Skip to main content

The assembly of proteins at the cell division site

  • Chapter
Molecules in Time and Space

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addinall, S. G., Bi, E., and Lutkenhaus, J. (1996). FtsZ ring formation in fts mutants. J. Bacteriol. 178, 3877–3884.

    PubMed  CAS  Google Scholar 

  • Addinall, S. G., Cao, C., and Lutkenhaus, J. (1997). FtsN, a late recruit to the septum in Escherichia coli. Mol. Microbiol. 25, 303–309.

    Article  PubMed  CAS  Google Scholar 

  • Addinall, S. G., and Holland, B. (2002). The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J. Mol. Biol. 318, 219–36.

    Article  PubMed  CAS  Google Scholar 

  • Addinall, S. G., and Lutkenhaus, J. (1996). FtsA is localized to the septum in an FtsZ-dependent manner. J. Bacteriol. 178, 7167–7172.

    PubMed  CAS  Google Scholar 

  • Alexandre, S., Colé, G., Coutard, S., Monnier, C., Norris, V., Margolin, W., Yu, X., and Valleton, J. M. (2002). Interaction of FtsZ protein with a DPPE Langmuir film. Coll. Surf. B23, 391–395.

    Google Scholar 

  • Begg, K. J., Dewar, S. J., and Donachie, W. D. (1995). A new Escherichia coli cell division gene, ftsK. J. Bacteriol. 177, 6211–6222.

    PubMed  CAS  Google Scholar 

  • Bernhardt, T. G., and de Boer, P. A. (2003). The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol. Microbiol. 48, 1171–1182.

    Article  PubMed  CAS  Google Scholar 

  • Bi, E., and Lutkenhaus, J. (1991). FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Bork, P., Sander, C., and Valencia, A. (1992). An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl. Acad. Sci. USA 89, 7290–7294.

    PubMed  CAS  Google Scholar 

  • Buddelmeijer, N., Aarsman, M. E., Kolk, A. H., Vicente, M., and Nanninga, N. (1998). Localization of cell division protein FtsQ by immunofluorescence microscopy in dividing and nondividing cells of Escherichia coli. J. Bacteriol. 180, 6107–6116.

    PubMed  CAS  Google Scholar 

  • Buddelmeijer, N., and Beckwith, J. (2002). Assembly of cell division proteins at the E. coli cell center. Curr. Opin. Microbiol. 5, 553–7.

    Article  PubMed  CAS  Google Scholar 

  • Buddelmeijer, N., Judson, N., Boyd, D., Mekalanos, J. J., and Beckwith, J. (2002). YgbQ, a cell division protein in Escherichia coli and Vibrio cholerae, localizes in codependent fashion with FtsL to the division site. Proc. Natl. Acad. Sci. USA 99, 6316–21.

    Article  PubMed  CAS  Google Scholar 

  • Carettoni, D., Gomez-Puertas, P., Yim, L., Mingorance, J., Massidda, O., Vicente, M., Valencia, A., Domenici, E., and Anderluzzi, D. (2003). Phage-display and correlated mutations identify an essential region of subdomain 1C involved in homodimerization of Escherichia coli FtsA. Proteins 50, 192–206.

    Article  PubMed  CAS  Google Scholar 

  • Carson, M. J., Barondess, J., and Beckwith, J. (1991). The FtsQ protein of Escherichia coli: membrane topology, abundance, and cell division phenotypes due to overproduction and insertion mutations. J. Bacteriol. 173, 2187–2195.

    PubMed  CAS  Google Scholar 

  • Chen, J. C., Minev, M., and Beckwith, J. (2002). Analysis of ftsQ mutant alleles in Escherichia coli: complementation, septal localization, and recruitment of downstream cell division proteins. J. Bacteriol. 184, 695–705.

    PubMed  CAS  Google Scholar 

  • Chen, J. C., Weiss, D. S., Ghigo, J. M., and Beckwith, J. (1999). Septal localization of FtsQ, an essential cell division protein in Escherichia coli. J. Bacteriol. 181, 521–530.

    PubMed  CAS  Google Scholar 

  • Cooper, J. A., and Schafter, D. A. (2000). Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol. 12, 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Dai, K., and Lutkenhaus, J. (1992). The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174, 6145–6151.

    PubMed  CAS  Google Scholar 

  • Dai, K., Xu, Y., and Lutkenhaus, J. (1996). Topological characterization of the essential Escherichia coli cell division protein FtsN. J. Bacteriol. 178, 1328–1334.

    PubMed  CAS  Google Scholar 

  • Daniel, R. A., and Errington, J. (2000). Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol. Microbiol. 36, 278–289.

    Article  PubMed  CAS  Google Scholar 

  • Datta, P., Dasgupta, A., Bhakta, S., and Basu, J. (2002). Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. J. Biol. Chem. 277, 24983–24987.

    PubMed  CAS  Google Scholar 

  • Descoteaux, A., and Drapeau, G. R. (1987). Regulation of cell division in Escherichia coli K-12: probable interactions among proteins FtsQ, FtsA and FtsZ. J. Bacteriol. 169, 1938–1942.

    PubMed  CAS  Google Scholar 

  • Dewar, S. J., Begg, K. J., and Donachie, W. D. (1992). Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J. Bacteriol. 174, 6314–6316.

    PubMed  CAS  Google Scholar 

  • Diaz, J. F., Kralicek, A., Mingorance, J., Palacios, J. M., Vicente, M., and Andreu, J. M. (2001). Activation of cell division protein FtsZ. Control of switch loop T3 conformation by the nucleotide gamma-phosphate. J. Biol. Chem. 276, 17307–17315.

    PubMed  CAS  Google Scholar 

  • Din, N., Quardokus, E. M., Sackett, M. J., and Brun, Y. V. (1998). Dominant C-terminal deletions of FtsZ that affect its ability to localize in Caulobacter and its interaction with FtsA. Mol. Microbiol. 27, 1051–1063.

    Article  PubMed  CAS  Google Scholar 

  • Draper, G. C., McLennan, N., Begg, K., Masters, M., and Donachie, W. D. (1998). Only the N-Terminal Domain of FtsK Functions in Cell Division. J. Bacteriol. 180, 4621–4627.

    PubMed  CAS  Google Scholar 

  • Drewes, G., Ebneth, A., and Mandelkow, E. (1998). MAPS, MARKs and microtubule dynamics. Trends Biochem. Sci. 23, 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, H. P. (2001). The FtsZ protofilament and attachment of ZipA—structural constraints on the FtsZ power stroke. Curr. Opin. Cell Biol. 13, 55–60.

    PubMed  CAS  Google Scholar 

  • Erickson, H. P., Taylor, D. W., Taylor, K. A., and Bramhill, D. (1996). Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl. Acad. Sci. USA 93, 519–523.

    PubMed  CAS  Google Scholar 

  • Errington, J., Daniel, R. A., and Scheffers, D. J. (2002). Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52–65.

    Google Scholar 

  • Feucht, A., Lucet, I., Yudkin, M. D., and Errington, J. (2001). Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol. Microbiol. 40, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Gayda, R. C., Henk, M. C., and Leong, D. (1992). C-shaped cells caused by expression of an ftsA mutation in Escherichia coli. J. Bacteriol. 174, 5362–5370.

    PubMed  CAS  Google Scholar 

  • Geissler, B., Elraheb, D., and Margolin, W. (2003). A gain of function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 4197–4202.

    Article  PubMed  CAS  Google Scholar 

  • Gerard, P., Vernet, T., and Zapun, A. (2002). Membrane topology of the Streptococcus pneumoniae FtsW division protein. J. Bacteriol. 184, 1925–1931.

    Article  PubMed  CAS  Google Scholar 

  • Ghigo, J. M., and Beckwith, J. (2000). Cell division in Escherichia coli: role of FtsL domains in septal localization, function, and oligomerization. J. Bacteriol. 182, 116–129.

    Article  PubMed  CAS  Google Scholar 

  • Gueiros-Filho, F. J., and Losick, R. (2002). A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev. 16, 2544–56.

    Article  PubMed  CAS  Google Scholar 

  • Guzman, L. M., Weiss, D. S., and Beckwith, J. (1997). Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli. J. Bacteriol. 179, 5094–5103.

    PubMed  CAS  Google Scholar 

  • Hale, C. A., and de Boer, P. A. (1997). Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88, 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Hale, C. A., and de Boer, P. A. (1999). Recruitment of ZipA to the septal ring of Escherichia coli is dependent on FtsZ and independent of FtsA. J. Bacteriol. 181, 167–176.

    PubMed  CAS  Google Scholar 

  • Hale, C. A., and de Boer, P. A. (2002). ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. J. Bacteriol. 184, 2552–6.

    Article  PubMed  CAS  Google Scholar 

  • Hale, C. A., Rhee, A. C., and de Boer, P. A. (2000). ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J. Bacteriol. 182, 5153–5166.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Z., Mukherjee, A., Pichoff, S., and Lutkenhaus, J. (1999). The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc. Natl. Acad. Sci. USA 96, 14819–14824.

    PubMed  CAS  Google Scholar 

  • Ikeda, M., Sato, T., Wachi, M., Jung, H. K., Ishino, F., Kobayashi, Y., and Matsuhashi, M. (1989) Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J. Bacteriol. 171, 6375–6378.

    PubMed  CAS  Google Scholar 

  • Jung, H. K., Ishino, F., and Matsuhashi, M. (1989). Inhibition of growth of ftsQ, ftsA, and ftsZ mutant cells of Escherichia coli by amplification of a chromosomal region encompassing closely aligned cell division and cell growth genes. J. Bacteriol. 171, 6379–6382.

    PubMed  CAS  Google Scholar 

  • Justice, S. S., Garcia-Lara, J., and Rothfield, L. I. (2000). Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery. Mol. Microbiol. 37, 410–423.

    Article  PubMed  CAS  Google Scholar 

  • Lara, B., and Ayala, J. A. (2002). Topological characterization of the essential Escherichia coli cell division protein FtsW. FEMS Microbiol. Lett. 216, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Levin, P. A., Kurtser, I. G., and Grossman, A. D. (1999). Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96, 9642–9647.

    PubMed  CAS  Google Scholar 

  • Levin, P. A., Schwartz, R. L., and Grossman, A. D. (2001). Polymer stability plays an important role in the positional regulation of FtsZ. J. Bacteriol. 183, 5449–5452.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Mukherjee, A., and Lutkenhaus, J. (1999). Recruitment of ZipA to the division site by interaction with FtsZ. Mol. Microbiol. 31, 1853–1861.

    PubMed  CAS  Google Scholar 

  • Lu, C., Stricker, J., and Erickson, H. P. (1998). FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima—quantitation, GTP hydrolysis, and assembly. Cell Motil. Cytoskeleton 40, 71–86.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X., and Margolin, W. (1999). Genetic and functional analysis of the conserved C-terminal core domain of Escherichia coli FtsZ. J. Bacteriol. 181, 7531–7544.

    PubMed  CAS  Google Scholar 

  • Ma, X., Sun, Q., Wang, R., Singh, G., Jonietz, E. L., and Margolin, W. (1997). Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J. Bacteriol. 179, 6788–6797.

    PubMed  CAS  Google Scholar 

  • Margolin, W. (2003). Bacterial division: the fellowship of the ring, Curr. Biol. 13, R16–8.

    PubMed  CAS  Google Scholar 

  • McCormick, J. R., Su, E. P., Driks, A., and Losick, R. (1994). Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol. 14, 243–254.

    PubMed  CAS  Google Scholar 

  • Mercer, K. L., and Weiss, D. S. (2002). The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J. Bacteriol. 184, 904–12.

    Article  PubMed  CAS  Google Scholar 

  • Mosyak, L., Zhang, Y., Glasfeld, E., Haney, S., Stahl, M., Seehra, J., and Somers, W. S. (2000). The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J. 19, 3179–3191.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, A., Saez, C., and Lutkenhaus, J. (2001). Assembly of an FtsZ mutant deficient in GTPase activity has implications for FtsZ assembly and the role of the Z ring in cell division. J. Bacteriol. 183, 7190–7197.

    Article  PubMed  CAS  Google Scholar 

  • Nanninga, N. (1998). Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 110–129.

    PubMed  CAS  Google Scholar 

  • Ohashi, T., Hale, C. A., de Boer, P. A., and Erickson, H. P. (2002). Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain. J. Bacteriol. 184, 4313–4315.

    Article  PubMed  CAS  Google Scholar 

  • Pichoff, S., and Lutkenhaus, J. (2001). Escherichia coli division inhibitor MinCD blocks septation by preventing Z-ring formation. J. Bacteriol. 183, 6630–6635.

    Article  PubMed  CAS  Google Scholar 

  • Pichoff, S., and Lutkenhaus, J. (2002). Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J. 21, 685–693.

    Article  PubMed  CAS  Google Scholar 

  • Pla, J., Dopazo, A., and Vicente, M. (1990). The native form of FtsA, a septal protein of Escherichia coli, is located in the cytoplasmic membrane. J. Bacteriol. 172, 5097–5102.

    PubMed  CAS  Google Scholar 

  • Raychaudhuri, D. (1999). ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J. 18, 2372–2383.

    Article  PubMed  CAS  Google Scholar 

  • Robson, S. A., Michie, K. A., Mackay, J. P., Harry, E. J., and King, G. F. (2002) The Bacillus subtilis cell division proteins FtsL and DivIC are intrinsically unstable and do not interact with one another in the absence of other septasomal components. Mol. Microbiol. 44, 663–674.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, S. L., Katis, V. L., Partridge, S. R., and Wake, R. G. (1997). DivIB, FtsZ and cell division in Bacillus subtilis. Mol. Microbiol. 23, 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Rueda, S., Vicente, M., and Mingorance, J. (2003). Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J. Bacteriol. 185, 3344–3351.

    Article  PubMed  CAS  Google Scholar 

  • Sackett, M. J., Kelly, A. J., and Brun, Y. V. (1998). Ordered expression of ftsQA and ftsZ during the Caulobacter crescentus cell cycle. Mol. Microbiol. 28, 421–434.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, M., Valencia, A., Ferrandiz, M.-J., Sander, C., and Vicente, M. (1994). Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J. 13, 4919–4925.

    PubMed  CAS  Google Scholar 

  • Scheffers, D., and Driessen, A. J. (2001). The polymerization mechanism of the bacterial cell division protein FtsZ. FEBS Lett. 506, 6–10.

    Article  PubMed  CAS  Google Scholar 

  • Scheffers, D. J., de Wit, J. G., den Blaauwen, T., and Driessen, A. J. (2002). GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry 41, 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Schwedock, J., McCormick, J. R., Angert, E. R., Nodwell, J. R., and Losick, R. (1997). Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol. Microbiol. 25, 847–58.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, W., Liu, G., Donachie, W. D., and Kuempel, P. (1999). The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol. Microbiol. 31, 579–583.

    Article  PubMed  CAS  Google Scholar 

  • Stricker, J., Maddox, P., Salmon, E. D., and Erickson, H. P. (2002). Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc. Natl. Acad. Sci. USA 99, 3171–3175.

    Article  PubMed  CAS  Google Scholar 

  • Tormo, A., Ayala, J. A., de Pedro, M. A., Aldea, M., and Vicente, M. (1986). Interaction of FtsA and PBP3 proteins in the Escherichia coli septum. J. Bacteriol. 166, 985–992.

    PubMed  CAS  Google Scholar 

  • van den Ent, F., Amos, L. A., and Lowe, J. (2001). Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44.

    PubMed  Google Scholar 

  • van Den Ent, F., and Lowe, J. (2000). Crystal structure of the cell division protein FtsA from Thermotoga maritima. EMBO J. 19, 5300–7.

    PubMed  Google Scholar 

  • Wang, H., and Gayda, R. C. (1992). Quantitative determination of FtsA at different growth rates in Escherichia coli using monoclonal antibodies. Mol. Microbiol. 6, 2517–2524.

    PubMed  CAS  Google Scholar 

  • Wang, H., Henk, M. C., and Gayda, R. C. (1993). Overexpression of FtsA induces large bulges at the septal regions in Escherichia coli. Curr. Microbiol. 26, 175–181.

    Article  CAS  Google Scholar 

  • Wang, L., Khattar, M. K., Donachie, W. D., and Lutkenhaus, J. (1998). FtsI and FtsW are localized to the septum in Escherichia coli. J. Bacteriol. 180, 2810–2816.

    PubMed  CAS  Google Scholar 

  • Wang, L., and Lutkenhaus, J. (1998). FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol. Microbiol. 29, 731–740.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Huang, J., Mukherjee, A., Cao, C., and Lutkenhaus, J. (1997). Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J. Bacteriol. 179, 5551–5559.

    PubMed  CAS  Google Scholar 

  • White, E. L., Ross, L. J., Reynolds, R. C., Seitz, L. E., Moore, G. D., and Borhani, D. W. (2000). Slow polymerization of Mycobacterium tuberculosis FtsZ. J. Bacteriol. 182, 4028–4034.

    Article  PubMed  CAS  Google Scholar 

  • Yan, K., Pearce, K. H., and Payne, D. J. (2000). A conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus aureus. Biochem. Biophys. Res. Commun. 270, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Yim, L., Vandenbussche, G., Mingorance, J., Rueda, S., Casanova, M., Ruysschaert, J. M., and Vicente, M. (2000). Role of the carboxy terminus of Escherichia coli FtsA in self-interaction and cell division. J. Bacteriol. 182, 6366–6373.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X.-C., and Margolin, W. (1997). Ca 2+ -mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J. 16, 5455–5463.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X.-C., Tran, A. H., Sun, Q., and Margolin, W. (1998). Localization of cell division protein FtsK to the Escherichia coli septum and identification of a potential N-terminal targeting domain. J. Bacteriol. 180, 1296–1304.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Margolin, W. (2004). The assembly of proteins at the cell division site. In: Vicente, M., Tamames, J., Valencia, A., Mingorance, J. (eds) Molecules in Time and Space. Springer, Boston, MA. https://doi.org/10.1007/0-306-48579-6_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48579-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48578-7

  • Online ISBN: 978-0-306-48579-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics