Skip to main content

Prospects of Arbuscular Mycorrhiza in Sustainable Management of Root- and Soil-Borne Diseases of Vegetable Crops

  • Chapter
Fruit and Vegetable Diseases

Part of the book series: Disease Management of Fruits and Vegetables ((DMFV,volume 1))

Abstract

Vegetable crops are highly prone to a number of root and soil borne diseases causing great losses in yield and quality. Indiscriminate use of fungicides and pesticides in controlling the diseases has polluted the environment and produce. Thus, there is need of proper management of these diseases at reduced doses of pesticides to sustain the vegetable production. Biological control of plant diseases is one of the viable alternatives in sustainable agriculture. Arbuscular mycorrhizal fungi are associated with most agricultural crops and provide protection against soil-borne diseases. The degree of reduction in diseases development by AM fungi varies with the combination of host-AM-environmental conditions. Two groups of major soil borne pathogens of vegetables have been described here, namely nematode and fungi. Generally inoculation with AM fungi had a negative effect on growth of pathogens, but most of the reports for nematode diseases are on migratory and sedentary endoparasitic nematodes. The prophylactic action of AM may further be improved with the integration of antagonistic rhizosphere microbes to improve plant health. The mycorrhizal efficacy also varies by alteration in soil nutrition, mycorrhizosphere, inoculation sequences and modification of cultural practices. Number of mechanisms are involved in controlling the pathogen by mycorrhizal roots such as exclusion of pathogen, lignifications of cell wall, changed P nutrition, exudation of low molecular weight compounds etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Karaki, G.N., Al-Raddad, A. and Clark, R.B. 1998. Water stress and mycorrhizal isolate effects on growth and nutrient acquisition of wheat. Journal of Plant Nutrition, 21: 891–902.

    CAS  Google Scholar 

  • Al-Momany, A. and Al-Raddad, A. 1988. Effect of vesicular-arbuscular mycorrhizae on Fusarium wilt of tomato and pepper. Alexandria Journal of Agricultural Research, 33: 249–261.

    Google Scholar 

  • Al-Raddad, A. and Ahmad, M. 1995. Interaction of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato. Mycorrhiza, 5: 233–236.

    Google Scholar 

  • Atkinson, D., Berta, G. and Hooker, J.E. 1994. Impact of mycorrhizal colonization on root architecture, root longevity and formation of growth regulators. In, “Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems”, (eds. Gianinazzi, S. and Schüepp, H.) Birkhäuser, Basel, pp. 89–88.

    Google Scholar 

  • Azcón-Aguilar, C. and Barea, J.M. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens-An overview of the mechanisms involved. Mycorrhiza, 6: 457–464.

    Google Scholar 

  • Baghel, P.P.S., Bhatti, D.S. and Jalali, B.L. 1990. Interaction of VA mycorrhizal fungus and Tylenchulus semipenetrans on citrus. In “Proceedings of the National Conference on Mycorrhiza. “Haryana Agricultural University, Hisar” (eds. Jalali, B.L and Chand, H) February 14–16, 1990, New Delhi: TERI, pp. 210.

    Google Scholar 

  • Bagyaraj, D.J. 1984. Biological interactions with VA mycorrhizal fungi. In, “VA Mycorrhiza”, (eds. Powell, C.L. and Bagyaraj, D.J.) CRC Press, Boca Raton, Florida, U.S.A., pp. 131–153.

    Google Scholar 

  • Bagyaraj, D.J., Manjunath, A. and Reddy, D.D. 1979. Interaction of vesicular arbuscular mycorrhiza with root knot nematodes in tomato. Plant and Soil, 51: 397–403.

    Article  Google Scholar 

  • Baker, R. 1986. Biological control: an overview. Canadian Journal of Plant Pathology, 8: 218–221.

    Google Scholar 

  • Baltruschat, H. and Schönbeck, F. 1975. Studies on the influence of endotrophic mycorrhiza on the infection of tobacco by Thielaviopsis basicola. Phytopathologische Zeisch, 84: 172–188.

    CAS  Google Scholar 

  • Bansal, M., Chamola, B.P., Sarwar, N. and Mukerji, K.G. 2000. Mycorrhizosphere: Interaction between Rhizosphere Microflora and VAM fungi. In, “Mycorrhizal Biology” (eds. Mukerji K.G., Chamola, B.P. and Singh, J.) Kluwer Academic/Plenum Publishers, New York, pp. 143–152.

    Google Scholar 

  • Bansal, M. and Mukerji, K.G. 1994. Positive correlation between VAM-induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza, 5: 39–44.

    Google Scholar 

  • Barea, J.M. and Jeffries, P. 1995. Arbuscular mycorrhizas in sustainable soil plant systems. In, “Mycorrhiza structure, function, molecular biology and biotechnology”, (eds. Hock, B. and Varma, A) Springer, Heidelberg, pp. 521–559.

    Google Scholar 

  • Bartschi, H., Gianninazzi-Pearson, V. and Vegh, I. 1981. Vesicular-arbuscular mycorrhiza formation and root rot disease (Phytophthora cinnamomi) development in Chamaecyparis lawsoniana. Phytopath Z., 102: 213–218.

    Google Scholar 

  • Becard, G. and Fortin, J.A. 1988. Early events of vesicular arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist, 108: 211–218.

    CAS  Google Scholar 

  • Becker, W.N. 1976. Quantification of onion vesicular-arbuscular mycorrhizae and their resistance to Pytenochaeta terrestine dissertation. University Illionois, Urbana, pp. 72.

    Google Scholar 

  • Benhamou, N., Fortin, J.A., Hamel, C., St-Arnaud, M. and Shatilla, A. 1994. Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp.chrysanthemi. Phytopathology, 84: 958–968.

    CAS  Google Scholar 

  • Bereau, M., Barigah, T.S., Louisanna, E., and Garbaye, J. 2000. Effects of endomycorrhizal development and light regimes on the growth of Dicorynia guianensis Amshoff seedlings. Annals of Forest Science, 57: 725–733.

    Article  Google Scholar 

  • Bethlenfalvay, G.J. and Linderman, R.G. (eds.) 1992. Mycorrhizae in sustainable agriculture. ASA Special Publication No. 54, Madison, Wisconsin, U.S.A.

    Google Scholar 

  • Bhattarai, I.D. and Mishra, R.R. 1984. Study on the vesicular-arbuscular mycorrhiza on three cultivars of potato (Solanum tuberosum L.). Plant and Soil, 79: 299–303.

    Article  Google Scholar 

  • Bieliski, R.L. 1973. Phosphate pools, phosphate transport and phosphate availability. Annual Review of Plant Physiology, 24: 225–252.

    Google Scholar 

  • Bochow, H. and Abou-Shaar, M. 1990. On the phytosanitary effect of BA mycorrhiza in tomatoes to the corky-root disease. Zentralblatt fur-Mykrobiologie, 145: 171–176.

    Google Scholar 

  • Bodker, L., Kjoller, R., Kristensen, K. and Rosendahl, S. 2002. Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza, 12: 7–12.

    CAS  PubMed  Google Scholar 

  • Braunberger, P.G., Abbott, L.K., and Robson, A.D. 1997. Early vesicular-arbuscular mycorrhizal colonisation in soil collected from an annual clover-based pasture in a Mediterranean environment: soil temperature and the timing of autumn rains. Australian Journal of Agricultural Research, 48: 103–110.

    Article  Google Scholar 

  • Cameron, P.J., Wearing, C.H. and Kain, W.M. 1982. Proceeding Australan Workshop on Development and Implementation of IPM, Auckland, Newzealand Govt. Print. 231 pp.

    Google Scholar 

  • Caron, M. 1989. Potential use of mycorrhizae in control of soilborne disease. Canadian Journal of Plant Pathology, 11: 177–179.

    Google Scholar 

  • Caron, M., Fortin, J. A. and Richar, C. 1986a. Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytopathology 76: 942–946.

    CAS  Google Scholar 

  • Caron, M., Fortin, J.A. and Richard, C. 1986b. Effect of Glomus intraradices on infection by Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes over a 12-week period. Canadian Journal of Botany, 64: 552–556.

    Google Scholar 

  • Caron, M., Richard, C. and Fortin, J. A. 1986c. Effect of preinfestion of the soil by a vesicular-arbuscular mycorrhizal fungus Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytoprotection, 67: 15–19.

    Google Scholar 

  • Casiolata, A.M.R. and Melo, I.S.De. 1991. Interaction between Rhizoctonia solani and vesicular arbuscular mycorrhizal fungi on tomato. Phytopathology, 115: 130–133.

    Google Scholar 

  • Champawat, R.S. 1991. Interaction between vesicular arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. cumini and their effects on cumin. Proceedings of Indian National Science Academy, 57: 59–62.

    Google Scholar 

  • Cook, R.J. and Baker, K.F. 1982. The nature and practice of biological control of plant pathogens, APS Press, St. Paul, MN.

    Google Scholar 

  • Cooper, K.M. 1981. Mycorrhizal fungi act as deterrents to soil borne root pathogens. In “Proceedings of New Zealand Microbial Society, Annual Conference”, Auckland, New Zealand.

    Google Scholar 

  • Cooper, K.M. and Grandison, G.S. 1986. Interaction of vesicular-arbuscular mycorrhizal fungi and root knot nematode as cultivars of tomato and white clover susceptible to Meloidogyne hapla. Annals of Applied Biology 108: 555–565.

    Google Scholar 

  • Cooper, K.M and Grandison, G.S. 1987. Effects of vesicular-arbuscular mycorrhizal fungi on infection of tamarillo (Cyphomandra betacea) by Meloidogyne incognita in fumigated soil. Plant Disease, 71: 1101–1106.

    Google Scholar 

  • Cordier, C., Gianinazzi, S. and Gianinazzi-Pearson, V. 1996. Colonization patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced diseases in mycorrhizal tomato. Plant and Soil, 185:223–232.

    Article  CAS  Google Scholar 

  • Cordier, C., Pozo, M.J, Gianinazzi, S. and Gianinazzi-Pearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant Microbe Interaction, 11: 1017–1028.

    CAS  Google Scholar 

  • Cordier, C., Trouvelot, A., Gianinazzi, S., and Gianinazzi-Pearson, V. (1997). Arbuscular mycorrhiza technology applied to micropropagated Prunus avium and to protection against Phytophthora cinnamomi. Agronomie, 16: 679–688.

    Google Scholar 

  • Datnoff, L.E., Nemec, S., and Pernezny, K. 1995. Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biological Control, 5: 427–431.

    Article  Google Scholar 

  • Davis, R.M and Menge J.A. 1980. Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytolopathology, 70: 447–452.

    CAS  Google Scholar 

  • Declerck, S., Strullu, D.G., and Plenchette, C. 1996. In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycological Research, 100: 1237–1242.

    Google Scholar 

  • Dehne, H.W. 1982. Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology, 72: 1114–1119.

    Google Scholar 

  • Dehne, H.W. and Schönbeck, F. 1979. The influence of endotrophic mycorrhiza on plant diseases. II. Phenolmetabolism and lignification). Phytopathol. Z. 95: 210–216.

    CAS  Google Scholar 

  • Dehne, H.W, Schönbeck, F. and Baltruschat, H. 1978. The influence of endotrophic mycorrhiza on plant diseases. 3. Chitniase-activity and ornithinecycle. Z. Pflkrankh, 85: 666–678.

    CAS  Google Scholar 

  • Douds, D.D. and Schenck, N.C. 1990. Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimes. Applied Environment Microbiology, 56: 413–418.

    CAS  Google Scholar 

  • Douds, D.D. Jr. 2002. Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and resupply of glucose to the mycorrhiza. Mycorrhiza, 12: 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Dugassa, D.G., Grunewaldt-Stocker, G., and Schönbeck, F. 1995. Growth of Glomus intraradices and its effect on linseed (Linum usitatissimum L.) in hydroponic culture. Mycorrhiza 5: 279–282.

    Google Scholar 

  • Dugassa, G.D., Vonalten, H., and Schönbeck, F. 1997. Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L infected by fungal pathogens. Plant and Soil, 185: 173–182.

    Google Scholar 

  • Elmes, R.P. and Mosse, B. 1984. Vesicular-arbuscular endomycorrhizal inoculum production. II. Experiments with maize (Zea mays) and other hosts in nutrient flow culture. Canadian Journal of Botany, 62: 1531–1536.

    CAS  Google Scholar 

  • Ferguson J.J., Menge J.A. 1982. The influence of light intensity and artificially extended photoperiod upon infection and sporulation of Glomus fasciculatus on sudangrass and on root exudation of sudangrass. New Phytologist, 92: 183–191

    Google Scholar 

  • Furlan, V. and Fortin, J.A. 1973. Formation of endomycorrhizae by Endogone calospora on Allium cepa under three temperature regimes. Nat Canada, 100: 467–447

    Google Scholar 

  • Gaur, A. and Adholeya, A. 2000a. Response of three vegetable crops to VAM fungal inoculation in nutrient deficient soils amended with organic matter. Symbiosis, 1: 19–31.

    Google Scholar 

  • Gaur, A. and Adholeya, A. 2000b. Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza, 10: 43–48

    Article  Google Scholar 

  • Gaur, A. and Adholeya, A. 2002. Arbuscular-mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biology and Fertility of Soils, 35: 214–218.

    Article  CAS  Google Scholar 

  • Gaur, A. and Adholeya, A. and Mukerji, K.G. 2000. On-farm production of VAM inoculum and vegetable crops in marginal soil amended with organic matter. Tropical Agriculture (Trinidad), 1: 21–26.

    Google Scholar 

  • Gernns, H., von Alten, H., and Poehling, H.M. 2001. Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen-is a compensation possible? Mycorrhiza, 11: 237–243.

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson, V., Gollotte, A., Dumas-Gaudot, E., Franken, P. and Gianinazzi, S. 1994. Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi. In, “Advances in molecular genetics of plant-microbe interactions”, (eds. Daniels, M., Downic, J.A. and Osbourn, A.E.) Kluwer, Dordrecht, pp. 179–186.

    Google Scholar 

  • Good, J.M. 1968. Relation of plant parasitic nematodes to soil management practices. In, “Tropical Nematology”, (eds, Smart, G.C and Perry, V.G), Gainesville, University of Florida, USA, pp. 113–138.

    Google Scholar 

  • Graham, J.H., Leonard, R.T. and Menge, J.A. 1981. Membrane mediated decreases in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiology, 68: 548–552.

    CAS  Google Scholar 

  • Graham, J.H. and Menge, J.A. 1982. Influence of vesicular-arbuscular mycorrhizae and soil phosphorus on take all disease of wheat. Phytopathology, 72: 95–98.

    Google Scholar 

  • Grandison, G.S. and Cooper, K.M. 1986. Interaction of vesicular-arbuscular mycorrhizae and cultivars Meloidogyne hapla. Journal of Nematology, 18: 141–149.

    Google Scholar 

  • Harley, J.L. and Smith, S.E., 1983. Mycorrhizal Symbiosis. Academic Press, New York, 483 p.

    Google Scholar 

  • Hasan, A. 2001. Arbuscular mycorrhizal colonization and incidence of root-knot nematode in some rabe vegetables in eastern Uttar Pradesh: a preliminary survey report. Mycorrhiza News, 12: 15–17.

    Google Scholar 

  • Hayman D S. 1982. The physiology of vesicular-arbuscular endo-mycorrhizal symbiosis. Candian Journal of Botany, 6: 944–963.

    Google Scholar 

  • Heald, C.M., Bruton, B.D. and Davis, R.M. 1989. Influence of Glomus intraradices and soil phosphorus on Meloidogyne incognita infecting Cucumis melo. Journal of Nematology, 21: 69–73

    Google Scholar 

  • Hegde, S. V. and Rai, P. V. 1984. Influence of Glomus fasciculatum on damping-off of tomato. Current Science, 53: 588–589

    Google Scholar 

  • Heinzemann J, Weritz J 1990. Rockwool: a new carrier system for mass multiplication of vesicular-arbuscular mycorrhizal fungi. Angew andte Botanic 64: 271–274

    Google Scholar 

  • Hepper, C.M., 1984. Isolation and culture of VA mycorrhizal (VAM) fungi. In, “VA mycorrhiza” (eds. Powell C.L. and Bagyaraj D.J.) CRC Press Inc., Boca Raton, Florida, pp. 95–112.

    Google Scholar 

  • Hooker, J.E., Gianinazzi, S., Vestberg, M., Barea, J.M., and Atkinson, D. 1994. The application of arbuscular mycorrhizal fungi to micropropagation systems: an opportunity to reduce chemical inputs. Agricultural Science in Finland, 3: 227–232.

    Google Scholar 

  • Hussey, R.S. and Roncadori, R.W. 1978. Interaction of Pratylenchus brachyurus and Gigaspora margarita on cotton. Journal of Nematology, 10: 18–20.

    Google Scholar 

  • Hussey, R.S. and Roncadori, R.W. 1982. Vesicular-arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Disease, 66: 9–14.

    Google Scholar 

  • Jacobson, K.M. 1997. Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. Journal of Arid Environments, 35: 59–75.

    Article  Google Scholar 

  • Jain, R.K. and Sethi, C.L. 1987. Pathogenicity of Heterodera cajani on cowpea as influenced by the presence of VAM fungi Glomus fasciculatum or G. epigaeus. Indian Journal of Nematology, 17: 165–170.

    Google Scholar 

  • Jalali, B.L. and Jalali, I. 1991. Mycorrhiza in plant disease control. In, Handbook of Applied Mycology, Soil and Plants Vol.1, (eds. Arora, D.K, Rai, B., Mukerji, K.G. and Knudsen, G.R.), Marcel Dekker, New York, pp. 131–154.

    Google Scholar 

  • Jarstfer, A.G. and Sylvia, D.M. 1992. Inoculum production and inoculation strategies for vesicular-arbuscular mycorrhizal fungi. In: “Soil Microbial Ecology; Application in Agriculture and Environmental Management” (ed. Meting, B.). Marcel Dekker, New York, pp. 349–377.

    Google Scholar 

  • Jarstfer, A.G. and Sylvia, D.M. 1995. Aeroponic culture of VAM fungi. In, “Mycorrhiza Structure, Function, Molecular Biology and Biotechnology” (eds. Varma, A. and Hock, B.) Springer-Verlag, Heidelberg, pp. 521–559.

    Google Scholar 

  • Kassab, A.S. and Taha, A.H.Y. 1990. Interaction between plant-parasitic nematode, vesicular-arbuscular mycorrhiza, rhizobia and Egyptian clover. Annals Agricultural Sciences (Cairo) 35: 509–520.

    Google Scholar 

  • Katan, J., Greenberger, A., Alon, H. and Grinstein, A. 1976. Solar heating by polythene mulching for the control of diseases caused by soil borne pathogen. Phytopathology. 66: 683–688.

    Google Scholar 

  • Kellam, M. K and Schenck, N.C. 1980. Interaction between a vesicular-arbuscular mycorrhizal fungus and root knot nematode on soybean. Phytopathology, 70: 293–296.

    Google Scholar 

  • Krishna, K.R. and Bagyaraj, D.J. 1986. Phenolics of mycorrhizal and uninfected groundnut var. MGS-7. Current Research, 15: 51–52.

    Google Scholar 

  • Krishna Prasad, K.S. 1991. Influence of a vesicular arbuscular mycorrhiza on the development and reproduction of root-knot nematode affecting flue cured tobacco. Afro-Asian Journal of Nematology, 1: 130–134

    Google Scholar 

  • Kumar, R.N. and Mukerji, K.G. 1996. Integrated Disease Management-Future Perspective. In, “Advances in Botany” (ed. Mukerji, K.G.) A.P.H. Publishing Corp., New Delhi, India, pp. 335–347.

    Google Scholar 

  • Kumar, R.N., Upadhyay, R.K. and Mukerji, K.G. 1997. Strategies in Biological Control of Plant Diseases. In, “IPM System in Agriculture, Vol. 2, Biocontrol in Emerging Biotechnology” (eds. Upadhyay, R.K., Mukerji, K.G. and Rajak, R.L.). Aditya Books (P) Ltd., New Delhi, India, pp. 370–422.

    Google Scholar 

  • Kuszala, C., Gianinazzi, S., and Gianinazzi-Pearson, V. 2001. Storage conditions for the long-term survival of AM fungal propagules in wet sieved soil fractions. Symbiosis, 30: 287–299.

    Google Scholar 

  • Linderman, R.G. 1985. Microbial interactions in the mycorrhizosphere. In “Proceedings of the sixth National American Conference on Mycorrhizae (ed. Molina, R.), pp. 117–120.

    Google Scholar 

  • Linderman, R.G. 1988. Mycorrhizal interactions with the rhizosphere effect. Phytopathology, 78: 366–371.

    Google Scholar 

  • Linderman, R.G. 1994. Role of VAM fungi in biocontrol. In, “Mycorrhizae and plant health”, (eds. Pfleger, F.L. and Linderman, R.G), APS Press, St. Paul, MN, pp. 1–26.

    Google Scholar 

  • MacGuidwin, A.E., Bird, G.W. and Safir, G.R. 1985. Influence of Glomus fasciculatum on Meloidogyne hapla infecting Allium cepa. Journal of Nematology, 17: 389–395.

    Google Scholar 

  • Mallesha, B.C., Bagyaraj, D.J. and Pai, G. 1992. Perlite-soilrite mix as a carrier for mycorrhiza and rhizobia to inoculate Leucaena leucocephala. Leucaena Research Report. 13: 32–33.

    Google Scholar 

  • Mandelbaum, C.I. and Piche, Y. 2000. The role of root exuates in arbuscular mycorrhiza initiation. In “Mycorrhizal Biology” (eds. Mukerji K.G., Chamola, B.P. and Singh, J.) Kluwer Academic / Plenum Publishers, New York, pp. 153–172.

    Google Scholar 

  • Matsubara, Y., Ohba, N., and Fukui, H. 2001. Effect of arbuscular mycorrhizal fungus infection on the incidence of fusarium root rot in asparagus seedlings. Journal of the Japanese Society for Horticultural Science, 70: 202–206.

    Google Scholar 

  • McGraw, A.C. and Schenck, N.C. 1981. Effects of two species of vesicular-arbuscular mycorrhizal fungi on the development of fusarium wilt of tomato (abstr.). Phytopathology, 71: 894.

    Google Scholar 

  • Menge, J.A., Steirle, D., Bagyaraj, D.J., Johnson, E.L.V., and Leonard, R.T. 1978. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytologist, 80: 575–578.

    CAS  Google Scholar 

  • Meyer, J.R. and Linderman, R.G. 1986a. Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biology and Biochemistry, 18: 185–190.

    CAS  Google Scholar 

  • Meyer, J.R. and Linderman, R.G. 1986b. Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biology and Biochemistry, 18: 191–196.

    Google Scholar 

  • Mohammad, A., Khan, A.G., and Kuek, C. 2000. Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza, 9: 337–339.

    Article  Google Scholar 

  • Morandi, D. and Gianinazzi-Pearson, V. 1986. Influence of mycorrhizal infection and phosphate nutrition on secondary metabolite content of soybean roots. In, “Physiological and general aspects of mycorrhiza” (eds. Gianinazzi-Pearson, V. and Gianinazzi, S.), INRA, Paris, pp. 787–791.

    Google Scholar 

  • Morandi, D., Bailey, J.A. and Gianinazzi-Pearson, V. 1984. Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiological Plant Pathology, 24: 356–364.

    Google Scholar 

  • Mosse, B. and Thompson, J.P. 1984. Vesicular-arbuscular endomycorrhizal inoculum production. I. Exploratory experiments with beans (Phaseolus vulgaris) in nutrient flow culture. Canadian Journal of Botany, 62: 1523–1530.

    CAS  Google Scholar 

  • Mukerji, K.G. 1999. Mycorrhiza in control of plant pathogens: Molecular Approaches. In “Biotechnological Approaches in Biocontrol of Plant Pathogens” (eds. Mukerji, K.G., Chamola, B.P., and Upadhyay, R.K.) Kluwer Academic/Plenum Publishers, New York, U.S.A., pp. 135–155.

    Google Scholar 

  • Mukerji, K.G. and Garg, K.L. (eds). 1988a. Biocontrol of Plant Diseases. Vol. I CRC Press Inc., Florida, U.S.A., 211 p.

    Google Scholar 

  • Mukerji, K.G. and Garg, K.L. (eds.) 1988b. Biocontrol of Plant Diseases. Vol. II. CRC Press Inc., Florida, U.S.A., 198p.

    Google Scholar 

  • Mukerji, K.G., Manoharachary, C. and Chamola, B.P. (eds). 2002. Techniques in mycorrhizal studies, Kluwer Academic Publishers, Dordrecht, Boston, London, 554p.

    Google Scholar 

  • Mukerji, K.G., Upadhyay, R.K. and Kaushik, A. 1997, Mycorrhiza and Integrated Disease Management. In, “IPM System in Agriculture, Vo. 2, Biocontrol in Emerging Biotechnology (eds. Upadhyay, R.K., Mukerji, K.G. and Rajak, R.L.) Aditya Books (P) Ltd., New Delhi, India, pp. 423–452.

    Google Scholar 

  • Nagahashi, G., Douds, D., and Buee, M. 2000. Light-induced hyphal branching of germinated AM fungal spores. Plant and Soil, 219: 71–79.

    Article  CAS  Google Scholar 

  • Pacovsky, R.S, Bethelenfalvay, G. J. and Paul, E. A. 1986. Comparisons between P-fertilized and mycorrhizal plants. Crop Science, 26: 151–156.

    Google Scholar 

  • Pandey, K.K.and Pandey, P.K. 2002. Field evaluation of some fungi toxicants against fungal disease complex of cowpea. Pestology. 26: 20–22.

    Google Scholar 

  • Perrin, R. 1990. Interactions between mycorrhizae and diseases caused by soil-borne fungi. Soil Use Management, 6: 189–195.

    Google Scholar 

  • Pinochet, J., Calvet, C. Camprubi, A. and Fernandez, C. 1996. Interaction between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: A review Plant and Soil, 185: 183–190.

    Article  CAS  Google Scholar 

  • Plenchette, C., Declerck, C., Diop, T.A. and Strullu, D.G. 1996. Infectivity of monoaxenic subcultures of the arbuscular mycorrhizal fungus Glomus versiforme associated with Ri-T-DNA-transformed carrot root. Applied Microbiology and Biotechnology, 46: 545–548.

    Article  CAS  Google Scholar 

  • Pozo, M.J., Azcón-Aguilar, C., Dumas-Gaudot, E. and Barea, J.M. 1998. Induction of defence enzymes in tomato roots by arbuscular mycorrhiza and its implication in the protective effect against Phytophthora parasitica. In, “Abstracts 2nd International Conference on Mycorrhizae (ICOM2)”, Swedish University of Agriculture Sciences, Uppsala, Sweden.

    Google Scholar 

  • Pozo, M.J., Cordier, C. and Dumas-Gaudot, E. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal Experimental Botany, 53: 525–534.

    CAS  Google Scholar 

  • Prados-Ligero, A.M., Bascon-Fernandez, J., Calvet-Pinos, C., Corpas-Hervias, C. Ruiz, A.L. Melero-Vara, J.M. and Basallote-Ureba M.J. 2002. Effect of different soil and clove treatments in the control of white rot of garlic. Annals Of Applied Biology, 140: 247–253.

    Google Scholar 

  • Priestel, G. 1980. Wechseibeziehung zwischen der endotropics Mycorrhiza und dem Wurzelgallennematoden Melotdogyne incogm. (Kofoid and White, 1919) Chitwood, 1949 an Gurke. Dissertation, Hannover, West Germany, 103 p.

    Google Scholar 

  • Ramraj, B., Sahnmugam, N. and Dwarkanath Reddy, A. 1988. Biocontrol of Macrophomina root rot of cow-pea and Fusarium wilt of tomato by using VAM fungi. In, “Mycorrhizae for Green Asia”, (eds. Mahadwan, A, Raman, N. and Natrajan, K.) University of Madras, Madras, India, pp. 250–251.

    Google Scholar 

  • Ratnayake, M., Leonard, R.T. and Menge, J.A. 1978. Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytologist, 81: 543–552.

    CAS  Google Scholar 

  • Redecker D., Thierfelder H. and Werner D. 1995. A new cultivation system for arbuscular-mycorrhizal fungi on glass beads. Angewandte Botanic, 69: 189–191

    Google Scholar 

  • Rosendahl, C.N. and Rosendahl, S. 1990. The role of vesicular-arbuscular mycorrhiza in controlling damping-off and grwoth reduction in cucumber caused by Pythium ultimum. Symbiosis, 9: 363–366.

    Google Scholar 

  • Rosendahl, S. 1985. Interactions between the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum and Aphanomyces euteiches root rot of peas. Phytopathol Z., 114: 31–40.

    Google Scholar 

  • Safir, G. 1968. The influence of vesicular-arbuscular mycorrhiza on the disease of onion in Pyrenocharia terrestris. M S thesis, University Urbana, 36 p.

    Google Scholar 

  • Saleh, H.M. and Sikora, R.A. 1989. Effect of quintozen, benomyl and carbendazim on the interaction between the endomycorrhizal fungus Glomus fasciculatum and the root knot nematode, Meloidogyne incognita on cotton. Nematologica, 34: 432–442.

    Google Scholar 

  • Schenck, N.C. 1987. Vesicular-arbuscular mycorrhizal fungi and the control of fungal root diseases. In, “Innovative Approaches to Plant Disease Control”, (ed. Chet, I.) John Wiley and Sons Inc., New York, U.S.A., pp. 179–191.

    Google Scholar 

  • Schmitthenner, A.F. and Canaday, C.H. 1983. Role of chemical factors in development of Phytophthora diseases. In, “Phytophthora, its Biology, Taxonomy, Ecology and Pathology”, (eds. Erwin, D.C., Bartnicki-Garcia, S. and Tsao, P.H.) APS Press, St.Paul, U.S.A., pp. 189–196.

    Google Scholar 

  • Schönbeck, F. 1979. Endomycorrhiza in relation to plant diseases. In, “Soil-borne Plant Pathogens”, (eds. Schipper, B. and Gams, W.) Academic Press, New York, U.S.A., pp. 271–280

    Google Scholar 

  • Schönbeck, F. and Dehne, H.W. 1979. The influence of endotrophic mycorrhizae on plant disease. 4. Fungal parasites on aerial parts. Olpidium brassicae, TMV. Pflanzenkrankheiten und Pflanzenschutz, 86: 103–112.

    Google Scholar 

  • Secilia, J. and Bagyaraj, D.J. 1987. Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Canadian Journal of Microbiology, 33: 1069–1073.

    Google Scholar 

  • Sharma, A.K., Johri B.N. and Gianinazzi S. 1992. Vesicular-arbuscular mycorrhizae in relation to plant diseases. World Journal of Microbiological Biotechnology, 8: 559–563.

    Google Scholar 

  • Sharma, A.K. and Johri, B.N. 2002. Arbuscular mycorrhiza and plant disease. In, “Arbuscular Mycorrhizae: Interactions in plants, rhizosphere and soils” (eds. Sharma, A.K and Johri, B.N.) Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, pp. 69–96.

    Google Scholar 

  • Sharma, M.P. and Adholeya A. 2000. Sustainable management of arbuscular mycorrhizal fungi in the biocontrol of soil-borne plant diseases. In Biocontrol potential and its exploitation in sustainable agriculture, Vol. I Crop diseases [eds. R K Upadhaya, KG Mukerji & BP Chamola] Kluwer Academic/Plenum Publishers, New York.pp. 117–138.

    Google Scholar 

  • Sharma, M.P., Bhargava, S., Verma, M.K. and Adholeya, A. 1994. Interaction between the endomycorrhizal fungus Glomus fasciculatum and the root-knot nematode, Meloidogyne incognita on tomato. Indian Journal of Nematology, 24: 34–39.

    Google Scholar 

  • Sreenivasa, M.H., Nirmalnath, P.J and Kulkarni, S. 1992. Interactions between VA mycorrhizal fungi and Sclerotium rolfsii in chilli (Capsicum annum L.). Zentralblatt fur Mikrobiologie, 147: 509–512.

    Google Scholar 

  • Sieverding, E. and Barea, J.M. 1991. Perspectives de la inoculation de sistemas de production vegetal con hongos formadores de micorrizas VA. In, “Fijacion y Movilizacion Biologica de Nutrients”, Coleccion Nuevas Tendencias, Vol. II, (eds. Olivares, J. and Barea, J.M.) C.S.I.C., Madrid, pp. 221–245.

    Google Scholar 

  • Sikora, R.A. and Schönbeck, F. 1975. Effect of vesicular-arbuscular mycorrhiza on the population dynamics of the root-knot nematodes. VIII. Int. Congr. Plant Protect, 5: 158–166.

    Google Scholar 

  • Singh, R., Adholeya, A. and Mukerji, K.G. 2000. Mycorrhiza in control of soil borne pathogens. In, “Mycorrhizal Biology” (eds. Mukerji, K.G., Chamola B.P. and Singh, J.), Kluwer Academic/Plenum Publishers, U.S.A., pp. 173–196.

    Google Scholar 

  • Sitaramaiah, K. and Sikora, R. A. 1982. Effect of mycorrhizal fungus Glomus fasciculatus on the host-parasitic relationship of Rotylenchus reniformis in tomato. Nematologica, 28: 412–419.

    Google Scholar 

  • Smith, G.S. 1987. Interaction of nematodes with mycorrhizal fungi. Nematology Vistas”, pp. 133–143.

    Google Scholar 

  • Smith, G.S. 1988. The role of phosphorus nutrition in interactions of vesicular-arbuscular mycorrhizal fungi with soilborne nematodes and fungi. Phytopathology, 78: 371–374.

    CAS  Google Scholar 

  • Smith, G.S., Hussey, R.S. and Roncadori, R.W. 1986b. Penetration and post-infection development of Meloidogyne incognita as affected by Glomus intraradices and phosphorus. Journal of Nematology, 18: 429–435.

    CAS  Google Scholar 

  • Smith, G.S., Roncadori, R.W. and Hussey, R.S. 1986a. Interaction of endomycorrhizal fungi, superphosphate and Meloidgyne incognita on cotton in microplot and field studies. Journal of Nematology, 18: 208–216.

    Google Scholar 

  • Smith, S.E. and Gianinazzi-Pearson, V. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annual Review of Plant Physiology and Molecular Biology, 39: 221–244.

    CAS  Google Scholar 

  • Sreenivasa, M.N. and Bagyaraj, D.J. 1988. Selection of a suitable host for mass multiplication of Glomus fasciculatum. Plant and Soil 106: 289–290.

    Google Scholar 

  • Staddon, P.L. and Fitter, A.H. 2001. The differential vitality of intraradical mycorrhizal structures and its implications. Soil Biology and Biochemistry, 33: 129–132.

    Article  CAS  Google Scholar 

  • St-Arnaud, M., Hamel, C., Caron, M. and Fortin, J.A. 1994. Incidence of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Plant Pathology, 16: 187–194.

    Google Scholar 

  • Stribley, D.P. 1990. Do vesicular-arbuscular mycorrhizal fungi have a role in plant husbandry. Aspects of applied biology, 24: 117–121.

    Google Scholar 

  • Suresh, C.K. and Bagyaraj, D. J. 1984. Interaction between a vesicular arbuscular mycorrhiza and a root knot nematode arbuscular mycorrhiza and a root knot nematode and its effect on growth and chemical composition of tomato. Nematolgia Mediterranea, 12: 31–39.

    Google Scholar 

  • Suresh, C.K., Bagyaraj, D.J. and Reddy, D.D.R. 1985. Effect of vesicular-arbuscular mycorrhiza for survival, penetration and development of root-knot nematode in tomato. Plant and Soil, 87: 305–308.

    Article  Google Scholar 

  • Sylvia, D.M. and Hubbell, D.H. 1986. Growth and sporulation of vesicular-arbuscular mycorrhizal fungi in aeroponic and membrane systems. Symbiosis, 1: 259–267.

    Google Scholar 

  • Sylvia, D.M. and Jarstfer, G.J. 1992. Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi. Applied Environmental Microbiology, 58: 229–232.

    Google Scholar 

  • Taha, A.H.Y. and Abdel-Kader, K.M. 1990. The reciprocal effects of prior invasion by root-knot nematode or by endomycorrhiza on certain morphological and chemical characteristics of Egyptian clover plants. Annals of Agricultural Science (Cairo), 35: 521–532.

    Google Scholar 

  • Talavera, M., Itou, M., Mizukubo, T. 2002. Combined application of Glomus sp. and Pasturia penetrans for reducing Meloidogyne incognita populations and improving tomato growth. Applied Entomological Zoology. 37: 61–67.

    Google Scholar 

  • Torres-Barragan, A., Zavale-Tamejia, E., Gonzalez-Chavez, C., and Ferrera-Cerrato, R. 1996. The use of arbuscular mycorrhizae to control onion white-rot (Sclerotium cepivorum Berk) under field conditions. Mycorrhiza, 6: 253–257.

    Google Scholar 

  • Trotta, A., Varese, G.C., Gnavi, E., Fusconi, A., Sampo, S., and Berta, G. 1996. Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant and Soil, 185: 199–209.

    Article  CAS  Google Scholar 

  • Tu, C.C., Cheny, Y.H. and Hwang, S.C. 1991. Effect of solar energy and green manures on the control of southern blight of tomato. Plant Protection Bulletin (Taipei). 33: 95–102.

    Google Scholar 

  • Upadhyay, R.K., Mukerji, K.G., Chamola, B.P. and Dubey, O.P. 1998. Integrated Pest Management: Concept and Prospects. In, “Integrated Pest and Disease Management” (eds. Upadhyay, R.K., Mukerji, K.G., Chamola, B.P. and Dubey, O.P.). A.P.H. Publishing Corp., New Delhi, India, pp. 1–10.

    Google Scholar 

  • Vogelzang, B., Parsons, H., and Smith, S. 1993. Separate effects of high temperature on root growth of Vigna radiata L. and colonization by the vesicular-arbuscular mycorrhizal fungus Glomus versiforme. Soil Biology and Biochemistry, 25: 1127–1129.

    Article  Google Scholar 

  • Wacker, T.L., Safir, G.R., and Stephens, C.T. 1990. Effect of Glomus fasciculatum on the growth of asparagus and the incidence of Fusarium root rot. Journal of the American Society of Horiticultural Science, 115: 550–554.

    Google Scholar 

  • Wallace, H.R. 1983. Interactions between nematodes and other factors on plants. Journal of Nematology, 15: 221–227.

    Google Scholar 

  • Whitbeck, J.L. 2001. Effects of light environment on vesicular-arbuscular mycorrhiza development in Inga leiocalycina, a tropical wet forest tree. Biotropica, 33: 303–311.

    Google Scholar 

  • Wu, C.G., Liu, Y.S., and Hung, L.L. 1995. Spore development of Entrophospora kentinensis in an aeroponic system. Mycologia, 87: 582–587.

    Google Scholar 

  • Xavier, J.C. and Boyetchko, S.M. 2002. Mycorrhizae as Biocontrol Agents. In, “Techniques in Mycorrhizal Studies” (eds. Mukerji, K.G., Manoharachary, C. and Chamola, B.P.) Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 493–536.

    Google Scholar 

  • Yao, K.M. 1996. Influence de diffrentes especes se champignoins endomycorrhiziens sur la croissance et le rendement de cultivars d’oignon (Allium cepa L.) soumis a differentes conditions sulturales. In, Memoire de maitrise No. 14508. Universite Laval. Quebec, Canada.

    Google Scholar 

  • Yao, M.K., Tweddell, R.J. and Desilets, H. 2002. Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza, 12: 235–242.

    CAS  PubMed  Google Scholar 

  • Zambolim, L. and Schenck, N.C. 1983. Reduction of the effects of pathogenic, rootinfecting fungi on soybean by the mycorrhizal fungus, Glomus mosseae. Phytopathology. 73: 1402–1405.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sharma, M.P., Gaur, A., Tanu, Sharma, O.P. (2004). Prospects of Arbuscular Mycorrhiza in Sustainable Management of Root- and Soil-Borne Diseases of Vegetable Crops. In: Mukerji, K.G. (eds) Fruit and Vegetable Diseases. Disease Management of Fruits and Vegetables, vol 1. Springer, Dordrecht. https://doi.org/10.1007/0-306-48575-3_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48575-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1976-0

  • Online ISBN: 978-0-306-48575-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics