Skip to main content

Sensory Neural Prostheses

  • Chapter

Part of the book series: Bioelectric Engineering ((BEEG))

Abstract

The use of technology to compensate for neurological deficit or disease has long captured the imagination of researchers in neural engineering. Although the field of neural engineering, by name, is relatively young, over the past 30 years many researchers from the traditional engineering fields have devoted major portions of their careers to the development of implantable devices known as neural prostheses. These efforts are exemplary of the multidisciplinary nature of bioengineering, and have incorporated principles from a broad range of engineering fields, including electrical, mechanical, and materials engineering, as well as advanced theoretical and applied research in polymer science, electrochemistry, and neuroscience. The basic principle underlying all neural prosthetic devices is common: the artificial manipulation of the biological neural system using externally induced electrical currents with the goal of mimicking normal sensorimotor functions. However, each application requires implantable hardware systems that are specific to the desired function, and therein lay the engineering challenges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, W. F., Yuen, T. G. H., McCreery, D. B., and Bullara, L. A., 1986, Histopathalogic evaluation of prolonged intracortical electrical stimulation, Exp. Neurol. 92:162–185.

    Article  Google Scholar 

  • Agnew, W. F., and McCreery, D. B., 1990a, Considerations for safety with chronically implanted nerve electrodes, Epilepsia 31:S27–S32.

    Article  Google Scholar 

  • Agnew, W. F., McCreery, D. B., Yuen, T. G., and Bullara, L. A., 1990b, Local anaesthetic block protects against electrically-induced damage in peripheral nerve, J. Biomed. Eng. 12:301–308.

    Article  Google Scholar 

  • Anderson, D. J., Najafi, K., Tanghe, S. J., Evans, D. A., Levy, K. L., Hethke, J. F., Xue, X., Zappia, J. J., and Wise, K. D., 1989, Batch-fabricated thin-film electrodes for stimulation of the central auditory system, IEEE Trans. Biomed. Eng. 36:693–704.

    Article  Google Scholar 

  • Bak, M., Girvin, J. P., Hambrecht, F. T., Kufta, C. V., Loeb, G. E., and Schmidt, E. M., 1990, Visual sensations produced by intracortical microstimulation of the human occipital cortex, Med. Biol. Eng. Comp. May:257–259.

    Google Scholar 

  • Bartlett, J. R., and Doty, R. W., 1980, An exploration of the ability of macaques to detect microstimulation of the striate cortex, Acta Neurobiologiae Expermentalis (Warzawa) 40:713–728.

    Google Scholar 

  • Beebe, X., and Rose, T. L., 1988, Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline, IEEE Trans. Biomed. Eng. 35:494–495.

    Article  Google Scholar 

  • Brindley, G. S., and Lewin, W. S., 1968, The sensations produced by electrical stimulation of the visual cortex, J. Physiol. (London) 196(2):479–493.

    Google Scholar 

  • Brindley, G. S., Donaldson, P. E., Falconer, M. A., and Rushton, D. N., 1972, The extent of the region of occipital cortex that when stimulated gives phosphenes fixed in the visual field, J. Physiol. (London) 225(2):57P–58P.

    Google Scholar 

  • Brindley, G. S., 1973, Sensory effects of electrical stimulation of the visual and paravisual cortex in man, In: Handbook of Sensory Physiology, Vol. VII/3 (R. Jung, ed.), Springer-Verlag, Berlin, pp. 583–594.

    Google Scholar 

  • Brindley, G. S., and Lewin, W. S., 1968, The sensations produced by electrical stimulation of the visual cortex, J. Physiol. (London) 196:479–493.

    Google Scholar 

  • Brindley, G. S., and Rushton, D. N., 1977, Observations on the representation of the visual field on the human occipital cortex. In: Functional Electrical Stimulation: Applications in Neural Prostheses (F. T. Hambrecht, and J. B. Reswick, eds.), Marcel Dekker, New York, pp. 261–276.

    Google Scholar 

  • Brindley, G. S., Donaldson, P. E. K., Falconer, M., and Rushton, D. N., 1972, The extent of the region of occipital cortex that when stimulated gives phosphenes fixed in the visual field, J. Physiol. (London) 225:57P–58P.

    Google Scholar 

  • Brummer, S. B., Robblee, L. S., and Hambrecht, F. T., 1983, Criteria for selecting electrodes for electrical stimulation: Theoretical and practical considerations, Ann. N. Y. Acad. Sci. 405:159–171.

    Article  Google Scholar 

  • Button, J., and Putnam, T., 1962, Visual responses to cortical stimulation in the blind, J. Iowa Med. Soc. LII(1):17–21.

    Google Scholar 

  • Chapanis, N. P., Uematsu, B., Konigsmark, B., and Walker, A. E., 1973, Central phosphenes in man: A report of three cases, Neuropsychologia 11:1–19.

    Article  Google Scholar 

  • Chapin, J. K., and Nicolelis, M. A., 1999, Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations, J. Neurosci. Methods 94:121–140.

    Article  Google Scholar 

  • Chow, A. Y., Pardue, M. T., Perlman, J. I., Ball, S. L., Chow, V. Y., Hetling, J. R., Peyman, G. A., Liang, C., Stubbs, E. B., and Peachy, N. S., 2002, Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs, J. Rehabil. Res. Dev. 39:313–321. (See also www.optobionics.com.)

    Google Scholar 

  • DeJaun, E., Cooney, M. J., Humayun, M. S., and Jensen, P. S., 1999, Ocular surgery for the new millennium: Treatment of retinal disease in the new millennium, Ophthalmol. Clin North Am. 12:539–562.

    Article  Google Scholar 

  • DeCharms, R. C., Blake, D. T., and Merzenich, M. M., 1999, A multielectrode implant device for the cerebral cortex, J. Neurosci. Methods 93:27–35.

    Article  Google Scholar 

  • de Donaldson, N., and Perkins, T. A., 1983, Analysis of resonant coupled coils in the design of radio frequency transcutaneous links, Med. Biol. Eng. Comput. 21:612–627.

    Article  Google Scholar 

  • DeYoe, E. A., 1983, An investigation in the awake macaque of the threshold for detection of electrical currents applied to striate cortex: Psychophysical properties and laminar differences. Doctoral thesis, University of Rochester.

    Google Scholar 

  • Dobelle, W. H., 2000, Artificial vision for the blind by connecting a television camera to the visual cortex, ASAIO J. 46:3–9.

    Article  Google Scholar 

  • Dobelle, W. H., Mladejovsky, M. G., Evans, J. R., Roberts, T. S., and Girvin, J. P., 1976, Braille reading by a blind volunteer by visual cortex stimulation, Nature 259:111–112.

    Article  Google Scholar 

  • Dobelle, W. H., and Mladejovsky, M. G., 1974, Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind, J. Physiol. (London) 243:553–576.

    Google Scholar 

  • Dobelle, W. H., Mladejovsky, M. G., and Girvin, J. P., 1974, Artificial vision for the blind: Electrical stimulation of visual cortex offers hope for a functional prosthesis, Science 183:440–444.

    Article  Google Scholar 

  • Dobelle, W. H., Mladejovsky, M. G., Evans, J. R., Roberts, T. S., and Girvin, J. P., 1976, ‘Braille’ reading by a blind volunteer by visual cortex stimulation, Nature 259:111–112.

    Article  Google Scholar 

  • Duncan, G. H., Bushnell, M. C., and Marchard, S., 1991, Deep brain stimulation: A review of basic research and clinical studies, Pain 45:49–59.

    Article  Google Scholar 

  • Foerster, O., 1929, Beiträge zur Pathophysiologie der Sehspäre, J. Psychol. Neurol. (Ppz.) 39:463–485, 477–481, 482.

    Google Scholar 

  • Frohlig, G., Bolz, A., Strobel, J., Rutz, M., Lawall, P., Scherdt, H., Schaldach, M., and Schieffer, H., 1998, A fractally coated 1.3 mm2 high impedance pacing electrode, PACE 21:1239–1246.

    Google Scholar 

  • Galbraith, D. C., Soma, M., and White, R. L., 1987, A wide-band efficient inductive transdermal power and data link with coupling insensitive gain, IEEE Trans. Biomed. Eng. BME-34:265–275.

    Article  Google Scholar 

  • Greenberg, R. J., 2000, Visual Prostheses: A Review, Neuromodulation 3:161–165.

    Article  Google Scholar 

  • Grill, W. M., Bhadra, N., and Wang, B., 1999, Bladder and urethral pressures evoked by microstimulation of the sacral spinal cord in cats, Brain Res. 836:19–30.

    Article  Google Scholar 

  • Grover, F. W., 1946, Inductance Calculations, Van Nostrand, New York.

    Google Scholar 

  • Gualtierotti, T., and Bailey, P., 1968, A neutral buoyancy microelectrode for prolonged recording from single nerve units, Electroencephalogr. Clin. Neurophysiol. 25:77–81.

    Article  Google Scholar 

  • Guyton, D. L., and Hambrecht, F. T., 1974, Theory and design of capacitor electrodes for chronic stimulation, Med. Biol. Eng. 12:613–619.

    Article  Google Scholar 

  • Hambrecht, F. T., 1995, Visual prostheses based on direct interfaces with the visual system, Bulliere’s Clin. Neurol. 4:147–165.

    Google Scholar 

  • Heetderks, W. J., 1988, RF powering of millimeter and submillimeter-sized neural prosthetic implants, IEEE Trans. Biomed. Eng. 35:323–327.

    Article  Google Scholar 

  • Hoffer, J. A., Stein, R. B., Haugland, M. K., Sinkjaer, T., Durfee, W. K., Schwartz, A. B., Loeb, G. E., and Kantor, C., 1996, Neural signals for command control and feedback in functional neuromuscular stimulation: A review, J. Rehabil. Res. Devel. 33:145–157.

    Google Scholar 

  • House, W., and Urban, J., 1973, Long term results of electrode implantation and electronic stimulation of the cochlea in man, Ann. Otol. Rhinol. Laryngol. 82:504–715.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. 195:215–243.

    Google Scholar 

  • Humayun, M., Propst, R., deJuan, E., et al. 1993, Is a functional intracular visual prosthesis feasible? Poster Abstracts of the 24th Neural Prosthesis Workshop HIH/NINDS/NIDCD, Bethesda, MD, p. 10.

    Google Scholar 

  • Humayun, M. S., de Juan, E., Weiland, J. D., Dagnelie, et al., 1996, Visual perception elicited by electrical stimulation of retina in blind humans, Arch. Ophthalmol. 114:40–46.

    Google Scholar 

  • Humayun, M. S., de Juan, E., Weiland, J. D., Dagnelie, G., Katona, S., Greeberg, R., and Suzuki, 1999, Pattern electrical stimulation of the human retina, Vision Res. 39:2569–2576.

    Article  Google Scholar 

  • Jezernik, S., Craggs, M., Grill, W. M., Creasey, G., and Rijkhoff, N. J., 2002, Electrical stimulation for the treatment of bladder dysfunction: Current status and future possibilities, Neurol. Res. 24:413–430.

    Article  Google Scholar 

  • Krause, F., 1924, Die Sehbahnen in chirurgischer Beziehung und die faradische Reizung des Sehzentrums, Klin. Wschr. 3:1260–1265.

    Article  Google Scholar 

  • Liu, X., McCreery, D. B., Carter, R. R., Bullara, L. A., Yuen, T. G. H., and Agnew, W. F., 1999, Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes, IEEE Trans. Rehabil. Eng. 7:315–326.

    Article  Google Scholar 

  • Loddenkemper, T., Pan, A., Neme, S., Baker, K. B., Rezai, A. R., Dinner, D. S., Montgomery, E. B., and Luders, H. O., 2001, Deep brain stimulation in epilepsy, J. Clin. Neurophysiol. 18:514–532.

    Article  Google Scholar 

  • Loeb, G. E., Peck, R. A., and Martyniuk, J., 1995, Toward the ultimate metal microelectrode, J. Neurosci. Methods 63:175–183.

    Article  Google Scholar 

  • Löwenstein, K., and Borchardt, M., 1918, Dtsch. Z. Nervenheilk 58:264–292.

    Article  Google Scholar 

  • Margalit, E., Maia, M., Weiland, J. D., Greenberg, R. J., Fujii, G. Y., Torres, G., Piyathaisere, D. V., O’Hearn, T. M., Liu, W., Lazzi, G., Dagnelie, G., Scribner, D. A., de Juan, E., and Humayun, M. S., 2002, Retinal prostheses for the blind, Surv. Ophthalmol. 47:335–356.

    Article  Google Scholar 

  • Maynard, E. M., Nordhausen, C. T., and Normann, R. A., 1997, The Utah intracortical electrode array: A recording structure for potential brain-computer interfaces, Electroencephalogr. Clin. Neurophysiol. 102:228–239.

    Article  Google Scholar 

  • McCreery, D. B., Agnew, W. F., and Bullara, L. A., 2002, The effects of prolonged intracortical microstimulation on the excitability of pyramidal tract neurons in the cat, Ann. Biomed. Eng. 30:107–109.

    Article  Google Scholar 

  • McCreery, D. B., Agnew, W. F., Bullara, L. A., and Yuen, T. G., 1990, Partial pressure of oxygen in brain and peripheral nerve during damaging electrical stimulation, J. Biomed. Eng. 12:309–315.

    Article  Google Scholar 

  • McCreery, D. B., Agnew, W. F., Yuen, T. G., and Bullara, L. A., 1992, Damage in peripheral nerve from continuous electrical stimulation: Comparison of two stimulus waveforms, Med. Biol. Eng. Comput. 30:109–114.

    Article  Google Scholar 

  • McCreery, D. B., and Agnew, W. F., 1983, Changes in extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densities, Exp. Neurol. 79:371–396.

    Article  Google Scholar 

  • McCreery, D. B., Bullara, L. A., and Agnew, W. F., 1986, Neuronal activity evoked by chronically implanted intracortical microelectrodes, Exp. Neurol. 92:147–161.

    Article  Google Scholar 

  • McCreery, D. B., Shannon, R. V., Moore, J. K., and Chatterjee, M., 1998, Accessing the tonotopic organization of the ventral cochlear nucleus by intranuclear microstimulation, IEEE Trans. Rehabil. Eng. 6:391–399.

    Article  Google Scholar 

  • McCreery, D. B., Yuen, T. G., Agnew, W. F., and Bullara, L. A., 1997, A characterization of the effects on neuronal excitability due to prolonged microstimulation with chronically implanted microelectrodes, IEEE Trans. Biomed. Eng. 44:931–939.

    Article  Google Scholar 

  • McCreery, D. B., Yuen, T. G. H., and Bullara, L. A., 2000, Chronic microstimulation in the feline ventral cochlear nucleus: Physiologic and histologic effects, Hear. Res. 149:223–238.

    Article  Google Scholar 

  • Meyer, R. D., Cogan, S. F., Nguyen, T. H., and Rauh, R. D., 2001, Electrodeposited iridium oxide for neural stimulation and recording electrodes, IEEE Trans. Neural Sys. Rehab. Eng. 9:2.

    Article  Google Scholar 

  • Nashold, B., 1970, Phosphenes resulting from stimulation of the midbrain in man, Arch. Ophtalmol. 84:433–435.

    Google Scholar 

  • Nicolelis, M. A., 2002, The amazing adventures of robotrat, Trends Cogn. Sci. 6:449–450.

    Article  Google Scholar 

  • Normann, R. A., Maynard, E. M., Rousche, P. J., and Warren, D. J., 1999, A neural interface for a cortical vision prosthesis, Vision Res. 39:2577–2587.

    Article  Google Scholar 

  • Otto, S. R., Brackmann, D. E., Hitselberger, W. E., Shannon, R. V., and Kuchta, J., 2002, Multichannel auditory brainstem implant: Update on performance in 61 patients, J. Neurosurg. 96:1063–1071.

    Google Scholar 

  • Peachey, N. S., and Chow, A. Y., 1999, Subretinal implantation of semiconductor-based photodiodes: Progress and challenges, J. Rehabil. Res. Dev. 36:371–376.

    Google Scholar 

  • Penfield, W., and Jasper, H., 1954, Epilepsy and the Functional Anatomy of the Human Brain, Churchill, London, pp. 116–126, 404–406.

    Google Scholar 

  • Penfield, W., and Rasmussen, T., 1950, The Cerebral Cortex in Man, Macmillan, New York.

    Google Scholar 

  • Peyman, G., Chow, A. Y., Liang, C., Chow, V. Y. F., Perlman, J. I., and Peachey, N. S., 1998, Subretinal semiconductor microphotodiode array, Opthalmic Surg. Lasers 29:234–241.

    Google Scholar 

  • Pollen, D. A., 1975, Some perceptual effects of electrical stimulation of the visual cortex in man, In: The Nervous System, Vol. 2: The Clinical Neurosciences (D. B. Tower, ed.), Raven Press, New York, pp. 519–528.

    Google Scholar 

  • Posey, F. A., and Morozumi, T., 1966, Theory of potentiostatic and galvanostatic charging of the double layer in porous electrodes, J. Electrochem. Soc. 113:176–183.

    Article  Google Scholar 

  • Rauschecker, J. P., and Shannon, R. V., 2002, Sending sound to the brain, Science 295:1025.

    Article  Google Scholar 

  • Rizzo, J. F., and Wyatt, J., 1997, Prospects for a visual prosthesis, Neuroscientist 3:251–262.

    Article  Google Scholar 

  • Robblee, L. S., and Rose, T. L., 1990, Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, in Neural Prostheses: Fundamental Studies (W. F. Agnew and D. B. McCreery, eds.), Prentice Hall, Englewood Cliffs, NJ, pp. 25–66.

    Google Scholar 

  • Robblee, L. S., Lefko, J. L., and Brummer, S. B., 1983, Activated Ir: An electrode suitable for reversible charge injection in saline, J. Electrochem. Soc. 130:731.

    Article  Google Scholar 

  • Rose, T. L., Kelliher, E. M., and Robblee, L. S., 1985, Assessment of capacitor electrodes for intracortical neural stimulation, J. Neurosci. Methods 12:181–193.

    Article  Google Scholar 

  • Rousche, P. J., and Normann, R. A., 1998, Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex, J. Neurosci. Methods 82:1–16.

    Article  Google Scholar 

  • Rushton, D. N., and Brindley, G. S., 1977, Short-and long-term stability of cortical electrical phosphenes, In: Physiological Aspects of Clinical Neurology (F. C. Rose, ed.). Oxford: Blackwell, 123–153.

    Google Scholar 

  • Salcman, M., and Bak, M. J., 1976, A new chronic recording intracortical microelectrode. IEEE Trans. Bio-Med. Eng. 14:42–50.

    Google Scholar 

  • Schaldach, M., Hubmann, M., Weikl, A., and Hardt, R., 1990, Sputter-deposited TiN electrode coatings for superior sensing and pacing performance, PACE 13:1891–1895.

    Google Scholar 

  • Schmidt, E. M., Bak, M. J., Hambrecht, F. T., Kufta, C. V., O’Rourke, D. K., and Vallabhanath, P., 1996a, Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex, Brain 119 (Pt 1):507–522.

    Article  Google Scholar 

  • Schmidt, E. M., Bak, M. J., Hambrecht, F. T., Kufta, C. V., O’Rourke, D. K., and Vallabhanath, P., 1996b, Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119 (Pt 2):507–522.

    Article  Google Scholar 

  • Schwan, M., Troyk, P., and Loeb, G., 1995, Suspended carrier modulation for transcutaneous telemetry links, In: Proceedings of the 13th International Symposium on Biotelemetry, Williamsburg, VA, pp. 27–32.

    Google Scholar 

  • Shaw, D., 1955, Method and means for aiding the blind. U.S. Patent no. 2,721,316.

    Google Scholar 

  • Sokal, N. O., and Sokal, A. D., 1975, Class E—a new class of high efficiency tuned single-ended switching power amplifiers, IEEE J. Solid-State Circuits 10:168–176.

    Article  Google Scholar 

  • Spelman, F., 1999, The past, present, and future of cochlear prostheses, IEEE Eng. Med. Biol. 18(3):27–33.

    Article  Google Scholar 

  • Stett, A., et al., 2000, Electrical multisite stimulation of the isolated chicken retina, Vision Res. 40:1785–1795.

    Article  Google Scholar 

  • Suesserman, M. F., Spelman, F. A., and Rubinstein, J. T., 1991, In vitro measurement and characterization of current density profiles produced by non-recessed, simple recessed, and radially varying recessed stimulating electrodes, IEEE Trans. Biomed. Eng. 38:401–408.

    Article  Google Scholar 

  • Tanghe, S. J., Najafi, K., and Wise, K. D., 1990, A planar IrO multichannel stimulating electrode for use in neural prostheses, Sens. Actuat. B1:464–467.

    Article  Google Scholar 

  • Tehovnik, E. J., 1996, Electrical stimulation of neural tissue to evoke behavioral responses, J. Neurosci. Methods 65:1–17.

    Article  Google Scholar 

  • Terman, F. E., 1943, Radio Engineers’ Handbook, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Toh, E. H., and Luxford, W. M., 2002, Cochlear and brainstem implantation, Otolaryngol. Clin. North Am. 35:325–342.

    Article  Google Scholar 

  • Troyk, P., and Schwan, M., 1993, Self-regulating Class E resonant power converter maintaining operation in a minimal loss region, U.S. Patent No. 5179511.

    Google Scholar 

  • Troyk, P., and Schwan, M., 1995, Modeling of weakly-coupled inductive links, Proceedings of the 13th International Symposium on Biotelemetry, Williamsburg, VA, pp. 63–68.

    Google Scholar 

  • Troyk, P. R., Heetderks, W., Schwan, M., and Loeb, G., 1997, Suspended carrier modulation of high-Q transmitters, U.S. Patent No. 5697076.

    Google Scholar 

  • Troyk, P. R., and Schwan, M. A., 1992a, Class E driver for transcutaneous power and data link for implanted electronic devices, Med. Biol. Eng. Comp. 30:69–75.

    Article  Google Scholar 

  • Troyk, P. R., and Schwan, M. A., 1992b, Closed-loop class E transcutaneous power and data link for microimplants, IEEE Trans. Biomed. Eng. 39:589–599.

    Article  Google Scholar 

  • Troyk, P., Bradley, D., Towle, V., Erickson, R., McCreery, D., Bak, M., Schmidt, E., Kufta, C., Cogan, S., and Berg, J., 2002, Experimental results of intracortical stimulation in macaque IV, ARVO 2003 Meeting, Ft. Lauderdale, FL, May 4–9.

    Google Scholar 

  • Troyk, P., and DeMichele, G., 2003, Inductively-coupled power and data link for neural prostheses using a Class-E oscillator and FSK modulation, In: Proceedings of EMBS Conference, Cancun, Mexico, September 17–21, pp. 3376–3379.

    Google Scholar 

  • Urban, H., 1937, Zur Physiologie der Occipitalregion des Menschen, Z. Ges. Neurol. Psychiat. 158:257–261.

    Article  Google Scholar 

  • Veraart, C., Raftopoulos, C., and Mortimer, J. T., et al. 1998, Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode, Brain Res. 813:181–186.

    Article  Google Scholar 

  • Weiland, J. D., Anderson, D. J., and Humayun, M. S., 2002, In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes, IEEE Trans. Biomed. Eng. 49:574–579.

    Article  Google Scholar 

  • Weiland, J. D., and Anderson, D. J., 2000, Chronic neural stimulation with thin-film, iridum oxide electrodes at high current densities, IEEE Trans. Biomed. Eng. 35:911–918.

    Article  Google Scholar 

  • Weiland, J. D., Humayun, M. S., and Dagnelie, G., et al. 1999, Understanding the origin if visual percepts elicited by electrical stimulation of the human retina, Graefes Arch. Clin. Exp. Ophthalmol. 237:1007–1013.

    Article  Google Scholar 

  • Wessberg, J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K., Kim, J., Biggs, S. J., Srinivasan, M. A., and Nicolelis, M. A., 2000, Real-time prediction of hand trajectory by ensembles of cortical neurons in primates, Nature 408:361–365.

    Article  Google Scholar 

  • Wise, K. D., et al. 1999, Micromachined stimulating electrodes, Final Report Contract NIH-NINDS-N01-NS-5-2335, available from: www.ninds.nih.gov/ProgressReports.

    Google Scholar 

  • Ziaie, B., Nardin, M. D., Coghlan, A. R., and Najafi, K., 1997, A single-channel implantable microstimulator for function neuromuscular stimulation, IEEE Trans. Biomed. Eng. 44:909–920.

    Article  Google Scholar 

  • Zierhofer, C., and Hochmair, E. S., 1990, High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link, IEEE Trans. Biomed. Eng. 37:716–722.

    Article  Google Scholar 

  • Zrenner, E., Stett, A., and Weiss, S., et al. 1999, Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res. 39:2555–2567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Troyk, P.R., Cogan, S.F. (2005). Sensory Neural Prostheses. In: He, B. (eds) Neural Engineering. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48610-5_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48610-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48609-8

  • Online ISBN: 978-0-306-48610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics