Skip to main content

Application of Angle-Selected Electron Nuclear Double Resonance to Characterize Structured Solvent in Small Molecules and Macromolecules

  • Chapter
Book cover Biomedical EPR, Part B: Methodology, Instrumentation, and Dynamics

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 24/B))

Abstract

Applications of angle-selected electron nuclear double resonance (ENDOR) spectroscopy using the vanadyl (VO 2+ ) cation or nitroxyl spin-labels as paramagnetic probes are reviewed in which structured solvent in small molecule and macromolecular complexes have been identified and characterized. By determination of the principal hyperfine (hf) coupling components (A) of magnetic nuclei in the vicinity of the paramagnetic probe, electron-nucleus distances are estimated according to the dipolar equation, and the relative coordinates of the nuclei are assigned on the basis of the orientation dependence of magnetic interactions. The precision in determining electron-nucleus distances over an approximate 3–8 Å range for VO 2+ and 4–11 Å range for spinlabels is generally S5% based on ENDOR line widths and is exceeded only by that associated with X-ray diffraction of single crystals. The detailed structure of metal-bound or hydrogen-bonded solvent in small molecules, nucleotide complexes, and proteins in frozen glassy solutions is described. In particular, comparison of the structural details of solvent hydrogen-bonded to spin-labeled β-lactam antibiotics free in solution and sequestered in the active site of a spinlabeled penicilloyl acylenzyme reaction intermediate of TEM-1 β-lactamase is shown to bring improved understanding of the origin of the reactivity of β-lactam antibiotics and the mechanism of action of β-lactamases. Future directions that may allow a richer level of structural detail for assessment of macromolecular structure are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Albanese, N. F. and Chasteen, N. D. (1978). Origin of Electron Paramagnetic Resonance Line Widths in Frozen Solutions of Oxovanadium(IV) Ion. J. Phys. Chem. 82, 910–914.

    CAS  Google Scholar 

  • Ament, S. S., Wetherin, J. B., Moncrief, J. W., Flohr, K., Mochizuk, M., and Kaiser, E.T. (1973). Determination of Absolute-Configuration of (+)3-Carboxy-2,2,5,5-Tetramethyl-1-Pyrrolidinyloxy. J. Am. Chem. Soc. 95, 7896–7897.

    Article  CAS  Google Scholar 

  • Atanasov, B. P., Mustafi, D., and Makinen, M. W. (2000). Protonation of the β-Lactam Nitrogen is the Trigger Event in the Catalytic Action of Class A β-Lactamases. Proc. Natl. Acad. Sci. USA 97, 3160–3165.

    Article  PubMed  CAS  Google Scholar 

  • Atherton, N. M. (1993). Principles of Electron Spin Resonance, Royal Society of Chemistry, London, U. K. Atherton, N. M. and Shackleton, J. F. (1980). Proton ENDOR of [VO(H 2 O) 5 ] 2+ in Mg(NH 4 ) 2 (SO 4 )6H 2 O. Mol. Phys. 39, 1471–1485.

    Google Scholar 

  • Atherton, N. M. and Shackleton, J. F. (1984). Proton Hyperfine Couplings in [VO(H 2 O) 5 ] 2+. The Validity of the Point-Dipole Approximation. Chem. Phys. Lett. 103, 302–304.

    Article  CAS  Google Scholar 

  • Attanasio, D. (1986). Structural Information from ENDOR Spectroscopy: The Frozen Solution Proton Spectra of Some VO(IV) Complexes. J. Phys. Chem. 90, 4952–4957.

    Article  CAS  Google Scholar 

  • Attanasio, D. (1989). Structural Information from Powder ENDOR Spectroscopy. J. Chem. Soc., Faraday Trans. 1 85, 3927–3937.

    Article  CAS  Google Scholar 

  • Audet, P., Simard, C., and Savoie, R. (1991). A Vibrational Spectroscopic Study of the Self-Association of 5′-GMP in Aqueous Solution. Biopolymers 31, 243–251.

    Article  CAS  Google Scholar 

  • Baker, J. M., Davies, E. R., and Hurrell, J. P. (1968). Electron Nuclear Double Resonance in Calcium Fluoride Containing Yb 3+ and Ce 3+ in Tetragonal Sites. Proc. Royal Soc. (London) A308, 403–431.

    Google Scholar 

  • Ballhausen, C. J. and Gray, H. B. (1962). The Electronic Structure of the Vanadyl Ion. Inorg. Chem. 1, 111–122.

    Article  CAS  Google Scholar 

  • Ballhausen, C. J., Djurinskij, B. F., and Watson, K. J. (1968). Polarized Absorption Spectra of 3 Crystalline Polymorphs of VOSO 45H 2 O. J. Am. Chem. Soc. 90, 3305–3309.

    Article  CAS  Google Scholar 

  • Banci, L., Bertini, I., and Luchinat, C. (1991). Nuclear and Electronic Relaxation, VCH Publishers, Weinheim, Germany.

    Google Scholar 

  • Bauer, R. S. and Berliner, L. J. (1979). Spin Label Investigations of α-Chymotrypsin Active-Site Structure in Single-Crystals. J. Mol. Biol. 128, 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Benner, S. A. (1988). Stereoelectronic Analysis of Enzymatic Reactions in Mechanistic. Principles of Enzyme Activity, J. Liebman and A. Grunberg, eds., VCH Publishers, Inc., New York, pp. 27–74.

    Google Scholar 

  • Blackburn, E. H. (2000). Telomere States and Cell Fates. Nature 408, 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Blinder, S. M. (1960). Orientation Dependence of Magnetic Hyperfine Structure in Free Radicals. J. Chem. Phys. 33, 748–752.

    Article  CAS  Google Scholar 

  • Boles, M. O., Girven, R. J., and Gane, P. A. C. (1978). Structure of Amoxycillin Trihydrate and a Comparison with Structures of Ampicillin. Acta Crystallogr. B34, 461–466.

    CAS  Google Scholar 

  • Bolin, K. A., Hanson, P., Wright, S. J., and Millhauser, G. L. (1998). An NMR Investigation of the Conformational Effect of Nitroxide Spin Labels on Ala-rich Helical Peptides. J. Magn. Reson. 131, 248–253.

    Article  PubMed  CAS  Google Scholar 

  • Bolin, K. A. and Millhauser, G. L. (1999). Alpha and 3(10): The Split Personality of Polypeptide Helices. Accts. Chem. Res. 32, 1027–1033.

    CAS  Google Scholar 

  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M., (1983). CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  • Brueggeman, W. and Niklas, J. R. (1994). Stochastic ENDOR. J. Magn. Reson. Series A 108, 25–29.

    Google Scholar 

  • Burgi, H. B., Dunitz, J. D., and Shefter, E. (1973). Geometrical Reaction Coordinates. 2. Nucleophilic Addition to a Carbonyl Group. J. Am. Chem. Soc. 95, 5065–5067.

    Article  CAS  Google Scholar 

  • Burgi, H. B., Dunitz, J. D., and Shefter, E. (1974). Chemical-Reaction Paths. 4. Aspects of O C=O Interactions in Crystals. Acta Crystallogr. B30, 1517–1527.

    Google Scholar 

  • Bush, K., Jacoby, G. A., and Medeiros, A. A. (1995). A Functional Classification Scheme for β-Lactamases and Its Correlation with Molecular Structure. Antimicrob. Agents. Chemother. 39, 1211–1233.

    PubMed  CAS  Google Scholar 

  • Cammack, R., Gay, E., and Shergill, J. K. (1999). Studies of Hyperfine Interactions in [2Fe-2S] Proteins by EPR and Double Resonance Spectroscopy. Coord. Chem. Rev. 192, 1003–1022.

    Article  Google Scholar 

  • Chasteen, N. D. (1981). Vanadyl(IV) EPR Probes. Inorganic and Biochemical Aspects. in Biological Magnetic Resonance, Vol. 3, L. J. Berliner and J. Reuben, eds., Plenum Press, New York, pp. 53–119.

    Google Scholar 

  • Chasteen, N. D. (1983). The Biochemistry of Vanadium. Structure & Bonding (Berlin) 53, 105–138.

    CAS  Google Scholar 

  • Chasteen, N. D., Ed. (1990). Vanadium in Biological Systems, Kluwer Academic, Boston, Massachusetts.

    Google Scholar 

  • Christianson, D. W. and Lipscomb, W. N. (1986). X-Ray Crystallographic Investigation of Substrate Binding to Carboxypeptidase A at Subzero Temperature. Proc. Natl. Acad. Sci. USA 83, 7568–7572.

    PubMed  CAS  Google Scholar 

  • Christianson, D. W. and Lipscomb, W. N. (1989). Carboxypeptidase A. Accts. Chem. Res. 22, 62–69.

    CAS  Google Scholar 

  • Cornman, C. R., Zovinka, E. P., Boyajian, Y. D., Geiserbush, R. M., Boyle, P. D., and Singh, P. (1995). Structural and EPR Studies of Vanadium Complexes of Deprotonated Amide Ligands. Effects on the V-51 Hyperfine Coupling-Constant. Inorg. Chem. 34, 4213–4219.

    CAS  Google Scholar 

  • Cornman, C. R., Geiser-Bush, K. M., Rowley, S. P., and Boyle, P. D. (1997). Structural and Electron Paramagnetic Resonance Studies of the Square Pyramidal to Trigonal Bipyramidal Distortion of Vanadyl Complexes Containing Sterically Crowded Schiff Base Ligands. Inorg.Chem. 36, 6401–6408.

    Article  CAS  Google Scholar 

  • Damblon, C., Raquet, X., Lian, L. Y., Lamotte-Brasseur, J., Fonze, E., Charlier, P., Roberts, G. C. K., and Frère, J. M. (1996). The Catalytic Mechanism of β-Lactamases: NMR Titration of an Active Site Lysine Residue of the TEM-1 Enzyme. Proc. Natl. Acad. Sci. USA 93, 1747–1752.

    Article  PubMed  CAS  Google Scholar 

  • Davis, T. D., Christofferson, R. E., and Maggiora, G. N. (1975). Ab Initio Calculations on Large Molecules Using Molecular Fragments. Nitroxide Spin Label Characterizations. J. Am. Chem. Soc. 97, 1347–1354.

    CAS  Google Scholar 

  • DeRose, V. J., Liu, K. E., Lippard, S. J., and Hoffman, B. M. (1996). Investigation of the Dinuclear Fe Center of Methane Monooxygenase by Advanced Paramagnetic Resonance Techniques: On the geometry of DMSO binding. J. Am. Chem. Soc. 118, 121–134.

    Article  CAS  Google Scholar 

  • Deslongchamps, P. (1983). Stereoelectronic Effects in Organic Chemistry, Pergamon Press, Oxford, U.K.

    Google Scholar 

  • di Matteo, A. and Barone, V. (1999). Development and Validation of Effective Computational Strategies for the Study of Metal Nitroxide Complexes. J. Phys. Chem. A103, 7676–7685.

    Google Scholar 

  • Dikanov, S. A., Liboiron, B. D., Thompson, K. H., Vera, E., Yuen, V. G., McNeill, J. H., and Orvig, C. (1999). In vivo Electron Spin-Echo Envelope Modulation (ESEEM) Spectroscopy: First Observation of Vanadyl Coordination to Phosphate in Bone. J. Am. Chem. Soc. 121, 11004–11005.

    Article  CAS  Google Scholar 

  • Dikanov, S. A., Liboiron, B. D., and Orvig, C. (2002). Two-Dimensional (2D) Pulsed Electron Paramagnetic Resonance Study of VO 2+ -Triphosphate Interactions: Evidence for Tridentate Triphosphate Coordination, and Relevance to Bone Uptake and Insulin Enhancement by Vanadium Pharmaceuticals. J. Am. Chem. Soc. 124, 2969–2978.

    Article  PubMed  CAS  Google Scholar 

  • Dodge, R. P., Tempelton, D.H., and Zalkin, A. (1961). Crystal Structure of Vanadyl Bisacetylacetonate. Geometry of Vanadium in Fivefold Coordination. J. Chem. Phys. 35, 55–67.

    Article  CAS  Google Scholar 

  • Dorio, M. M. and Freed, J. H., Eds. (1979). Multiple Electron Resonance Spectroscopy, Plenum Press, New York.

    Google Scholar 

  • Douzou, P. (1977). Cryobiochemistry, Academic Press, New York.

    Google Scholar 

  • Fattah, J., Twyman, J. M., Heyes, S. J., Watkin, D. J., Edwards, A. J., Prout, K., and Dobson, C. M. (1993). Combination of CP MAS NMR and X-Ray Crystallography. Structure and Dynamics in a Low-Symmetry Molecular-Crystal, Potassium Penicillin-V. J. Am. Chem. Soc. 115, 5636–5650.

    Article  CAS  Google Scholar 

  • Feher, G. (1956). Observation of Nuclear Magnetic Resonances via the Electron Spin Resonance Line. Phys. Rev. 103, 834–835.

    CAS  Google Scholar 

  • Feher, G. (1957). Electronic Structure of F-Centers in KCl by the Electron Spin Double Resonance Technique. Phys. Rev. 105, 1122–1123.

    CAS  Google Scholar 

  • Feher, G., Isaacson, R. A., Scholes, C. P., and Nagel, R. (1973). Electron Nuclear Double Resonance (ENDOR) Investigation on Myoglobin and Hemoglobin. Ann. N. Y. Acad. Sci. 222, 86–101.

    PubMed  CAS  Google Scholar 

  • Fields, R. A. and Hutchison, Jr., C. A. (1985). The Determination of Hydrogen Coordinates in Lanthanum Nicotinate Dihydrate Crystals by Gd 3+ -Proton Double Resonance. J. Chem. Phys. 82, 1711–1722.

    Article  CAS  Google Scholar 

  • Fink, A. L. and Geeves, M. A. (1979). Cryoenzymology: The Study of Enzyme Catalysis at Subzero Temperatures. Methods Enzymol. 63, 336–370.

    PubMed  CAS  Google Scholar 

  • Fink, A. L. and Cartwright, S. J. (1981). Cryoenzymology. CRC Crit. Rev. Biochem. 11, 145–207.

    PubMed  CAS  Google Scholar 

  • Flohr, K. and Kaiser, E. T. (1972). Enantiomeric Specificity in Chymotrypsin-Catalyzed Hydrolysis of 3-Carboxy-2,2,5,5-Tetramethylpyrrolidin-1-Oxy para-Nitrophenyl Ester. J. Am. Chem. Soc. 94, 3675.

    Article  PubMed  CAS  Google Scholar 

  • Garman, E. F. and Schneider, T. R. (1997). Macromolecular Cryocrystallography. J. Appl. Crystallogr. 30, 211–237.

    Article  Google Scholar 

  • Gellert, M., Lipsett, M. N., and Davies, D. R. (1962). Helix Formation by Guanylic Acid. Proc. Natl. Acad. Sci. USA 48, 2013–2018.

    PubMed  CAS  Google Scholar 

  • Gersmann, H. R. and Swalen, J. D. (1962). Electron Paramagnetic Resonance Spectra of Copper Complexes. J. Chem. Phys. 36, 3221–3233.

    Article  CAS  Google Scholar 

  • Gochev, G. P. and Yordanov, N. D. (1993). Polycrystalline ENDOR Crystallography, a New Methodological Approach. J. Magn. Reson. A102, 180–182.

    Google Scholar 

  • Goldfarb, D., Bernardo, M., Thomann, H., Kroneck, P. M. H., and Ullrich, V. (1996). Study of Water Binding to Low-Spin Fe(III) in Cytochrome P450 by Pulsed ENDOR and Fourpulse ESEEM Spectroscopies. J. Am. Chem. Soc. 118, 2686–2693.

    CAS  Google Scholar 

  • Gradwell, M. J. and Feeney, J. (1996). Validation of the Use of Intermolecular NOE Constraints for Obtaining Docked Structures of Protein-Ligand Complexes. J. Biomol. NMR 7, 48–58.

    Article  PubMed  CAS  Google Scholar 

  • Gromov, I., Marchesini, A., Farver, O., Pecht, I., and Goldfarb, D. (1999). Azide Binding to the Trinuclear Copper Center in Laccase and Ascorbate Oxidase. Eur. J. Biochem. 266, 820–830.

    Article  PubMed  CAS  Google Scholar 

  • Gurbiel, R. J., Doan, P. E., Gassner, G. T., Macke, T. J., Case, D. A., Ohnishi, T., Fee, J. A., Ballou, D. P., and Hoffman, B. M. (1996). Active Site Structure of Rieske-Type Proteins: Electron Nuclear Double Resonance Studies of Isotopically Labeled Phthalate Dioxygenase from Pseudomonas cepacia and Rieske Protein from Rhodobacter capsulatus and Molecular Modeling Studies of a Rieske Center. Biochemistry 35, 7834–7845.

    Article  PubMed  CAS  Google Scholar 

  • Happe, J. A. and Morales, M. (1966). Nitrogen-15 Nuclear Magnetic Resonance Evidence that Mg 2+ Does Not Complex with the Nitrogen Atoms of Adenosine Triphosphate. J. Am. Chem. Soc. 88, 2077–2078.

    Article  CAS  Google Scholar 

  • Hayat, H. and Silver, B. L. (1973). Oxygen-17 and Nitrogen-14 σ-π Polarization Parameters and Spin Density Distribution in Nitroxyl Group. J. Phys. Chem. 77, 72–78.

    Article  CAS  Google Scholar 

  • Henderson, T. A., Hurst, G. C., and Kreilick, R. W. (1985). Angle-Selected ENDOR Spectroscopy. 2. Determination of Proton Coordinates from a Polycrystalline Sample of Bis(2,4-pentanedionato)copper(II). J. Am. Chem. Soc. 107, 7299–7303.

    Article  CAS  Google Scholar 

  • Herrmann, T., Guntert, P., and Wuthrich, K. (2002). Protein NMR Structure Determination with Automated NOE Assignment Using the New Software CANDID and the Torsion Angle Dynamics Algorithm DYANA. J. Mol. Biol. 319, 209–227.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, B. M., Martinsen, J., and Venters, R. A. (1984). General Theory of Polycrystallline ENDOR Patterns. g and Hyperfine Tensors of Arbitrary Symmetry and Relative Orientation. J. Magn. Reson. 59, 110–123.

    CAS  Google Scholar 

  • Hoffman, B. M., Venters, R. A., and Martinsen, J. (1985). General Theory of Polycrystalline ENDOR Patterns. Effects of Finite EPR and ENDOR Component Linewidths. J. Magn. Reson. 62, 537–542.

    CAS  Google Scholar 

  • Hoffman, B. M. and Gurbiel, R. J. (1989). Polycrystalline ENDOR Patterns from Centers of Axial EPR Spectra. General Formulas and Simple Analytic Expressions for Deriving Geometric Information from Dipolar Couplings. J. Magn. Reson. 82, 309–317.

    CAS  Google Scholar 

  • Hubbell, W. L., Gross, A., Langen, R., and Lietzow, M. A. (1998). Recent Advances in Site-Directed Spin-Labeling of Proteins. Curr. Opin. Struct. Biol. 8, 649–656.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, G. C., Henderson, T. A., and Kreilick, R. W. (1985). Angle Selected ENDOR Spectroscopy. 1. Theoretical Interpretation of ENDOR Shifts from Randomly Oriented Transition Metal Complexes. J. Am. Chem. Soc. 107, 7294–7299.

    Article  CAS  Google Scholar 

  • Hutchison, Jr., C. A. and McKay, D. B. (1977). Determination of Hydrogen Coordinates in Lanthanum Nicotinate Dihydrate Crystals by Nd 3+ -Proton Double-Resonance. J. Chem. Phys. 66, 3311–3330.

    Article  CAS  Google Scholar 

  • Hutchison, Jr., C. A. and Orlowski, T. E. (1980). The Determination of Deuterium Atom Coordinates and Nuclear-Quadrupole Interactions in Lanthanum Nicotinate Dihydrate Crystals by Nd 3+ -Deuterium Double-Resonance. J. Chem. Phys. 73, 1–14.

    Article  CAS  Google Scholar 

  • Iijima, H., Dunbar, J. B., and Marshall, G. R. (1987). Calibration of Effective van der Waals Atomic Contact Radii for Proteins and Peptides. Proteins: Struct., Func., Genet. 2, 330–339.

    CAS  Google Scholar 

  • Improta, R., di Matteo, A., and Barone, V. (2000). Effective Modeling of Intrinsic and Environmental Effects on the Structure and Electron Paramagnetic Resonance Parameters of Nitroxides by an Integrated Quantum Mechanical/Molecular Mechanics/Polarizable Continuum Model Approach. Theor. Chem. Accts. 104, 273–279.

    CAS  Google Scholar 

  • Jelsch, C., Maury, L., Masson, J. M., and Samama, J. P. (1993). Crystal Structure of Escherichia coli TEM1 β-Lactamase at 1.8 Å Resolution. Proteins: Struct., Func., Genet. 16, 364–383.

    CAS  Google Scholar 

  • Jiang, F. S. and Makinen, M. W. (1995). NMR and ENDOR Conformational Studies of the Vanadyl Guanosine 5′-Monophosphate Complex in Hydrogen-Bonded Quartet Assemblies. Inorg. Chem. 34, 1736–1744.

    CAS  Google Scholar 

  • Jiang, F. S., Tsai, S. W., Chen, S., and Makinen, M. W. (1998). ENDOR-Determined Structure of a Complex of α-Chymotrypsin with a Spin-Labeled Transition-State Inhibitor Analogue. J. Phys. Chem. B102, 4619–4627.

    Google Scholar 

  • Joela, H., Mustafi, D., Fair, C. C., and Makinen, M. W. (1991). Structure and Confirmation of Spin-Labeled Methyl L-Phenylalanate and L-Phenylalanine Determined by Electron Nuclear Double resonance spectroscopy. J. Phys. Chem. 95, 9135–9144.

    Article  CAS  Google Scholar 

  • Jost, P. C. and Griffith, O. H. (1978). The Spin-Labeling Technique. Methods Enzymol. 49, 369–418.

    PubMed  CAS  Google Scholar 

  • Kang, C., Zhang, X. H., Ratliff, R., Moyzis, R., and Rich, A. (1992). Crystal-Structure of 4-Stranded Oxytricha Telomeric DNA. Nature 356, 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Kevan, L. and Kispert, L. D. (1976). Electron Spin Double Resonance Spectroscopy, John Wiley and Sons, New York.

    Google Scholar 

  • Khramtsov, V. V. and Weiner, L. (1988). Proton Exchange in Stable Nitroxyl Radicals: pH Sensitive Spin Probes. Chap. 2 in Imidazoline Nitroxides, Vol. II, L. B. Volodarsky, ed., CRC Press, Boca Raton, Florida, pp. 37–80.

    Google Scholar 

  • Khramtsov, V. V. and Volodarsky, L. B. (1998). Use of Imidazoline Nitroxides in Studies of Chemical Reactions in Biological Magnetic Resonance, Vol. 14, L. J. Berliner, ed., Plenum Press, New York, pp. 109–180.

    Google Scholar 

  • Kivelson, D. and Lee, S.-K. (1964). ESR Studies and the Electronic Structure of Vanadyl Ion Complexes. J. Chem. Phys. 41, 1896–1903.

    CAS  Google Scholar 

  • Knox, J. R. (1995). Extended-Spectrum and Inhibitor-Resistant TEM-Type β-Lactamases: Mutations, Specificity, and Three-Dimensional Structure. Antimicrob. Agents Chemother. 39, 2593–2601.

    PubMed  CAS  Google Scholar 

  • Kretsinger, R. H. and Nockolds, C. E. (1973). Carp Muscle Calcium-Binding Protein. II. Structure Determination and General Description. J. Biol. Chem. 248, 3313–3326.

    PubMed  CAS  Google Scholar 

  • Kurreck, H., Kirste, B., and Lubitz, W. (1988). Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution: Application to organic and Biological Chemistry, VCH Publishers, New York.

    Google Scholar 

  • Langen, R., Oh, K. J., Cascio, D., and Hubbell, W. L. (2001). Crystal Structures of Spin Labeled T4 Lysozyme Mutants: Implications for the Interpretation of EPR Spectra in Terms of Structure. Biochemistry 39, 8396–8405.

    Google Scholar 

  • Lee, B. and Richards, F. M. (1971). The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 55, 379–400.

    Article  PubMed  CAS  Google Scholar 

  • Machonkin, T. E., Westler, W. M., and Markley, J. L. (2002). C-13{C-13} 2D NMR: A Novel Strategy for the Study of Paramagnetic Proteins with Slow Electronic Relaxation Rates. J. Am. Chem. Soc. 124, 3204–3205.

    Article  PubMed  CAS  Google Scholar 

  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998). All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B102, 3586–3616.

    Google Scholar 

  • Makinen, M. W. and Fink, A. L. (1977). Reactivity and Cryoenzymology of Enzymes in the Crystalline State. Annu. Rev. Biophys. Bioeng. 6, 301–343.

    Article  PubMed  CAS  Google Scholar 

  • Makinen, M. W., Kuo, L. C., Dymowski, J. J., and Jaffer, S. (1979). Catalytic Role of the Metal Ion of Carboxypeptidase A in Ester Hydrolysis. J. Biol. Chem. 254, 356–366.

    PubMed  CAS  Google Scholar 

  • Makinen, M. W. and Mustafi, D. (1995). The Vanadyl Ion: Molecular Structure of Coordinating Ligands by Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopy in Metal Ions in Biological Systems, Vol. 31, H. Sigel and A. Sigel, eds., Marcel Dekker, Inc., New York, pp. 89–127.

    Google Scholar 

  • Makinen, M. W. (1998). Electron Nuclear Double Resonance Determined Structures of Enzyme Reaction Intermediates: Structural Evidence for Substrate Destabilization. Spectrochim. Acta. Part A, Mol. Biomol. Spectrosc. 54, 2269–2281.

    Google Scholar 

  • Makinen, M. W., Mustafi, D., and Kasa, S. (1998). ENDOR of Spin Labels for Structure Determination: From Small Molecules to Enzyme Reaction Intermediates in Biological Magnetic Resonance, Vol. 14, L. J. Berliner, ed., Plenum Press, New York, pp. 181–249.

    Google Scholar 

  • Makinen, M. W. and Brady, M. J. (2002). Structural Origins of the Insulin-Mimetic Activity of Bis(acetylacetonato)oxovanadium(IV). J. Biol. Chem. 277, 12215–12220.

    Article  PubMed  CAS  Google Scholar 

  • Massova, I. and Mobashery, S. (1998). Kinship and Diversification of Bacterial Penicillin-Binding Proteins and β-Lactamases. Antimicrob. Agents Chemother. 42, 1–17.

    PubMed  CAS  Google Scholar 

  • Matthews, B. W. (1968). Solvent Content of Protein Crystals. J. Mol. Biol. 33, 491–497.

    PubMed  CAS  Google Scholar 

  • McConnell, H. M. and Chestnut, D. B. (1958). Theory of Isotropic Hyperfine Interactions in π-Electron Radicals. J. Chem. Phys. 28, 107–117.

    CAS  Google Scholar 

  • Mustafi, D. and Makinen, M. W. (1988). ENDOR-Determined Solvation Structure of VO 2+ in Frozen-Solutions. Inorg. Chem. 27, 3360–3368.

    Article  CAS  Google Scholar 

  • Mustafi, D., Boisvert, W. E., and Makinen, M. W. (1990a). Structure and Conformation of the Nitroxyl Spin-Label Ethyl 3-(2,2,5,5-tetramethylpyrrolinyl-1-oxyl)-propen-2-oate Determined by Electron Nuclear Double Resonance: Comparison with the Structure of a Spin-Label Substrate of Carboxypeptidase A. Biopolymers 29, 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Mustafi, D., Sachleben, J. R., Wells, G. B., and Makinen, M. W. (1990b). Structure and Conformation of Spin-Labeled Amino Acids in Frozen Solutions Determined by Electron Nuclear Double Resonance. 1. Methyl N-(2,2,5,5-Tetramethyl-1-Oxypyrrolinyl-3-Carbonyl)-L-Alanate, a Molecule with a Single Preferred Conformation. J. Am. Chem.Soc. 112, 2558–2566.

    Article  CAS  Google Scholar 

  • Mustafi, D., Wells, G. B., Joela, H., and Makinen, M. W. (1990c). Assignment of Proton ENDOR Resonances of Nitroxyl Spin-Labels in Frozen Solution. Free Radical Res. Commun. 10, 95–101.

    Article  CAS  Google Scholar 

  • Mustafi, D., Joela, H., and Makinen, M. W. (1991). The Effective Position of the Electronic Point Dipole of the Nitroxyl Group of Spin Labels Determined by ENDOR Spectroscopy. J.Magn. Reson. 91, 497–504.

    CAS  Google Scholar 

  • Mustafi, D., Telser, J., and Makinen, M. W. (1992). Molecular Geometry of Vanadyl Adenine Nucleotide Complexes Determined by EPR, ENDOR, and Molecular Modeling. J. Am. Chem. Soc. 114, 6219–6226.

    Article  CAS  Google Scholar 

  • Mustafi, D., Boisvert, W. E., and Makinen, M. W. (1993). Synthesis of Conjugated Polyene Carbonyl Derivatives of Nitroxyl Spin-Labels and Determination of Their Molecular Structure and Conformation by Electron Nuclear Double Resonance. J. Am. Chem. Soc. 115, 3674–3682.

    CAS  Google Scholar 

  • Mustafi, D. and Makinen, M. W. (1994). Catalytic Conformation of Carboxypeptidase A. Structure of a True Enzyme Reaction Intermediate Determined by Electron Nuclear Double Resonance. J. Biol. Chem. 269, 4587–4595.

    PubMed  CAS  Google Scholar 

  • Mustafi, D. and Nakagawa, Y. (1994). Characterization of Calcium-Binding Sites in the Kidney Stone Inhibitor Glycoprotein Nephrocalcin with Vanadyl Ions: Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopy. Proc. Natl. Acad. Sci. USA 91, 11323–11327.

    PubMed  CAS  Google Scholar 

  • Mustafi, D. and Joela, H. (1995). Origin of the Temperature Dependent Isotropic Hyperfine Coupling of the Vinylic Proton of Oxypyrrolinyl Nitroxyl Spin-Labels. J. Phys. Chem. 99, 11370–11375.

    Article  CAS  Google Scholar 

  • Mustafi, D. and Makinen, M. W. (1995). Structure, Conformation, and Probable Mechanism of Hydrolysis of a Spin-Labeled Penicillin Revealed by Electron Nuclear DoubleResonance Spectroscopy. J. Am. Chem. Soc. 117, 6739–6746.

    Article  CAS  Google Scholar 

  • Mustafi, D. and Nakagawa, Y. (1996). Characterization of Ca 2+-Binding Sites in the Kidney Stone Inhibitor Glycoprotein Nephrocalcin Using Vanadyl Ions: Different Metal Binding Properties in Strong and Weak Inhibitor Proteins Revealed by EPR and ENDOR. Biochemistry 35, 14703–14709.

    Article  PubMed  CAS  Google Scholar 

  • Mustafi, D., Knock, M, M., Shaw, R. W., and Makinen, M. W. (1997). Conformational Changes in Spin-Labeled Cephalosporin and Penicillin upon Hydrolysis Revealed by Electron Nuclear Double Resonance Spectroscopy. J. Am. Chem. Soc. 119, 12619–12628.

    Article  CAS  Google Scholar 

  • Mustafi, D., Nakagawa, Y., and Makinen, M. W. (2000). ENDOR Studies of VO 2+ Probing Protein-Metal Ion Interactions in Nephrocalcin. Cell. Mol. Biol. 46, 1345–1360.

    PubMed  CAS  Google Scholar 

  • Mustafi, D., Sosa-Peinado, A., and Makinen, M. W. (2001). ENDOR Structural Characterization of a Catalytically Competent Acylenzyme Reaction Intermediate of Wild-Type TEM-1 β-Lactamase Confirms Glutamate-166 as the Base Catalyst. Biochemistry 40, 2397–2409

    Article  PubMed  CAS  Google Scholar 

  • Mustafi, D., Sosa-Peinado, A., Gupta, V., Gordon, D. J., and Makinen, M. W. (2002). Structure of Spin-Labeled Methylmethanethiolsulfonate in Solution and Bound to TEM-1 β-Lactamase Determined by Electron Nuclear Double Resonance Spectroscopy. Biochemistry 41, 797–808.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Margolis, H. C., Yokoyama, S., Kezdy, F. J., Kaiser, E. T., and Coe, F. L. (1981). Purification and Characterization of a Calcium Oxalate Monohydrate Crystal Growth Inhibitor from Human Kidney Tissue Culture Medium. J. Biol. Chem. 256, 3936–3944.

    PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Abram, V., Kezdy, F. J., Kaiser, E. T., and Coe, F. L. (1983). Purification of the Principal Inhibitor of Calcium Oxalate Monohydrate Crystal Growth in Human Urine. J.Biol. Chem. 258, 12594–12600.

    PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Otsuki, T., and Coe, F. L. (1985). Elucidation of the Multiple Forms of Nephrocalcin by P-31 NMR. FEBS Lett. 250, 187–190.

    Google Scholar 

  • Neu, H. C. (1992). The Crisis in Antibiotic Resistance. Science 257, 1064–1073.

    PubMed  CAS  Google Scholar 

  • Paetzel, M., Danel, F., de Castro, L., Mosimann, S. C., Page, M. G. P., and Strynadka, N. C. J. (2000). Crystal Structure of the Class D β-Lactamase OXA-10. Nature Struct. Biol. 7, 918–925.

    PubMed  CAS  Google Scholar 

  • Page, M. I. (1987). The Mechanisms of Reactions of β-Lactam Antibiotics in Adv. Phys. Org. Chem., Vol. 23, D. Bethell, ed., Harcourt Brace Jovanovich Publishers, London, pp. 165–270.

    Google Scholar 

  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Debolt, S., Ferguson, D., Seibel, G., and Kollman, P. (1995). AMBER, a Package of Computer-Programs for Applying Molecular Mechanics, Normal-Mode Analysis, Molecular-Dynamics and Free-Energy Calculations to Simulate the Structural and Energetic Properties of Molecules. Comput. Phys. Commun. 91, 1–41.

    CAS  Google Scholar 

  • Pfannebecker, V., Klos, H., Hubrich, M., Volkmer, T., Heuer, A., Wiesner, U., and Spiess, H. W. (1996). Determination of End-to-End Distances in Oligomers by Pulsed EPR. J. Phys. Chem. 100, 13428–13432.

    Article  CAS  Google Scholar 

  • Phillips, D. C. (1967). The Hen Egg-White Lysozyme Molecule. Proc. Natl.Acad. Sci. USA 57, 484–495.

    CAS  Google Scholar 

  • Pinavaia, T. J., Marshall, C. L., Mettler, C. L., Fisk, C. L., Miles, H. T., and Becker, E. D. (1978). Alkali Metal Ion Specificity in the Solution Ordering of a Nucleotide, 5′-Guanosine Monophosphate. J. Am. Chem. Soc. 100, 3625–3627.

    Google Scholar 

  • Prisner, T., Rohrer, M., and MacMillan, F. (2001). Pulsed EPR Spectroscopy: Biological Applications. Ann. Rev. Phys. Chem. 52, 279–313.

    Article  CAS  Google Scholar 

  • Rakowsky, M. H., Zecevic, A., Eaton, G. R., and Eaton, S. S. (1998). Determination of High-Spin Iron(III)-Nitroxyl Distances in Spin-Labeled Porphyrins by Time-Domain EPR. J. Magn. Reson. 131, 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Rienstra, C. M., Tucker-Kellogg, L., Jaroniec, C. P., Hohwy, M., Reif, B., McMahon, M. T., Tidor, B., Lozano-Perez, T., and Griffin, R. G. (2002). De novo Determination of Peptide Structure with Solid-State Magic-Angle Spinning NMR Spectroscopy. Proc. Natl. Acad. Sci.USA 99, 10260–10265.

    Article  PubMed  CAS  Google Scholar 

  • Rist, G. H. and Hyde, J. S. (1968). Ligand ENDOR of Cu-8-Hydroxyquinolate Substituted into a Single Crystal and a Powder of Phthalimide. J. Chem. Phys. 49, 2449–2451.

    CAS  Google Scholar 

  • Rist, G. H. and Hyde, J. S. (1970). Ligand ENDOR of Metal Complexes in Powders. J. Chem. Phys. 52, 4633–4643.

    Article  CAS  Google Scholar 

  • Rodgers, D. W. (1997). Practical Cryocrystallography. Methods Enzymol. 276, 183–203.

    CAS  Google Scholar 

  • Rudin, M., Schweiger, A., and Gunthard, H. H. (1982). On the Electronic-Structure of N,N′-Ethylene-bis(acetylacetonatiminato)Co(II), Co(II)Acacen. 2. ENDOR and Double ENDOR of Ligand Nuclei. Mol. Phys. 46, 1027–1044.

    CAS  Google Scholar 

  • Saenger, W. (1984). Principles of Nucleic Acid Structure, Springer Verlag, New York.

    Google Scholar 

  • Sander, M. E. and Witzel, H. (1985). Direct Chemical Evidence for the Mixed Anhydride Intermediate of Carboxypeptidase A in Ester and Peptide Hydrolysis. Biochem. Biophys. Res. Commun. 132, 681–687.

    Article  PubMed  CAS  Google Scholar 

  • Sander, M. E. and Witzel, H. (1986). Direct Chemical Evidence for an Anhydride Intermediate of Carboxypeptidase A in Ester and Peptide Hydrolysis in Zinc Enzymes, I. Bertini, C. Luchinat, W. Maret, and M. Zeppezauer, eds., Birkhaeuser, Boston, Massachusetts, pp. 207–214.

    Google Scholar 

  • Scholes, C. P., Lapidot, A., Mascarenhas, R., Inubushi, T., Isaacson, R. A., and Feher, G. (1982). Electron Nuclear Double Resonance (ENDOR) from Heme and Histidine Nitrogens in Single-Crystals of Aquometmyoglobin. J. Am. Chem. Soc. 104, 2724–2735.

    Article  CAS  Google Scholar 

  • Scott, W. R. P., Hunenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Kruger, P., and van Gunsteren, W. F. (1999). The GROMOS Biomolecular Simulation Program Package. J. Phys.Chem. A103, 3596–3607.

    Google Scholar 

  • Smith, T. S., LoBrutto, R., and Pecoraro, V. L. (2002). Paramagnetic Spectroscopy of Vanadyl Complexes and Its Applications to Biological Systems. Coord. Chem. Rev. 228, 1–18.

    Article  CAS  Google Scholar 

  • Snetsinger, P. A., Chasteen, N. D., Cornelius, J. B., and Singel, D. J. (1992). Probing the Iron Center of the Low-Spin Cyanide Adduct of Transferrin by ESEEM Spectroscopy. J. Phys. Chem. 96, 7917–7922.

    Article  CAS  Google Scholar 

  • Sosa-Peinado, A., Mustafi, D., and Makinen, M. W. (2000). Overexpression and Biosynthetic Deuterium Enrichment of TEM-1 β-Lactamase for Structural Characterization by Magnetic Resonance Methods. Protein Expres. Purif. 19, 235–245.

    CAS  Google Scholar 

  • Stryer, L. (1988). Biochemistry, 3rd edit., W. H. Freeman and Company, New York.

    Google Scholar 

  • Strynadka, N. C. J., Adachi, H., Jensen, S. E., Johns, K., Sielecki, A., Betzel, C., Sutoh, K., and James, M. N. J. (1992). Molecular Structure of the Acylenzyme Intermediate in β-Lactam Hydrolysis at 1.7 Å Resolution. Nature 359, 700–705.

    Article  PubMed  CAS  Google Scholar 

  • Swartz, H. M. and Halpern, H. (1998). EPR Studies of Living Animals and Related Model Systems (In Vivo EPR) in Biological Magnetic Resonance, Vol. 14, L. J. Berliner, ed., Plenum Press, NewYork, pp. 367–404.

    Google Scholar 

  • Sweet, R. M. and Dahl, L. F. (1970). Molecular Architecture of the Cephalosporins. Insights into Biological Activity Based on Structural Investigations. J. Am. Chem. Soc. 92, 5489–5507.

    Article  PubMed  CAS  Google Scholar 

  • Teng, T. Y. and Moffat, K. (1998). Cooling Rates during Flash Cooling. J. Appl. Crystallogr. 1, 252–257.

    Google Scholar 

  • Togni, A., Rist, G., Rihs, G., and Schweiger, A. (1993). EPR, H-1 and C-13 ENDOR, N-14 ESEEM, and X-Ray Crystallographic Studies of Oxovanadium(IV) Bis((1R)-3-(Heptafluorobutyryl) Camphorate)-a Catalyst for Asymmetric Hetero-Diels-Alder Reactions. J. Am. Chem. Soc. 115, 1908–1915.

    Article  CAS  Google Scholar 

  • Turley, J. W. and Boer, F. P. B. (1972). The Crystal Structure of the Nitroxide Free Radical 2,2,5,5-Tetramethyl-3-carbamidopyrroline-1-oxyl. Acta Crystallogr. B28, 1641–1644.

    Google Scholar 

  • van Ormondt, D. and Visser, H. (1968). Ligand ENDOR of Mn ++ in La 2 Mg 3 (NO 3 ) 12 24H 2 O. Phys. Lett. A26, 343–344.

    Google Scholar 

  • Van Zele, C. J., Cunningham, M. A., and Makinen, M. W. (2001). Validation of Nitroxyl Spin-Label Force-Field Parameters through Molecular Dynamics Simulations. J. Comput. Chem. 22, 1113–1123.

    Google Scholar 

  • Vocadlo, D. J., Davies, G. J., Laine, R., and Withers, S. G. (2001). Catalysis by Hen Egg-White Lysozyme Proceeds via a Covalent Intermediate. Nature 412, 835–838.

    Article  PubMed  CAS  Google Scholar 

  • Walsby, C. J., Hong, W., Broderick, W. E., Cheek, J., Ortillo, D., Broderick, J. B., and Hoffman, B. M. (2002). Electron Nuclear Double Resonance Spectroscopic Evidence that S-Adenosylmethionine Binds in Contact with the Catalytically Active [4Fe-4S](+) Cluster of Pyruvate Formate-Lyase Activating Enzyme. J. Am. Chem. Soc. 124, 3143–3151.

    PubMed  CAS  Google Scholar 

  • Weiner, P. K. and Kollman, P. A. (1981). AMBER-Assisted Model-Building with Energy Refinement-a General Program for Modeling Molecules and Their Interactions. J. Comput. Chem. 2, 287–303.

    Article  CAS  Google Scholar 

  • Wells, G. B. and Makinen, M. W. (1988). ENDOR Determined Molecular Geometries of Spin-Labeled Fluoroanilides in Frozen Solution. J. Am. Chem. Soc. 110, 6343–6352.

    Article  CAS  Google Scholar 

  • Wells, G. B., Mustafi, D., and Makinen, M. W. (1990). Structure and Conformation of Spin-Labeled Amino Acids in Frozen Solutions Determined by Electron Nuclear Double Resonance. 2. Methyl N-(2,2,5,5-Tetramethyl-1-Oxypyrrolinyl-3-Carbonyl)-LTryptophanate, a Molecule with Multiple Conformations. J. Am. Chem. Soc. 112, 2566–2574.

    Article  CAS  Google Scholar 

  • Wells, G. B., Mustafi, D., and Makinen, M. W. (1994). Structure at the Active-Site of an Acylenzyme of α-Chymotrypsin and Implications for the Catalytic Mechanism. An Electron Nuclear Double Resonance Study. J. Biol. Chem. 269, 4577–4586.

    PubMed  CAS  Google Scholar 

  • Williams, R. J. P. (1985). The Symbiosis of Metal and Protein Functions. Eur. J. Biochem. 150, 231–248.

    Article  PubMed  CAS  Google Scholar 

  • Wuthrich, K. and Connick, R. F. (1968). Nuclear Magnetic Resonance Studies of the Coordination of Vanadyl Complexes in Solution and the Rate of Elimination of Coordinated Water Molecules. Inorg. Chem. 7, 1377–1388.

    Google Scholar 

  • Yim, M. B. and Makinen, M. W. (1986). ENDOR Study of Gd 3+ Complexes in Frozen Solutions. J. Magn. Reson. 70, 89–105.

    CAS  Google Scholar 

  • Yordanov, N. D. and Zdravkova, M. (1986). H-1 and P-31 ENDOR Studies on Powdered Samples of Magnetically Dilute Copper(II) O,O′-Disubstituted Dithiophosphate Complexes. Chem. Phys. Lett. 127, 487–491.

    Article  CAS  Google Scholar 

  • Yordanov, N. D., Zdravkova, M., and Shopov, D. (1986). An Improved Method for ENDOR Study of Powdered Samples. Chem. Phys. Lett. 124, 191–195.

    Article  Google Scholar 

  • Zabell, A. P. R. and Post, C. B. (2002). Docking Multiple Conformations of a Flexible Ligand into a Protein Binding Site Using NMR Restraints. Proteins: Struct., Func., Genet. 46, 295–307.

    CAS  Google Scholar 

  • Zdravkova, M. and Yordanov, N. D. (1994). ENDOR Crystallography — Current Practical Applications. Appl. Magn. Reson. 6, 83–105.

    Article  CAS  Google Scholar 

  • Zell, A., Einspahr, H., and Bugg, C. E. (1985). Model for Calcium-Binding to γ-Carboxyglutamic Acid Residues of Proteins — Crystal Structure of Calcium α-Ethylmalonate. Biochemistry 24, 533–537.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, D. Q. and Jardetzky, O. (1994). An Assessment of the Precision and Accuracy of Protein Structures Determined by NMR. Dependence on Distance Errors. J. Mol. Biol. 239, 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, S. B. (1976). X-Ray Study by Fiber Diffraction Methods of a Self-Aggregate of Guanosine-5′-Phosphate with Same Helical Parameters as Poly(Rg). J. Mol. Biol. 106, 663–672.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Mustafi, D., Makinen, M.W. (2005). Application of Angle-Selected Electron Nuclear Double Resonance to Characterize Structured Solvent in Small Molecules and Macromolecules. In: Eaton, S.R., Eaton, G.R., Berliner, L.J. (eds) Biomedical EPR, Part B: Methodology, Instrumentation, and Dynamics. Biological Magnetic Resonance, vol 24/B. Springer, Boston, MA. https://doi.org/10.1007/0-306-48533-8_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48533-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48532-9

  • Online ISBN: 978-0-306-48533-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics