequency responses of cat retinal ganglion cells, J. Gen. Physiol. 89:599–628.

    Google Scholar 

  • Frishman, L. J., and Linsenmeier, R. A., 1982, Effects of picrotoxin and strychnine on non-linear responses of Y-type cat retinal ganglion cells, J. Physiol. 324:347–363.

    Google Scholar 

  • Frishman, L. J., Yamamoto, F., Borgula, J., and Steinberg, R. H., 1992, Light-evoked changes in [K+]o in proximal protion of light-adapted cat retina, J. Neurophysiol. 67:1201–1212.

    Google Scholar 

  • Gallemore, R. P., Li, J.-D., Govardovskii, V. I., and Steinberg, R. H., 1994, Calcium gradients and light-evoked calcium changes outside rods in the intact cat retina, Visual Neurosci. 11:753–761.

    Google Scholar 

  • Gold, G. H., and Korenbrot, J. I., 1980, Light-induced calcium release by intact retinal rods, PNAS 77:5557–5561.

    Google Scholar 

  • Govardovskii, V. I., Li, J.-D., Dmitriev, A. V., and Steinberg, R. H., 1994, Mathematical model of TMA+ diffusion and prediction of light-dependent subretinal hydration in chick retina, Invest. Ophthalmol. Visual Sci. 35:2712–2724.

    Google Scholar 

  • Granit, R., 1933, The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve, J. Physiol. 77:207–240.

    Google Scholar 

  • Greenberg, R. J., 2000, Visual prostheses: A review, Neuromodulation 3:161–165.

    Google Scholar 

  • Greenberg, R. J., Velte, T. J., Humayun, M. S., Scarlatis, G., and de Juan, E., 1999, A computational model of electrical stimulation of the retinal ganglion cell, IEEE Trans. Biomed. Eng. 46:505–514.

    Google Scholar 

  • Grumet, A. E., Wyatt, J. L., and Rizzo, J. F., 2000, Multi-electrode stimulation and recording in the isolated retina, J. Neurosci. Methods 101:31–42.

    Google Scholar 

  • Grunwald, J. E., Brucker, A. J., Braunstein, S. N., Schwartz, S. S., Baker, L., Petrig, B. L., and Riva, C. E., 1994, Strict metabolic control and retinal blood flow in diabetes mellitus, Br. J. Ophthalmol. 78:598–604.

    Google Scholar 

  • Grunwald, J. E., Maguire, A. M., and Dupont, J., 1996, Retinal hemodynamics in retinitis pigmentosa, Am. J. Ophthalmol. 12:502–508.

    Google Scholar 

  • Hagins, W. A., Penn, R. D., and Yoshikami, 1970, Dark current and photocurrent in retinal rods, Biophys. J. 10:380–412.

    Google Scholar 

  • Harwerth, R. S., Carter-Dawson, L., Shen, F., Smith, E. L., III, and Crawford, M. L. J., 1999, Ganglion cell losses underlying visual field defects from experimental glaucoma, Invest. Ophthalmol. Visual Sci. 40:2242–2250.

    Google Scholar 

  • Hatchell, D. L., and Sinclair, S. H., 1995, Role of leukocytes in diabetic retinopathy, In: Physiology and Pathophysiology of Leukocyte Adhesion (D. N. Granger and G. W. Schmid-Schoenbein, eds.), Oxford University Press, New York, pp. 458–466.

    Google Scholar 

  • Haugh, L. M., Linsenmeier, R. A., and Goldstick, T. K., 1990, Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination, Ann. Biomed. Eng. 18:19–36.

    Google Scholar 

  • Hayreh, S. S., 1978, Pathogenesis of optic nerve damage and visual field defects, In: Glaucoma, Conceptions of a Disease (K. Heilman and K. T. Richardson, eds.), Saunders, Philadelphia, pp. 104–137.

    Google Scholar 

  • Hayreh, S. S., Rojas, P., Podhajsky, P., Montague, C. R. A., and Woolson, R. F., 1983, Ocular neovascularization with retinal vascular occlusion, III. Incidence of ocular neovascularization with retinal vein occlusion, Ophthalmology 90:488–506.

    Google Scholar 

  • Hayreh, S. S., and Weingeist, T. A., 1980, Experimental occlusion of the central artery of the retina: IV. Retinal tolerance time to acute ischaemia, Br. J. Ophthalmol. 64:818–825.

    Google Scholar 

  • Heckenlively, J. R., Bouchman, J., and Friedman, L., 1988, Diagnosis and classification of retinitis pigmentosa, in: Retinitis Pigmentosa (J. R. Heckenlively, ed.), JB Lippincott., Philadelphia.

    Google Scholar 

  • Helting, J. R., and Pepperberg, D. R., 1999, Sensitivity and kinetics of mouse rod flash responses determined in vivo from paired-flash electroretinograms, J. Physiol. 516(2):593–609.

    Google Scholar 

  • Hochstein, S., and Shapley, R. M., 1976a, Quantitative analysis of retinal ganglion cell classifications, J. Physiol. 262:237–264.

    Google Scholar 

  • Hochstein, S., and Shapley, R. M., 1976b, Linear and nonlinear spatial subunits in Y cat retinal ganglion cells, J. Physiol. 262:265–284.

    Google Scholar 

  • Hogeboom van Buggenum, I. M., Van der Heijde, G. L., Tangelder, G. J., and Reichert-Thoen, J. W. M., 1996, Ocular oxygen measurement, Br. J. Ophthalmol. 80:567–575.

    Google Scholar 

  • Hood, D. C., and Birch, D. G., 1990, A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography, Visual Neurosci. 5:379–387.

    Google Scholar 

  • Hood, D. C., and Birch, D. G., 1992, A computational model of the amplitude and implicit time of the b-wave of the human ERG, Visual Neurosci. 8:107–126.

    Google Scholar 

  • Hood, D. C., and Birch, D. G., Feb. 1995, Computational models of rod-driven retinal activity, IEEE Eng. Med. Biol. Mag., pp. 59–66.

    Google Scholar 

  • Huang, B., and Karwoski, C. J., 1992, Light-evoked expansion of subretinal space volume in the retina of the frog, J. Neurosci. 12:4243–4252.

    Google Scholar 

  • Humayun, M. S., DeJuan, E., Jr., Weiland, J. D., Dagnelie, G., Katona, S., Greenberg, R., and Suzuki, S., 1999a, Pattern electrical stimulation of the human retina, Vision Res. 39:2569–2576.

    Google Scholar 

  • Humayun, M., Prince, M., DeJuan E., Jr., Barron, Y., Moskowitz, M., Klock, I. B., and Milam, A. H., 1999b, Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa, Invest. Ophthalmol. Visual Sci. 40:143–148.

    Google Scholar 

  • Johnson, C. A., 1996, Evaluation of visual function, In: Duane’s Foundations of Clinical Ophthalmology, Vol. 2 (W. Tasman and E. A. Jaeger, eds.), Lippincott-Raven, Philadelphia, Chapt. 17, pp. 1–20.

    Google Scholar 

  • Kang Derwent, J., and Linsenmeier, R. A., 2001, Intraretinal analysis of the a-wave of the electroretinogram in the dark-adapted intact cat retina, Visual Neurosci. 18:353–363.

    Google Scholar 

  • Kaplan, E., 1991, The receptive-field structure of retinal ganglion cells in cat and monkey: in Vision and Visual Dysfunction, Vol. IV. The Neural Basis of Visual Function (G. Leventhal, ed.), CRC Press, Boca Raton, FL, pp. 10–40.

    Google Scholar 

  • Kaplan, E., and Shapley, R. M., 1982, X and Y cells in the lateral geniculate nucleus of macaque monkeys, J. Physiol. 330:125–143.

    Google Scholar 

  • Karwoski, C. J., and Proenza, C. J., 1977, Relationship between Muller cell responses, a local transretinal potential, and potassium flux, J. Neurophysiol. 40:244–259.

    Google Scholar 

  • Kiel, J., and Shepherd, A. P., 1992, Autoregulation of chorodial blood flow in the rabbit, Invest. Ophthalmol. Visual Sci. 33:2399–2410.

    Google Scholar 

  • Kincaid, M. C., 1996, Pathology of diabetes mellitus, In: Duane’s Foundations of Clinical Ophthalmology, Vol. 2 (W. Tasman and E. A. Jaeger, eds.), Chapt. 18, Lippincott-Raven, Philadelphia, pp. 1–14.

    Google Scholar 

  • Kiryu, J., Asrani, S., Shahidi, M., Mori, M., and Zeimer, R., 1995, Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker, Invest. Ophthalmol. Visual Sci. 36:1240–1246.

    Google Scholar 

  • Klein, R., 1999, Epidemiology, In: Age-Related Macular Degeneration (J. W. Berger, S. L. Fine, and M. G. Maguire, eds.), Mosby, St. Louis, pp. 31–55.

    Google Scholar 

  • Kolb, H., and Famiglietti, E. V., 1974, Rod and cone pathways in the inner plexiform layer of cat retina, Science 186:47–49.

    Google Scholar 

  • Kolb, H., Fernandez, E., and Nelson, R., 2002, Webvision: The organization of the retina and visual system. http://webvision.med.utah.edu.

    Google Scholar 

  • Kuffler, S. W., 1953, Discharge patterns and functional organization of mammalian retina, J. Neurophysiol. 16:37–68.

    Google Scholar 

  • Kunz Mathews, M., Merges, C., McLeod, D. S., and Lutty, G. A., 1997, Vascular endothelial growth factor (VEGF) and vascular permeability changes in human diabetic retinopathy, Invest. Ophthalmol. Visual Sci. 38:2729–2741.

    Google Scholar 

  • Lamb, T. D., and Pugh, E. N., Jr., 1992, A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors, J. Physiol. 449:719–758.

    Google Scholar 

  • LaVail, M. M., 1981, Analysis of neurological mutants with inherited retinal degeneration, Invest. Opthalmol. Visual Sci. 21:638–657.

    Google Scholar 

  • Li, J.-D., Gallemore, R. P., Dmitriev, A., and Steinberg, R. H., 1994a, Light-dependent hydration of the space surrounding photoreceptors in chick retina, Invest. Ophthalmol. Visual Sci. 35:2700–2711.

    Google Scholar 

  • Li, J.-D., Govardovskii, V. I., and Steinberg, R. H., 1994b, Light-dependent hydration of the space surrounding photoreceptors in the cat retina, Visual Neurosci. 11:743–752.

    Google Scholar 

  • Linsenmeier, R. A., 1986, Effects of light and darkness on oxygen distribution and consumption in the intact cat retina, J. Gen. Physiol. 88:521–542.

    Google Scholar 

  • Linsenmeier, R. A., and Braun, R. D., 1992, Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia, J. Gen. Physiol. 99:177–197.

    Google Scholar 

  • Linsenmeier, R. A., Frishman, L. J., Jakiela, H. J., and Enroth-Cugell, C., 1982, Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements, Vision Res. 22:1173–1183.

    Google Scholar 

  • Linsenmeier, R. A., and Jakiela, H. G., 1979, Non-linear spatial summation in cat retinal ganglion cells at different background levels, Exp. Brain Res. 36:301–309.

    Google Scholar 

  • Linsenmeier, R. A., and Padnick-Silver, L., 2000, Metabolic dependence of photoreceptors on the choroid in the normal and detached retina, Invest. Ophthalmol. Visual Sci. 41:3117–3123.

    Google Scholar 

  • Linsenmeier, R. A., Padnick-Silver, L., Kang Derwent, J., Ramirez, U., and Narfstrom, K., 2000, Changes in photoreceptor oxidative metabolism in Abyssinian cats with a hereditary rod/cone degeneration, Invest. Ophthalmol. Visual Sci. 41(4):S887 [ARVO Abstract].

    Google Scholar 

  • Majji, A. B., Humayun, M. S., Weiland, J. D., Suzuki, S., D’Anna, S. A., and de Juan, E., 1999, Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs, Invest. Ophthalmol. Visual Sci. 40:2073–2081.

    Google Scholar 

  • Mangel, S. C., 1991, Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina, J. Physiol. 442:211–234.

    Google Scholar 

  • Margalit, E., Maia, M., Weiland, J., Greenberg, R. J., Fujii, G. Y., Torres, G., Piyathaisere, D. V., O’Hearn, T. M., Liu, W., Lazzi, G., Dagnelie, G., Scribner, D. A., de Juan, E., Jr., and Humayun, M. S., 2002, Retinal prosthesis for the blind, Survey Ophthalmol. 47:335–356.

    Google Scholar 

  • Marmor, M. F., 1998, Mechanisms of retinal adhesiveness, In: The Retinal Pigment Epithelium (M. F. Marmor and T. J. Wolfensberger, eds.), Oxford University Press, New York, pp. 392–405.

    Google Scholar 

  • McIlwain, J. T., 1996, An Introduction to the Biology of Vision, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Michels, R. G., Wilkinson, C. P., and Rice, T. A., 1990, Retinal Detachment, Mosby, St. Louis.

    Google Scholar 

  • Moreno-Diaz, R., and Rubio, E., 1980, A model for non-linear processing in the cat’s retina, Biol. Cybernet. 37:25–31.

    MATH  Google Scholar 

  • Naka, K.-I., and Rushton, W. A. H., 1966, S-cone potentials from luminosity units in the retina of fish (Cyprinidae), J. Physiol. 185:587–599.

    Google Scholar 

  • Narfstrom, K., Bragadottir, R., Redmond, T. M., Katz, M. L., Lei, B., Lai, C. M., and Rakoczy, E. P., 2002, Gene therapy in 6 dogs with RPE65 null mutation improves visual function: A short term study using clinical observations, electrophysiology and morphology, Association for Research in Vision and Ophthalmology, abstract number 4601. www.arvo.org.

    Google Scholar 

  • Nelson, R., 1977, Cat cones have rod input: A comparison of response properties of cones and horizontal cell bodies in the retina of the cat, J. Comp. Neurol. 172:109–136.

    Google Scholar 

  • Nelson, R., Famiglietti, E. V., Jr., and Kolb, H., 1978, Intracellular staining reveals different levels of stratification for ON-and OFF-center ganglion cells in the cat retina, J. Neurophysiol. 41:472–483.

    Google Scholar 

  • Nicholson, C., and Phillips, J. M., 1981, Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum, J. Physiol. 321:225–257.

    Google Scholar 

  • Nicholson, C., and Rice, M. E., 1991, Diffusion of ions and transmitters in the brain cell microenvironment, In: Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission (K. Fuxe and L. F. Agnati, eds.), Raven Press, New York, pp. 279–294.

    Google Scholar 

  • Normann, R. A., Maynard, E. M., Rousche, P. J., and Warren, D. J., 1999, A neural interface for a cortical vision prosthesis, Vision Res. 39:2577–2587.

    Google Scholar 

  • Oakley, B., 1977, Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization, J. Gen. Physiol. 70:405–425.

    Google Scholar 

  • Oakley, B., and Wen, R., 1989, Extracellular pH in the isolated retina of the toad in darkness and during illumination, J. Physiol. 419:353–378.

    Google Scholar 

  • Oguztoreli, M. N., 1980, Modelling and simulation of vertebrate retina, Biol. Cybernet. 37:53–61.

    MathSciNet  Google Scholar 

  • Oyster, C. W., 1999, The Human Eye: Structure and Function, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Padnick-Silver, L., and Linsenmeier, R. A., 2002, Quantification of in vivo anaerobic metabolism in the normal cat retina through pH measurements, Visual Neurosci. 19:793–806.

    Google Scholar 

  • Padnick-Silver, L., 2000, Characterization of Anaerobic Metabolism and the Effect of Acute Hyperglycemia in the Cat Retina through In Vivo pH and Oxygen Measurements, PhD Thesis, Northwestern University.

    Google Scholar 

  • Palmowski, A. M., Sutter, E. E., Bearse, M. A., Jr., and Fung, W., 1997, Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram, Invest. Ophthalmol. Visual Sci. 38:2586–2596.

    Google Scholar 

  • Pasternak, T., and Merigan, W., 1981, The luminance dependence of spatial vision in the cat, Vision Res. 21:1333–1340.

    Google Scholar 

  • Peachey, N. S., Pardue, M. T., Ball, S. L., Hetling, J. R., Chow, V. Y., and Chow A. Y., 2000, Unexpected sensitivity of the mammalian retina to infrared light, Invest. Ophthalmol. Visual Sci. 41:S810.

    Google Scholar 

  • Peichl, L., and Wassle, H., 1979, Size, scatter, and coverage of ganglion cell receptive field centers in the cat retina, J. Physiol. 291:117–141.

    Google Scholar 

  • Penn, J. S., Li, S., and Naash, M. I., 2000, Ambient hypoxia reverses retinal vascular attenuation in a transgenic mouse model of autosomal dominant retinitis pigmentosa, Invest. Ophthalmol. Visual Sci. 41:4007–4013.

    Google Scholar 

  • Pepperberg, D. R., Birch, D. G., Hofmann, K. P., and Hood, D. C., 1996, Recovery kinetics of human rod phototransduction inferred from the two-branched a-wave saturation function, J. Opt. Soc. Am. A13:586–600.

    Google Scholar 

  • Pepperberg, D. R., Birch, D. G., and Hood, D. C., 1997, Photoresponses of human rods in vivo derived from paired flash electroretinograms, Visual Neurosci. 14:73–82.

    Google Scholar 

  • Pepperberg, D. R., Birch, D. G., and Hood, D. C., 2000, Electroretinographic determination of human rod flash response in vivo, Methods Enzymol. 316:202–223. (Palczewski, K., ed., Vertebrate Phototransduction and the Visual Cycle, Academic Press, San Diego.)

    Google Scholar 

  • Peyman, G., Chow, A. Y., Liang, C., Chow, V. Y., Perlman, J. I., and Peachey, N. S., 1998, Subretinal semiconductor microphotodiode array, Ophthalmic Surg. Lasers 29:234–241.

    Google Scholar 

  • Pournaras, C. J., 1995, Retinal oxygen distribution. Its role in the physiopathology of vasoproliferative microangiopathies, Retina 15:332–347.

    Google Scholar 

  • Prince, A. M., and Solomon, I. S., 1996, Automated perimetry diagnostic modalities, In: Duane’s Foundations of Clinical Ophthalmology, Vol. 2 (W. Tasman and E. A. Jaeger, eds.), Chapt. 109, Lippincott-Raven, Philadelphia, pp. 1–34.

    Google Scholar 

  • Pugh, E. N., Jr., and Lamb, T. D., 2000, Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation, in: Handbook of Biological Physics, Vol. 3 (D. G. Stavenga, W. J. DeGrip, and E. N. Pugh Jr., eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Quigley, H. A., McKinnon, S. J., Zack, D. J., Pease, M. E., Kerrigan-Baumrind, L. A., Kerrigan, D. F., and Mitchell, R. S., 2000, Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats, Invest. Ophthalmol. Visual Sci. 41:3460–3466.

    Google Scholar 

  • Quigley, H. A., Dunkelberger, G. R., and Green, W. R., 1989, Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma, Am. J. Ophthalmol. 107:453–464.

    Google Scholar 

  • Rice, M. E., and Nicholson, C., 1991, Diffusion characteristics and extracellular volume fraction during normoxia and hypoxia in slices of rat neostriatum, J. Neurophysiol. 65:264–272.

    Google Scholar 

  • Riva, C. E., Grunwald, J. E., and Sinclair, S. H., 1983, Laser doppler velocimetry study of the effect of pure oxygen breathing on retinal blood flow, Invest. Ophthalmol. Visual Sci. 24:47–51.

    Google Scholar 

  • Rizzo, J. F., and Wyatt, J. L., 1997, Prospects for a visual prosthesis, Neuroscientist 3:251–262.

    Google Scholar 

  • Rizzo, J. F., and Wyatt, J. L., 1999, Retinal prosthesis, In: Age-Related Macular Degeneration (J. W. Berger, S. L. Fine, and M. G. Maguire, eds.), Mosby, St. Louis, Chapt. 25, pp. 413–432.

    Google Scholar 

  • Rizzo, J. F., Wyatt, J. L., Humayun, M., deJuan, E., Liu, W., Chow, A., Eckmiller, R., Zrenner, E., Yagi, T., and Abrams, G., 2001, Retinal prosthesis: An encouraging first decade with major challenges ahead, Ophthalmology 108:13–14.

    Google Scholar 

  • Robson, J. G., and Frishman, L. F., 1995, Response linearity and kinetics of the cat retina: The bipolar cell component of the dark-adapted electroretinogram, Visual Neurosci. 12:837–850.

    Google Scholar 

  • Robson, J. G., and Frishman, L. F., 1996, Photoreceptor and bipolar-cell contributions to the cat electroretinogram: A kinetic model of the early part of the flash response, J. Opt. Soc. Am. A12:613–622.

    Google Scholar 

  • Rodieck, R. W., 1965, Quantitative analysis of cat retinal ganglion cell response to visual stimuli, Vision Res. 5:583–601.

    Google Scholar 

  • Rodieck, R. W., 1973, The Vertebrate Retina. Principles of Structure and Function, Freeman and Co., San Francisco.

    Google Scholar 

  • Rodieck, R. W., 1998, First Steps in Seeing, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Rodieck, R. W., and Stone, J., 1965, Analysis of receptive fields of cat retinal ganglion cells, Visual Neurosci. 28:833–849.

    Google Scholar 

  • Roska, B., Nemeth, E., Orzo, L., and Werblin, F. S., 2000, Three levels of lateral inhibition: A space time study of the retina of the tiger salamander, J. Neurosci. 20:1941–1951.

    Google Scholar 

  • Rowe, M. H., and Cox, J. F., 1993, Spatial receptive-field structure of cat retinal W cells, Visual Neurosci. 10:765–779.

    Google Scholar 

  • Saleem, R. A., and Walter, M. A., 2002, The complexities of ocular genetics, Clin. Genet. 61:79–88.

    Google Scholar 

  • Sassani, J. W., 1996, Glaucoma, In: Duane’s Foundations of Clinical Ophthalmology, Vol. 3 (W. Tasman and E. A. Jaeger, eds.), Lippincott-Raven, Philadelphia, Chapt. 19, pp. 1–30.

    Google Scholar 

  • Schiller, P. H., 1992, The ON and OFF channels of the visual system, Trends Neurosci. 15:86–92.

    Google Scholar 

  • Schneeweis, D. M., and Schnapf, J. L., 1995, Photovoltage of rods and cones in the macaque retina, Science 268:1053–1056.

    Google Scholar 

  • Schroder, S., Palinski, W., and Schmid-Schoenbein, G., 1991, Activated monocytes and granulocytes, capillary non-perfusion, and neovascularization in diabetic retinopathy, Am. J. Pathol. 139:81–100.

    Google Scholar 

  • Schwahn, H. N., Gekeler, F., Kohler, K., Kobuch, K., Sachs, H. G., Schulmeyer, F., Jakob, W., Gabel, V.-P., and Zrenner, E., 2001, Studies on the feasibility of a subretinal visual prosthesis: Data from Yucatan minipig, Graefe’s Arch. Clin. Exp. Ophthalmol. 239:961–967.

    Google Scholar 

  • Schnapf, J. L., Nunn, B. J., Meister, M., and Baylor, D. A., 1990, Visual transduction in cones of the monkey Macaca fascicularis, J. Physiol. 427:681–713.

    Google Scholar 

  • Shapley, R. M., and Enroth-Cugell, C., 1984, Visual adaptation and retinal gain controls, Prog. Retin. Res. 3:263–346.

    Google Scholar 

  • Shapley, R. M., and Lennie, P., 1985, Spatial frequency analysis in the visual system, Annu. Rev. Neurosci. 8:547–583.

    Google Scholar 

  • Shapley, R., and Perry, V. H., 1986, Cat and monkey retinal ganglion cells and their visual functional roles, Trends Neurosci. 9:229–235.

    Google Scholar 

  • Shapley, R. M., and Victor, J. D., 1978, The effect of contrast on the transfer properties of cat retinal ganglion cells, J. Physiol. 285:275–298.

    Google Scholar 

  • Shimazaki, H., and Oakley, B., 1984, Reaccumulation of [K+]o in the toad retina during maintained illumination, J. Gen. Physiol. 84:475–504.

    Google Scholar 

  • Sickel, W., 1972, Retinal metabolism in dark and light, In: Physiology of Photoreceptor Organs. Handbook of Sensory Physiology (M. G. F. Fuortes, ed.), Springer, Berlin, pp. 667–727.

    Google Scholar 

  • Singer, N., 2002, Ambitious MEMS-based retinal prosthesis plan aims to give sight to the blind, Sandia Lab News 54(19):1, 4.

    Google Scholar 

  • Smith, R. G., Freed, M. A., and Sterling, P., 1986, Microcircuitry of the dark-adapted cat retina: Functional architecture of the rod-cone network, J. Neurosci. 6:3505–3517.

    Google Scholar 

  • So, Y. T., and Shapley, R. M., 1981, Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate neurons, J. Neurophysiol. 45:107–120.

    Google Scholar 

  • Stamper, R. L., and Sanghvi, S. S., 1996, Intraocular pressure: Measurement, regulation, and flow relationships, in: Duane’s Foundations of Clinical Ophthalmology, Vol. 2 (W. Tasman and E. A. Jaeger, eds), Lippincott-Raven, Philadelphia, Chapt. 7, pp. 1–31.

    Google Scholar 

  • Steinberg, R. H., Frishman, L. J., and Sieving, P. A., 1991, Negative components of the electroretinogram from proximal retina and photoreceptor, Prog. Retin. Res. 10:121–160.

    Google Scholar 

  • Steinberg, R. H., Oakley, B., and Niemeyer, G., 1980, Light-evoked changes in [K+]o in retina of intact cat eye, J. Neurophysiol. 44:897–921.

    Google Scholar 

  • Sterling, P., Freed, M., and Smith, R. G., 1986, Microcircuitry and functional architecture of the cat retina, Trends Neurosci. 9:186–192.

    Google Scholar 

  • Stone, J., and Fukuda, Y., 1974, Properties of cat retinal ganglion cells: A comparison of W cells with X and Y cells, J. Neurophysiol. 37:722–748.

    Google Scholar 

  • Sutter, E. E., and Tran, D., 1992, The field topography of ERG components in man. I. The photopic luminance response, Vision Res. 32:433–446.

    Google Scholar 

  • Tranchina, D., Gordon, J., and Shapley, R., 1983, Spatial and temporal properties of luminosity horizontal cells in the turtle retina, J. Gen. Physiol. 82:573–598.

    Google Scholar 

  • Troy, J. B., Bohnsack, D. L., and Diller, L. C., 1999, Spatial properties of the cat X-cell receptive field as a function of mean light level, Visual Neurosci. 16:1089–1104.

    Google Scholar 

  • Troy, J. B., Einstein, G., Schuurmans, R. P., Robson, J. G., and Enroth-Cugell, C., 1989, Responses to sinusoidal gratings of two types of very nonlinear retinal ganglion cells of cat, Visual Neurosci. 3:213–223.

    Google Scholar 

  • Troy, J. B., Oh, J. K., and Enroth-Cugell, C., 1993, Effect of ambient illumination on the spatial properties of the center and surround of Y-cell receptive fields, Visual Neurosci. 9:535–553.

    Google Scholar 

  • Troy, J. B., and Shou, T., 2002, The receptive fields of cat retinal ganglion cells in physiological and pathological states: Where we are after half a century of research, Prog. Retin. Eye Res. 21:263–302.

    Google Scholar 

  • Troy, J. B., Schweitzer-Tong, D. E., and Enroth-Cugell, C., 1995, Receptive field properties of Q retinal ganglion cells in the cat, Visual Neurosci. 12:285–300.

    Google Scholar 

  • Victor, J. D., Shapley, R. M., and Knight, B. W., 1977, Nonlinear analysis of cat retinal ganglion cells in the frequency domain, PNAS 74:3068–3072.

    Google Scholar 

  • Victor, J. D., and Shapley, R. M., 1979, Receptive field mechanism of X and Y retinal ganglion cells, J. Gen. Physiol. 74:275–298.

    Google Scholar 

  • Vo Van Toi and Riva, C. E., 1994, Variations of blood flow at optic nerve head induced by sinusoidal flicker stimulation in cats, J. Physiol. 482:189–202.

    Google Scholar 

  • Walter, P., Szurman, P., Vobig, M., Berk, H., Ludtke-Handjery, H.-C., Richter, H., Deng, Mittermayer, C., Heimann, K., and Sellhaus, B., 1999, Successful long-tern implantation of inactive epiretinal microelectrode arrays in rabbits, Retina 19:546–552.

    Google Scholar 

  • Walter, P., and Heimann, K., 2000, Evoked cortical potentials after electrical stimulation of the inner retina in rabbits, Graefe’s Arch. Clin. Exp. Ophthalmol. 238:315–318.

    Google Scholar 

  • Wang, L., Kondo, M., and Bill, A., 1997, Glucose metabolism in cat outer retina, Invest. Ophthalmol. Visual Sci. 38:48–55.

    Google Scholar 

  • Wangsa-Wirawan, N., and Linsenmeier, R. A., 2003, Retinal oxygen: Fundamental and clinical aspects, Arch. Ophthalmol. 121:547–557.

    Google Scholar 

  • Wangsa-Wirawan, N., Padnick-Silver, L., Budzynski, E., and Linsenmeier, R. A., 2001, pH regulation in the intact cat outer retina, Invest. Ophthalmol. Visual Sci. 42(4):S367 [ARVO Abstract].

    Google Scholar 

  • Wassle, H., and Boycott, B. B., 1991, Functional architecture of the mammalian retina, Physiol. Rev. 71:447–480.

    Google Scholar 

  • Werblin, F., 1991, Synaptic connections, receptive fields, and patterns of activity in the tiger salamander retina, Invest. Ophthalmol. Visual Sci. 32:459–483.

    Google Scholar 

  • Wolbarsht, M. L., and Landers, M. B., III, 1980, The rationale of photocoagulation therapy for proliferative diabetic retinopathy: A review and a model, Ophthalmic Surg. 11:235–245.

    Google Scholar 

  • Wise, G. N., Dollery, C. T., and Henkind, P., 1971, The Retinal Circulation, Harper and Row, New York.

    Google Scholar 

  • Wyatt, J., and Rizzo, J., 1996, Ocular implants for the blind, IEEE Spectrum 112:47–53.

    Google Scholar 

  • Wyatt, J., and Rizzo, J., 1999, Retinal prosthesis, In: Age-Related Macular Degeneration (J. W. Berger, S. L. Fine, and M. G. Maguire, eds.), Mosby, St. Louis, pp. 413–432.

    Google Scholar 

  • Yancey, C. M., and Linsenmeier, R. A., 1989, Oxygen distribution and consumption in the cat retina at increased intraocular pressure, Invest. Ophthalmol. Visual Sci. 30:600–611.

    Google Scholar 

  • Yamamoto, F., Borgula, G., and Steinberg, R. H., 1992, Effects of light and darkness on pH outside rod photoreceptors in the cat retina, Exp. Eye Res. 54:685–697.

    Google Scholar 

  • Yau, K. Y., 1994, Phototransduction mechanism in rods and cones, Invest. Ophthalmol. Visual Sci. 35:9–32.

    Google Scholar 

  • Young, R. W., 1976, Visual cells and the concept of renewal, Invest. Ophthalmol. 15:700–725.

    Google Scholar 

  • Yu, D.-Y., and Cringle, S. J., 2001, Oxygen distribution and consumption within the retina in vascularized and avascular retinas and in animal models of retinal disease, Prog. Retin. Eye Res. 20(2):175–208.

    Google Scholar 

  • Zrenner, E., 2002, Will retinal implants restore vision? Science 295:1022–1025.

    Google Scholar 

  • Zrenner, E., Miliczek, K.-D., Gabel, V. P., Graf, H. G., Guenther, E., Haemmerle, H., Hoefflinger, B., Kohler, K., Nisch, W., Schubert, M., Stett, A., and Weiss, S., 1997, The development of subretinal microphotodiodes for replacement of degenerated photoreceptors, Ophthalmic Res. 29:269–280.

    Google Scholar 

  • Zrenner, E., Stett, A., Weiss, S., Aramant, R. B., Guenther, E., Kohler, K., Miliczek, K.-D., Seiler, M. J., and Haemmerle, H., 1999, Can subretinal microphotodiodes successfully replace degenerated photoreceptors, Vision Res. 39:2555–2567.

    Google Scholar 

  • Zuckerman, R., and Weiter, J. J., 1980, Oxygen transport in the bullfrog retina, Exp. Eye Res. 30:117–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Linsenmeier, R.A. (2005). Retinal Bioengineering. In: He, B. (eds) Neural Engineering. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48610-5_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48610-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48609-8

  • Online ISBN: 978-0-306-48610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics