Skip to main content

Sequence and structural alignments of eukaryotic and prokaryotic cytoskeletal proteins

  • Chapter
  • 255 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreu, J. M, Oliva, M. A. and Monasterio, O. (2002) Reversible unfolding of FtsZ cell division proteins from archaea and bacteria. Comparison with eukaryotic tubulin folding and assembly, J. Biol. Chem. 277, 43262–43270.

    Article  PubMed  CAS  Google Scholar 

  • Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S. R., Griffiths-Jones, S., Howe, K. L., Marshall, M. and Sonnhammer, E. L. (2002) The Pfam protein families database, Nucleic Acids Res. 30, 276–280.

    Article  PubMed  CAS  Google Scholar 

  • Bork, P., Sander, C. and Valencia, A. (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl. Acad. Sci. USA 89, 7290–7294.

    Article  PubMed  CAS  Google Scholar 

  • Bramhill, D. and Thompson, C. M. (1994) GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc. Natl. Acad. Sci. USA 91, 5813–5817.

    Article  PubMed  CAS  Google Scholar 

  • Carballido-López, R. and Errington, J. (2003) A dynamic bacterial cytoskeleton. Trends Cell Biol. 13. 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Carettoni, D., Gómez-Puertas, P., Yim, L., Mingorance, J., Massidda, O., Vicente, M., Valencia, A., Domenici, E. and Anderluzzi, D. (2003) Phage-display and correlated mutations identify an essential region of subdomain 1C involved in homodimerization of Escherichia coli FtsA. Proteins 50, 192–206.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. C. and Beckwith, J. (2001) FtsQ, FtsL and FtsI require FtsK, but not FtsN, for colocalization with FtsZ during Escherichia coli cell division, Mol. Microbiol. 42, 395–413.

    Article  PubMed  Google Scholar 

  • Chik, J. K., Lindberg, U. and Schutt, C. E. (1996) The structure of an open state of beta-actin at 2.65 Å resolution. J. Mol. Biol. 263, 607–623.

    Article  PubMed  CAS  Google Scholar 

  • de Boer, P., Crossley, R. and Rothfield, L. (1992) The essential bacterial cell-division protein FtsZ is a GTPase, Nature 359, 254–256.

    Article  PubMed  Google Scholar 

  • de Pereda, J. M., Leynadier, D., Evangelio, J. A., Chacón, P. and Andreu, J. M. (1996) Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. Biochemistry 35, 14203–14215.

    Article  PubMed  Google Scholar 

  • del Sol Mesa, A., Pazos, F. and Valencia, A. (2003) Automatic methods for predicting functionally important residues. J. Mol. Biol. 326, 1289–1302.

    Article  PubMed  CAS  Google Scholar 

  • Din, N., Quardokus, E. M., Sackett, M. J. and Brun, Y. V. (1998) Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol. Microbiol. 27, 1051–1063.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, H. P. (1997) FtsZ, a tubulin homologue in prokaryote cell division, Trends in Cell Biology 7, 362–367.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, H. P. (1998) Atomic structures of tubulin and FtsZ. Trends Cell Biol. 8, 133–137.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, H. P. (2000) Dynamin and FtsZ. Missing links in mitochondrial and bacterial division. J. Cell Biol. 148, 1103–1105.

    Article  PubMed  CAS  Google Scholar 

  • Errington, J. and Daniel, R. A. (2001) Cell division during growth and sporulation, in, Bacillus subtilis and its relatives, from genes to cells. (L. Sonenshein, R. Losick, and J. A. Hoch, eds.), American Society for Microbiology, Washington, D.C, pp. 97–109.

    Google Scholar 

  • Errington, J., Daniel, R. A. and Scheffers, D. J. (2003) Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52–65.

    Article  PubMed  CAS  Google Scholar 

  • Fariselli, P., Olmea, O., Valencia, A. and Casadio, R. (2001a) Prediction of contact maps with neural networks and correlated mutations. Protein Eng. 14, 835–843.

    Article  PubMed  CAS  Google Scholar 

  • Fariselli, P., Olmea, O., Valencia, A. and Casadio, R. (2001b) Progress in predicting interresidue contacts of proteins with neural networks and correlated mutations. Proteins. Suppl 5, 157–162.

    Google Scholar 

  • Feucht, A., Lucet, I., Yudkin, M. D. and Errington, J. (2001) Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol. Microbiol. 40, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, K. M., DeLuca-Flaherty, C. and McKay, D. B. (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346, 623–628.

    Article  PubMed  CAS  Google Scholar 

  • Göbel, U., Sander, C., Schneider, R. and Valencia, A. (1994) Correlated mutations and residue contacts in proteins. Proteins 18, 309–317.

    Article  PubMed  Google Scholar 

  • Gómez-Puertas, P., Martín-Benito, J., Carrascosa, J. L., Willison, K. R. and Valpuesta, J. M. (2004) The substrate recognition mechanisms in chaperonins. J. Mol. Recognit. 17, 1–10.

    Article  CAS  Google Scholar 

  • Holm, L. and Sander, C. (1993) Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C., Popp, D., Gebhard, W. and Kabsch, W. (1990) Atomic model of the actin filament. Nature 347, 44–49.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C. (1990) Atomic structure of the actin, DNase I complex. Nature 347, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure, pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

    Article  PubMed  CAS  Google Scholar 

  • Llorca, O., Martín-Benito, J., Gómez-Puertas, P., Ritco-Vonsovici, M., Willison, K. R., Carrascosa, J. L. and Valpuesta, J. M. (2001) Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J. Struct. Biol. 135, 205–218.

    Article  PubMed  CAS  Google Scholar 

  • López-Romero, P., Gómez, M. J., Gómez-Puertas, P. and Valencia, A., 2004, Prediction of functional sites in proteins by evolutionary methods. in Principles and practice. Methods in proteome and protein analysis (R. M. Kamp, J. Calvete, and T. Choli-Papadopoulou, eds.), Springer-Verlag, Berlin Heidelberg, pp. 319–340.

    Google Scholar 

  • Löwe, J., and Amos, L. A. (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206.

    Article  PubMed  Google Scholar 

  • Löwe, J., and Amos, L. A. (1999) Tubulin-like protofilaments in Ca2+-induced FtsZ sheets, EMBO J. 18, 2364–2371.

    Article  PubMed  Google Scholar 

  • Lu, C., Reedy, M. and Erickson, H. P. (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol. 182, 164–170.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X., and Margolin, W. (1999) Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J. Bacteriol. 181, 7531–7544.

    PubMed  CAS  Google Scholar 

  • Martín-Benito, J., Boskovic, J., Gómez-Puertas, P., Carrascosa, J. L., Simons, C. T., Lewis, S. A., Bartolini, F., Cowan, N. J. and Valpuesta, J. M. (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21, 6377–6386.

    Article  PubMed  Google Scholar 

  • McLaughlin, P. J., Gooch, J. T., Mannherz, H. G. and Weeds, A. G. (1993) Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364, 685–692.

    Article  PubMed  CAS  Google Scholar 

  • Mingorance, J., Rueda, S., Gómez-Puertas, P., Valencia, A. and Vicente, M. (2001) Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover. Mol. Microbiol. 41, 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison, T. and Kirschner, M. (1984) Dynamic instability of microtubule growth. Nature 312, 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Mosyak, L., Zhang, Y., Glasfeld, E., Haney, S., Stahl, M., Seehra, J. and Somers, W. S. (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J. 19, 3179–3191.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, A. and Lutkenhaus, J. (1998) Dynamic assembly of FtsZ regulated by GTP hydrolysis, EMBO J. 17, 462–469.

    Article  PubMed  CAS  Google Scholar 

  • Nogales, E. (2000) Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277–302.

    Article  PubMed  CAS  Google Scholar 

  • Nogales, E., Downing, K. H., Amos, L. A. and Löwe, J. (1998a) Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5, 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Nogales, E., Wolf, S. G. and Downing, K. H. (1998b) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Olmea, O., Rost, B. and Valencia, A. (1999) Effective use of sequence correlation and conservation in fold recognition. J. Mol. Biol. 293, 1221–1239.

    Article  PubMed  CAS  Google Scholar 

  • Olmea, O. and Valencia, A. (1997) Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Folding & Design 2, S25–S32.

    Article  CAS  Google Scholar 

  • Osteryoung, K. W. (2001) Organelle fission in eukaryotes. Curr. Opin. Microbiol. 4, 639–646.

    Article  PubMed  CAS  Google Scholar 

  • Pazos, F., Helmer-Citterich, M., Ausiello, G. and Valencia, A. (1997a) Correlated mutations contain information about protein-protein interaction. J. Mol. Biol. 271, 511–523.

    Article  PubMed  CAS  Google Scholar 

  • Pazos, F., Olmea, O. and Valencia, A. (1997b) A graphical interface for correlated mutations and other protein structure prediction methods. Comput. Appl. Biosci. 13, 319–321.

    PubMed  CAS  Google Scholar 

  • RayChaudhuri, D. and Park, J. T. (1992) Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251–254.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez, M., Valencia, A., Ferrándiz, M. J., Sander, C. and Vicente, M. (1994) Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J. 13, 4919–4925.

    PubMed  Google Scholar 

  • Sander, C. and Schneider, R. (1993) The HSSP data base of protein structure-sequence alignments. Nucl. Acids Res. 21, 3105–3109.

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht, H., Farr, G. W., Sternlicht, M. L., Driscoll, J. K., Willison, K. and Yaffe, M. B. (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc. Natl. Acad. Sci. USA 90, 9422–9426.

    Article  PubMed  CAS  Google Scholar 

  • Stricker, J., Maddox, P., Salmon, E. D. and Erickson, H. P. (2002) Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc. Natl. Acad. Sci. USA 99, 3171–3175.

    Article  PubMed  CAS  Google Scholar 

  • Valencia, A. and Pazos, F. (2002) Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12, 368–373.

    Article  PubMed  CAS  Google Scholar 

  • Valpuesta, J. M., Martín-Benito, J., Gómez-Puertas, P., Carrascosa, J. L. and Willison, K. R. (2002) Structure and function of a protein folding machine, the eukaryotic cytosolic chaperonin CCT. FEBS Lett. 529, 11–16.

    Article  PubMed  CAS  Google Scholar 

  • van den Ent, F., Amos, L. and Löwe, J. (2001a) Bacterial ancestry of actin and tubulin. Curr. Opin. Microbiol. 4, 634–638.

    Article  PubMed  Google Scholar 

  • van den Ent, F., Amos, L. A., and Löwe, J. (2001b) Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44.

    Article  PubMed  CAS  Google Scholar 

  • van den Ent, F. and Löwe, J. (2000) Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 19, 5300–5307.

    Article  PubMed  Google Scholar 

  • Vitha, S., McAndrew, R. S. and Osteryoung, K. W. (2001) FtsZ ring formation at the chloroplast division site in plants. J. Cell Biol. 153, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Vorobiev, S., Strokopytov, B., Drubin, D. G., Frieden, C., Ono, S., Condeelis, J., Rubenstein, P. A. and Almo, S. C. (2003) The structure of nonvertebrate actin, implications for the ATP hydrolytic mechanism. Proc. Natl. Acad. Sci. USA 100, 5760–5765.

    Article  PubMed  CAS  Google Scholar 

  • Yan, K., Pearce, K. H. and Payne, D. J. (2000) A conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus aureus. Biochem. Biophys. Res. Commun. 270, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Yim, L., Vandenbussche, G., Mingorance, J., Rueda, S., Casanova, M., Ruysschaert, J. M., and Vicente, M. (2000) Role of the carboxy terminus of Escherichia coli FtsA in self-interaction and cell division. J. Bacteriol. 182, 6366–6373.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E. and Pauling, L. (1965) Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins (V. Bryson, and H. Vogel, eds.), Academic Press, New York, pp. 97–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

López-Viñas, E., Gómez-Puertas, P. (2004). Sequence and structural alignments of eukaryotic and prokaryotic cytoskeletal proteins. In: Vicente, M., Tamames, J., Valencia, A., Mingorance, J. (eds) Molecules in Time and Space. Springer, Boston, MA. https://doi.org/10.1007/0-306-48579-6_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48579-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48578-7

  • Online ISBN: 978-0-306-48579-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics