Metabolism and Gene Expression in Liver Regeneration



Fatty Acid Oxidation Liver Regeneration Partial Hepatectomy Glycogen Storage Disease Carnitine Palmitoyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.5 References

  1. 1.
    N. Fausto. Hepatic regeneration, in: Hepatology: a Textbook of Liver Disease, T. Boyer, ed., Saunders, Philadelphia (1996), pp. 32–58.Google Scholar
  2. 2.
    U. Junge, and W. Creutzfeldt, Hepatotrophic effects of pancreatic and gastrointestinal hormones in the rat in vivo and in vitro, Hepatotrophic Factors, CIBA Symp #53:269–283 (1978).Google Scholar
  3. 3.
    H. Leffert, K. Koch, T. Moran, and B. Rubalcava, Hormonal control of rat liver regeneration, Gastroenterology 76:1470–1482 (1979).PubMedGoogle Scholar
  4. 4.
    M. Kaibori, A. Kwon, M. Nakagawa, et al., Stimulation of liver regeneration and function after partial hepatectomy in cirrhotic rats by continuous infusion of recombinant human hepatocyte growth factor, J Hepatol 27:381–390 (1997).CrossRefPubMedGoogle Scholar
  5. 5.
    T. Nakatani, K. Ozawa, M. Asano, M. Ukikusa, Y. Kamiyama, and T. Tobe, Differences in predominant energy substrate in relation to the resected hepatic mass in the phase immediately after hepatectomy, J Lab Clin Med 97:887–898 (1981).PubMedGoogle Scholar
  6. 6.
    T. Olivecrona, and G. Fex, Metabolism of plasma lipids in partially hepatectomized rats, Biochim Biophys Acta 202:259–268 (1970).PubMedGoogle Scholar
  7. 7.
    S. Pilkis, and D. Granner, Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis, Annu Rev Physiol 54:885–909 (1992).CrossRefPubMedGoogle Scholar
  8. 8.
    O. Owen, A. Morgan, H. Kemp, J. Sullivan, M. Herrera, and G. Cahill, Jr, Brain metabolism during fasting, J Clin Invest 46:1589–1595 (1967).PubMedGoogle Scholar
  9. 9.
    H. Mulligan, and M. Tisdale, Metabolic substrate utilization by tumour and host tissues in cancer cachexia, Biochem J 277:321–326 (1991B).PubMedGoogle Scholar
  10. 10.
    L. Stryer, Biochemistry, W.H. Freeman and Co, New York (1995).Google Scholar
  11. 11.
    X. Chen, N. Iqbal, and G. Boden, The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects., J Clin Invest 103:365–372 (1999).PubMedGoogle Scholar
  12. 12.
    A. Dresner, D. Laurent, M. Marcucci, et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity., J Clin Invest 103:253–259 (1999).PubMedGoogle Scholar
  13. 13.
    M. E. Griffin, M. J. Marcucci, G. W. Cline, et al., Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade, Diabetes 48:1270–4 (1999).PubMedGoogle Scholar
  14. 14.
    K. Cusi, K. Maezono, A. Osman, et al., Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle., J Clin Invest 105:311–320 (2000).PubMedGoogle Scholar
  15. 15.
    P. Arner, Insulin resistance in type 2 diabetes: role of fatty acids, Diabetes Metab Res Rev 18Suppl 2:S5–9 (2002).PubMedGoogle Scholar
  16. 16.
    G. Boden, and G. I. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction, Eur J Clin Invest 32Suppl 3:14–23 (2002).PubMedGoogle Scholar
  17. 17.
    Y. Kruszynska, D. Worrall, J. Ofrecio, J. Frias, G. Macaraeg, and J. Olefsky, Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation, J Clin Endocrinol Metab 87:226–234 (2002).CrossRefPubMedGoogle Scholar
  18. 18.
    T. K. Lam, H. Yoshii, C. A. Haber, et al., Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta, Am J Physiol Endocrinol Metab 283:E682–91 (2002).PubMedGoogle Scholar
  19. 19.
    J. McGarry, Banting lecture, 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes, Diabetes 51:7–18 (2002).PubMedGoogle Scholar
  20. 20.
    C. L. Soltys, L. Buchholz, M. Gandhi, A. S. Clanachan, K. Walsh, and J. R. Dyck, Phosphorylation of cardiac protein kinase B is regulated by palmitate, Am J Physiol Heart Circ Physiol 283:H1056–64 (2002).PubMedGoogle Scholar
  21. 21.
    C. Yu, Y. Chen, G. W. Cline, et al., Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle, J Biol Chem 277:50230–50236 (2002).PubMedGoogle Scholar
  22. 22.
    O. Owen, P. Felig, A. Morgan, J. Wahren, and G. Cahill, Jr, Liver and kidney metabolism during prolonged starvation, J Clin Invest 48:574–583 (1969).PubMedGoogle Scholar
  23. 23.
    N. Katz, A. Brinkmann, and K. Jungermann, Compensatory increase of the gluconeogenic capacity of rat kidney after partial hepatectomy, Hoppe Seylers Z Physiol Chem 360:51–57 (1979).PubMedGoogle Scholar
  24. 24.
    H. J. Woerle, E. Popa, J. Dostou, S. Welle, J. Gerich, and C. Meyer, Exogenous insulin replacement in type 2 diabetes reverses excessive hepatic glucose release, but not excessive renal glucose release and impaired free fatty acid clearance, Metabolism 51:1494–500 (2002).CrossRefPubMedGoogle Scholar
  25. 25.
    C. Morley, S. Kuku, A. Rubenstein, and J. Boyer, Serum hormone levels following partial hepatectomy in the rat, Biochem Biophys Res Commun 67:653–661 (1975).CrossRefPubMedGoogle Scholar
  26. 26.
    S. Mittelman, G. Van Citters, E. Kirkman, and R. Bergman, Extreme insulin resistance of the central adipose depot in vivo, Diabetes 51:755–761 (2002).PubMedGoogle Scholar
  27. 27.
    T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase, J Biol Chem 277:3829–3835 (2002).PubMedGoogle Scholar
  28. 28.
    J. Simek, V. Chmelar, J. Melka, J. Pazderka, and Z. Charvat, Influence of protracted infusion of glucose and insulin on the composition and regeneration activity of liver after partial hepatectomy in rats, Nature 213:910–911 (1967).PubMedGoogle Scholar
  29. 29.
    J. Ngala Kenda, B. De Hemptinne, and L. Lambotte, Role of metabolic overload in the initiation of DNA synthesis following partial hepatectomy in the rat, Eur Surg Res 16:294–302 (1984).Google Scholar
  30. 30.
    B. Mittal, and C. Kurup, Influence of clofibrate administration on the rate of synthesis of macromolecules in regeneration rat liver, Biochim Biophys Acta 609:475–482 (1980).PubMedGoogle Scholar
  31. 31.
    C. Wolfrum, C. Borrmann, T. Börchers, and F. Spener, Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors a-and g-mediated gene expression via liver fatty acid binding protein: A signaling path to the nucleus, Proc Natl Acad Sci USA 98:2323–2328 (2001).CrossRefPubMedGoogle Scholar
  32. 32.
    R. Kaikaus, W. Chan, N. Lysenko, R. Ray, P. Ortiz de Montellano, and N. Bass, Induction of peroxisomal fatty acid beta-oxidation and liver fatty acid binding protein by peroxisome proliferators: Mediation via the cytochrome P-450 4A1 omegahydroxylase pathway, J Biol Chem 268:9592–9603 (1993A).Google Scholar
  33. 33.
    R. Kaikaus, Z. Sui, N. Lysenko, et al., Regulation of pathways of extramitochondrial fatty acid oxidation and liver fatty acid-binding protein by long-chain monocarboxylic fatty acids in hepatocytes: effect of inhibition of carnitine palmitoyltransferase I, J Biol Chem 268:26866–26871 (1993B).PubMedGoogle Scholar
  34. 34.
    J. Bassuk, P. Tsichlis, and S. Sorof, Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes., Proc Natl Acad Sci USA 84:7547–7551 (1987).PubMedGoogle Scholar
  35. 35.
    S. Sorof, Modulation of mitogenesis by liver fatty acid binding protein, Cancer Metast Rev 13:317–336 (1994).CrossRefGoogle Scholar
  36. 36.
    S. P. Anderson, L. Yoon, E. B. Richard, C. S. Dunn, R. C. Cattley, and J. C. Corton, Delayed liver regeneration in peroxisome proliferator-activated receptor-alpha-null mice, Hepatology 36:544–54 (2002).CrossRefPubMedGoogle Scholar
  37. 37.
    K. Sasaki, T. Cripe, S. Koch, et al., Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription: The dominant role of insulin, J Biol Chem 259:15242–15251 (1984).PubMedGoogle Scholar
  38. 38.
    J. Rosa, R. Bartrons, and A. Tauler, Gene expression of regulatory enzymes of glycolysis/gluconeogenesis in regenerating rat liver, Biochem J 287:113–116 (1992A).PubMedGoogle Scholar
  39. 39.
    J. Rosa, A. Tauler, A. Lange, S. Pilkis, and R. Bartrons, Transcriptional and posttranscriptional regulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase during liver regeneration, Proc Natl Acad Sci USA 89:3746–3750 (1992B).PubMedGoogle Scholar
  40. 40.
    R. Taub, Liver regeneration 4: transcriptional control of liver regeneration, FASEB J 10:413–427 (1996).PubMedGoogle Scholar
  41. 41.
    P. Schofield, A. Kerbey, and M. Sugden, Hepatic pyruvate metabolism during liver regeneration after partial hepatectomy in the rat, Intl J Biochem 18:453–458 (1986).Google Scholar
  42. 42.
    S. Monga, P. Pediaditakis, K. Mule, D. Stolz, and G. Michalopoulos, Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration, Hepatol 33:1098–1109 (2001).CrossRefGoogle Scholar
  43. 43.
    G. Asins, J. Rosa, D. Serra, et al., Gene expression of enzymes regulating ketogenesis and fatty acid metabolism in regenerating rat liver., Biochem J 299:65–69 (1994).PubMedGoogle Scholar
  44. 44.
    E. Park, R. Mynatt, G. Cook, and K. Kashfi, Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I, Biochem J 310:853–858 (1995).PubMedGoogle Scholar
  45. 45.
    S. Mills, D. Foster, and J. Mcgarry, Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues: Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I, Biochem J 214:83–91 (1983).PubMedGoogle Scholar
  46. 46.
    L. Drynan, P. Quant, and V. Zammit, Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states., Biochem J 317:791–795 (1996A).PubMedGoogle Scholar
  47. 47.
    L. Drynan, P. Quant, and V. Zammit, The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat., Biochem J 318:767–770 (1996B).PubMedGoogle Scholar
  48. 48.
    J. Sleboda, K. Risan, O. Spydevold, and J. Bremer, Short-term regulation of carnitine palmitoyltransferase I in cultured rat hepatocytes: spontaneous inactivation and reactivation by fatty acids, Biochim Biophys Acta 1436:541–549 (1999).PubMedGoogle Scholar
  49. 49.
    J. McGarry, and N. Brown, Reconstitution of purified, active and malonyl-CoA-sensitive rat liver carnitine palmitoyltransferase I: relationship between membrane environment and malonyl-CoA sensitivity, Biochem J 349:179–187 (2000).CrossRefPubMedGoogle Scholar
  50. 50.
    K. Ueda, T. Yoshioka, Y. Takehara, and K. Abe, Lipoperoxides, vitamin E, and activities of superoxide dismutase, glutathione peroxidase, and catalase in regenerating rat liver, Biochem Intl 7:663–669 (1983).Google Scholar
  51. 51.
    J.-L. Tsai, K.-L. King, C.-C. Chang, and Y.-H. Wei, Changes of mitochondrial respiratory functions and superoxide dismutase activity during liver regeneration, Biochem Intl 28:205–217 (1992).Google Scholar
  52. 52.
    P. Schofield, M. Sugden, C. Corstorphine, and V. Zamtnit, Altered interactions between lipogenesis and fatty acid oxidation in regenerating rat liver, Biochem J 241:469–474 (1987A).PubMedGoogle Scholar
  53. 53.
    P. Schofield, T. French, and M. Sugden, Ketone-body metabolism after surgical stress or partial hepatectomy: Evidence for decreased ketogenesis and a site of control distal to carnitine palmitoyltransferase I, Biochem J 241:475–481 (1987B).PubMedGoogle Scholar
  54. 54.
    V. Skulachev, Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation, FEBS Lett 294:158–162 (1991).CrossRefPubMedGoogle Scholar
  55. 55.
    L. Wojtczak, and P. Schönfeld, Effect of fatty acids on energy coupling processes in mitochondria, Biochim Biophys Acta 1183:41–57 (1993).PubMedGoogle Scholar
  56. 56.
    L. Wojtczak, and M. Wieckowski, The mechanisms of fatty acid-induced proton permeability of the inner mitochondrial membrane, J Bioenerg Biomembranes 31:447–455 (1999A).Google Scholar
  57. 57.
    P. Schönfeld, M. Wiêckowski, and L. Wojtczak, Thyroid hormone-induced expression of the ADP/ATP carrier and its effect on fatty acid-induced uncoupling of oxidative phosphorylation, FEBS Lett 416:19–22 (1997A).CrossRefPubMedGoogle Scholar
  58. 58.
    P. SchÖonfeld, and R. Bohnensack, Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier, FEBS Lett 420:167–170 (1997B).Google Scholar
  59. 59.
    M. Buckle, Regulation of ATP hydrolase activity of the F0-F1 complex of rat-liver mitochrondria during early hepatic regeneration., FEBS Letters 209:197–202 (1986).CrossRefPubMedGoogle Scholar
  60. 60.
    G. Vendemiale, F. Guerrieri, I. Grattagliano, D. Didonna, L. Muolo, and E. Altomare, Mitochondrial oxidative phosphorylation and intracellular glutathione compartmentation during rat liver regeneration, Hepatology 21:1450–1454 (1995).CrossRefPubMedGoogle Scholar
  61. 61.
    F. Guerrieri, L. Muolo, T. Cocco, et al., Correlation between rat liver regeneration and mitochondrial energy metabolism, Biochim Biophys Acta 1272:95–100 (1995).PubMedGoogle Scholar
  62. 62.
    K. Ozawa, T. Yamada, M. Ukikusa, et al., Mitochondrial phosphorylative activity and DNA synthesis in regenerating liver of diabetic rats, J Surg Res 31:38–45 (1981).CrossRefPubMedGoogle Scholar
  63. 63.
    T. Morimoto, Y. Taki, A. Jikko, et al., Changes in oxidative phosphorylation, adenylate energy charge, and respiratory components in chloramphenicol-treated regenerating rat liver, J Lab Clin Med 107:194–198 (1986).PubMedGoogle Scholar
  64. 64.
    T. Inomoto, A. Tanaka, S. Mori, et al., Changes in the distribution of the control of the mitochondrial oxidative phosphorylation in regenerating rabbit liver, Biochim Biophys Acta 1188:311–317 (1994).PubMedGoogle Scholar
  65. 65.
    G. Formiggini, C. Castelluccio, M. Pich, et al., Coenzyme Q depletion in rat plasma after partial hepatectomy., Biochem Molec Biol Intl 39:1135–1140 (1996).Google Scholar
  66. 66.
    P. Forsmark-Andrée, C.-P. Lee, G. Dallner, and L. Ernster, Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles., Free Radical Biol Med 22:391–400 (1997).CrossRefGoogle Scholar
  67. 67.
    I. Reynolds, and T. Hastings, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J Neurosci 15:3318–3327 (1995).PubMedGoogle Scholar
  68. 68.
    V. Skulachev, Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Quart Rev Biophys 29:169–202 (1996).Google Scholar
  69. 69.
    A. Nègre-Salvayre, C. Hirtz, G. Carrera, et al., A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, FASEB J 11:809–815 (1997).PubMedGoogle Scholar
  70. 70.
    A. Stout, H. Raphael, B. Kantercwicz, E. Klann, and I. Reynolds, Glutamate-induced neuron death requires mitochondrial calcium uptake, Nature Neurosci 1:366–373 (1998).PubMedGoogle Scholar
  71. 71.
    S. Korshunov, O. Kokina, E. Ruuge, V. Skulachev, and A. Starkov, Fatty acids as natural uncouplers preventing generation of O2 — and H2O2 by mitochondria in the resting state, FEBS Letts 435:215–218 (1998).CrossRefGoogle Scholar
  72. 72.
    K. Decker, and M. Obolenskaya, Cytokines, nitric oxide synthesis and liver regeneration., J Gastroenterol Hepatol 10:S12–S17 (1995).PubMedGoogle Scholar
  73. 73.
    K. Yamamoto, and H. Fahimi, Biogenesis of peroxisomes in regenerating rat liver, I: Sequential changes of catalase and urate oxidase detected by ultrastructural cytochemisty, Eur J Cell Biol 43:293–300 (1987).PubMedGoogle Scholar
  74. 74.
    H. Hayashi, H. Yoshida, F. Hashimoto, and S. Okazeri, Changes in polyamine-oxidizing capacity of peroxisomes under various physiological conditions in rats, Biochim Biophys Acta 991:310–316 (1989).PubMedGoogle Scholar
  75. 75.
    G. Lüers, K. Beier, T. Hashimoto, H. Fahimi, and A. Vökl, Biogenesis of peroxisomes: sequential biosynthesis of the membrane and matrix proteins in the course of hepatic regeneration, Eur J Cell Biol 52:175–184 (1990).PubMedGoogle Scholar
  76. 76.
    I. Oikawa, and P. Novikoff, Catalase-negative peroxisomes: transient appearance in rat hepatocytes during liver regeneration after partial hepatectomy, Am J Pathol 146:673–687 (1995).PubMedGoogle Scholar
  77. 77.
    T. Delahunty, and D. Rubinstein, Accumulation and release of triglycerides by rat liver following partial hepatectomy., J Lipid Res 11:536–543 (1970).PubMedGoogle Scholar
  78. 78.
    J. Caruana, C. Sunby, D. Camara, H. Chen, and G. Schneeberger, Rapid alterations in substrate profiles after partial hepatectomy in the rat., Arch Surg 119:437–441 (1984).PubMedGoogle Scholar
  79. 79.
    K. Mohn, T. Laz, A. Melby, and R. Taub, Immediate-early gene expression differs between regenerating liver, insulin-stimulated H-35 cells, and mitogen-stimulated Balb/c 3T3 cells: Liver-specific induction patterns of gene 33, phosphoenolpyruvate carboxykinase, and the jun, fos, and egr families, J Biol Chem 265:21914–21921 (1990).PubMedGoogle Scholar
  80. 80.
    M. Nagino, M. Tanaka, M. Nishikimi, et al., Stimulated rat liver mitochondrial biogenesis after partial hepatectomy, Cancer Res 49:4913–4918 (1989).PubMedGoogle Scholar
  81. 81.
    Z.-Z. Huang, H. Li, J. Cai, J. Kuhlenkamp, N. Kaplowitz, and S. Lu, Changed in glutathione homeostasis during liver regeneration in the rat, Hepatology 27:147–153 (1998).CrossRefPubMedGoogle Scholar
  82. 82.
    J. Dypbukt, M. Ankarcrona, M. Burkitt, et al., Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells: The role of intracellular polyamines., J Biol Chem 269:30553–30560 (1994).PubMedGoogle Scholar
  83. 83.
    V. Nilakantan, B. Spear, and H. Glauert, Liver-specific catalase expression in transgenic mice inhibits NF-kappaB activation and DNA synthesis induced by the peroxisome proliferator ciprofibrate, Carcinogenesis 19:631–637 (1998).CrossRefPubMedGoogle Scholar
  84. 84.
    T. Finkel, Redox-dependent signal transduction., FEBS Letters 476:52–54 (2000A).CrossRefPubMedGoogle Scholar
  85. 85.
    S. Nemoto, and T. Finkel, Redox regulation of forkhead proteins through a p66shcdependent signaling pathway, Science 295:2450–2452 (2002).CrossRefPubMedGoogle Scholar
  86. 86.
    V. Thannickal, R. Day, S. Klinz, M. Bastien, J. Larios, and B. Fanburg, Rasdependent and-independent regulation of reactive oxygen species by mitogenic growth factors and TGF-b1, FASEB J 14:1741–1748 (2000).CrossRefPubMedGoogle Scholar
  87. 87.
    H. Rabes, R. Wirsching, H.-V. Tuczek, and G. Iseler, Analysis of cell cycle compartments of hepatocytes after partial hepatectomy, Cell Tissue Kinet 9:517–532 (1976).PubMedGoogle Scholar
  88. 88.
    N. Barrass, R. Price, B. Lake, and T. Orton, Comparison of the acute and chronic mitogenic effects of the peroxisome proliferators methylclofenapate and clofibiric acid in rat liver., Carcinogenesis 14:1451–1456 (1993).PubMedGoogle Scholar
  89. 89.
    T. Nishihira, J. Tanaka, K. Nishikawa, et al., Biological significance of enhanced mitochondrial membrane potential in regenerating liver, Hepatology 6:220–224 (1986).PubMedGoogle Scholar
  90. 90.
    M. Kataoka, A. Tanaka, Y. Yamaoka, et al., A role of cytoplasmic free adenosine diphosphate in regenerating rabbit liver, J Lab Clin Med 119:354–358 (1992).PubMedGoogle Scholar
  91. 91.
    M. Kataoka, A. Tanaka, I. Ikai, Y. Yamaoka, K. Ozawa, and B. Chance, Kinetic analysis of ATP-synthetase and ATPase in regenerating rabbit liver, Eur Surg Res 25:91–97 (1993).PubMedGoogle Scholar
  92. 92.
    S. Yoshioka, M. Miyazaki, H. Shimizu, et al., Hepatic venous hemoglobin oxygen saturation predicts regenerative status of remnant liver after partial hepatectomy in rats, Hepatol 27:1349–1353 (1998).CrossRefGoogle Scholar
  93. 93.
    S. Satoh, A. Tanaka, E. Hatano, et al., Energy metabolism and regeneration in transgenic mouse liver expressing creatine kinase after major hepatectomy, Gastroenterology 110:1166–1174 (1996).CrossRefPubMedGoogle Scholar
  94. 94.
    M. Selzner, and P. Clavien, Failure of regeneration of the steatotic rat liver: disruption at two different levels in the regeneration pathway, Hepatol 31:35–42 (2000).CrossRefGoogle Scholar
  95. 95.
    R. Cornell, B. Liljequist, and K. Bartizal, Depressed liver regeneration after partial hepatectomy of germ-free, athymic and lipopolysaccharide resistant mice., Hepatology 11:916–922 (1990).PubMedGoogle Scholar
  96. 96.
    A. Diehl, M. Yin, J. Fleckenstein, et al., Tumor necrosis factor-alpha induces c-jun during the regenerative response to liver injury., Am J Physiol 267:G552–G561 (1994).PubMedGoogle Scholar
  97. 97.
    Z. Sun, A. S. Klein, S. Radaeva, et al., In vitro interleukin-6 treatment prevents mortality associated with fatty liver transplants in rats, Gastroenterology 125:202–15 (2003).CrossRefPubMedGoogle Scholar
  98. 98.
    N. Selzner, M. Selzner, B. Odermatt, Y. Tian, N. Van Rooijen, and P. A. Clavien, ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice, Gastroenterology 124:692–700 (2003).CrossRefPubMedGoogle Scholar
  99. 99.
    K. Feingold, M. Soued, and C. Grunfeld, Tumor necrosis factor stimulates DNA synthesis in the liver of intact rats., Biochem Biophys Res Commun 153:576–582 (1988).CrossRefPubMedGoogle Scholar
  100. 100.
    S. Kuma, M. Inaba, H. Ogata, et al., Effect of human recombinant interleukin-6 on the proliferation of mouse hepatocytes in the primary culture, Immunobiology 180:235–242 (1990).PubMedGoogle Scholar
  101. 101.
    P. Akerman, P. Cote, S. Yang, et al., Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy., Am J Physiol 263:G579–G585 (1992).PubMedGoogle Scholar
  102. 102.
    M. Rolfe, N. James, and R. Roberts, Tumour necrosis factor alpha (TNF alpha) suppresses apoptosis and induces DNA synthesis in rodent hepatocytes: A mediator of the hepatocarcinogenicity of peroxisome proliferators?, Carcinogenesis 18:2277–2280 (1997).CrossRefPubMedGoogle Scholar
  103. 103.
    D. Cressman, L. Greenbaum, R. Deangelis, et al., Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice., Science 274:1379–1383 (1996).CrossRefPubMedGoogle Scholar
  104. 104.
    Y. Yamada, I. Kinillova, J. Reschou, and N. Fausto, Initiation of tumor growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor, Proc Natl Acad Sci USA 94:1441–1446 (1997).PubMedGoogle Scholar
  105. 105.
    B. Beutler, TNF, immunity and inflammatory disease: lessons of the past decade., J Investig Med 43:227–235 (1995).PubMedGoogle Scholar
  106. 106.
    F. Bazzoni, and B. Beutler, The tumor necrosis factor ligand and receptor families., N Engl J Med 334:1717–1725 (1996).CrossRefPubMedGoogle Scholar
  107. 107.
    K. Schulze-Osthoff, A. Bakker, B. Vanhaesebroeck, R. Beyaert, W. Jacob, and W. Fiers, Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions: Evidence for the involvement of mitochondrial radical generation, J Biol Chem 267:5317–5323 (1992).PubMedGoogle Scholar
  108. 108.
    M. Navasa, K. Feingold, and C. Grunfeld, Effects of endotoxin and cytokines on hepatic lipid metabolism, Prog Liver Dis 15:147–170 (1997).Google Scholar
  109. 109.
    G. Hotamisligil, Mechanisms of TNF-alpha-induced insulin resistance, Exp Clin Endocrinol Diabetes 107:119–125 (1999).PubMedGoogle Scholar
  110. 110.
    G. Hotamisligil, R. Johnson, R. Distel, R. Ellis, V. Papaioannou, and B. Spiegelman, Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein, Science 274:1377–1379 (1996).CrossRefPubMedGoogle Scholar
  111. 111.
    K. Feingold, I. Staprans, R. Memon, et al., Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance., J Lipid Res 33:1765–1776 (1992).PubMedGoogle Scholar
  112. 112.
    R. Memon, K. Feingold, A. Moser, et al., Differential effects of interleukin-1 and tumor necrosis factor on ketogenesis, Am J Physiol 263:E301–E309 (1992).PubMedGoogle Scholar
  113. 113.
    C. Grunfeld, C. Dinarello, and K. Feingold, Tumor necrosis factor-alpha, interleukin-1, and interferon alpha stimulate triglyceride synthesis in HepG2 cells, Metabolism 40:894–898 (1991).CrossRefPubMedGoogle Scholar
  114. 114.
    E. Vara, J. Arias-Diaz, J. Torres-Melero, C. Garcia, J. Rodriguez, and J. Balibrea, Effect of different sepsis-related cytokines on lipid synthesis by isolated hepatocytes, Hepatology 20:924–931 (1994).PubMedGoogle Scholar
  115. 115.
    R. Memon, N. Bass, A. Moser, et al., Down-regulation of liver and heart specific fatty acid binding proteins by endotoxin and cytokines in vivo, Biochim Biophys Acta 1440:118–126 (1999).PubMedGoogle Scholar
  116. 116.
    S. Mahony, and M. Tisdale, Metabolic effects of tumour necrosis factor alpha in NMRI mice, Br J Cancer 61:514–519 (1990).PubMedGoogle Scholar
  117. 117.
    M. Beylot, H. Vidal, G. Mithieux, M. Odeon, and C. Martin, Inhibition of hepatic ketogenesis by tumor necrosis factor-alpha in rats., Am J Physiol 263:E897–E902 (1992).PubMedGoogle Scholar
  118. 118.
    M. Jin, Y. Shimahara, T. Yamaguchi, et al., The effect of a bolus injection of TNF-alpha and IL-1 beta on hepatic energy metabolism in rats, J Surg Res 58:509–515 (1995).CrossRefPubMedGoogle Scholar
  119. 119.
    R. Memon, J. Fuller, A. Moser, P. Smith, K. Feingold, and C. Grunfeld, In vivo regulation of acyl-CoA synthetase mRNA and activity by endotoxin and cytokines, Am J Physiol 275:E64–72 (1998).PubMedGoogle Scholar
  120. 120.
    K. Beier, A. Völkl, and H. Fahimi, Suppression of peroxisomal lipid beta-oxidation enzymes of TNF-alpha., FEBS Letters 310:273–276 (1992).CrossRefPubMedGoogle Scholar
  121. 121.
    K. Beier, A. Völkl, and H. Fahimi, TNF-alpha downregulates the peroxisome proliferator activated receptor-alpha and the mRNAs encoding peroxisomal proteins in rat liver., FEBS Letters 12:385–387 (1997).Google Scholar
  122. 122.
    S. Ghosh, S. J, and B. R, Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling, FASEB J 11:45–50 (1997).Google Scholar
  123. 123.
    G. Velasco, D. Gómez, Pulgar, T, D. Carlin, and M. Guzmán, Evidence that the AMP-activated protein kinase stimulates rat liver carnitine palmitoyltransferase I by phosphorylating cytoskeletal components, FEBS Lett 439:317–320 (1998A).CrossRefPubMedGoogle Scholar
  124. 124.
    G. Velasco, M. Geelen, T. Gomez del Pulgar, and M. Guzmán, Malonyl-CoA-independent acute control of hepatic carnitine palmitoyltransferase I activity: Role of Ca2+/calmodulin-dependent protein kinase II and cytoskeletal components, J Biol Chem 273:21497–21504 (1998B).CrossRefPubMedGoogle Scholar
  125. 125.
    R. Warren, H. Starnes, Jr, N. Alcock, S. Calvano, and M. Brennan, Hormonal and metabolic response to recombinant human tumor necrosis factor in rat: in vitro and in vivo, Am J Physiol 255:E206–E212 (1988).PubMedGoogle Scholar
  126. 126.
    E. Tredget, Y. Yu, S. Zhong, et al., Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits, Am J Physiol 255:E760–E768 (1988).PubMedGoogle Scholar
  127. 127.
    T. Hennet, C. Richter, and E. Peterhans, Tumour necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells, Biochem J 289:587–592 (1993B).PubMedGoogle Scholar
  128. 128.
    M. Boermeester, I. Straatsburg, A. Houdijk, et al., Endotoxin and interleukin-1 related hepatic inflammatory response promotes liver failure after partial hepatectomy., Hepatology 22:1499–1506 (1995).CrossRefPubMedGoogle Scholar
  129. 129.
    P. Martin-Sanz, M. Diaz-Guerra, M. Casado, and L. Bosca, Bacterial lipopolysaccharide antagonizes transforming growth factor beta 1-induced apoptosis in primary cultures of hepatocytes, Hepatology 23:1200–1207 (1996).PubMedGoogle Scholar
  130. 130.
    C. Caulin, C. Ware, T. Magin, and R. Oshima, Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis., J Cell Biol 149:17–22. (2000).CrossRefPubMedGoogle Scholar
  131. 131.
    S. Gilbert, A. Loranger, N. Daigle, and N. Marceau, Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis: The protection occurs through a receptor-targeting modulation, J Cell Biol 154:763–73 (2001).CrossRefPubMedGoogle Scholar
  132. 132.
    P. Wang, A. Ayala, Z. Ba, M. Zhou, M. Perrin, and I. Chaudry, Tumor necrosis factor-alpha produces hepatocellular dysfunction despite normal cardiac output and hepatic microcirculation, Am J Physiol 265:G126–G132 (1993).PubMedGoogle Scholar
  133. 133.
    C. Fisch, M. Robin, P. Letteron, et al., Cell-generated nitric oxide inactivates rat hepatocyte mitochondria in vitro but reacts with hemoglobin in vivo., Gastroenterology 110:210–220 (1996).CrossRefPubMedGoogle Scholar
  134. 134.
    D. Duval, D. Miller, J. Collier, and R. Billings, Characterization of hepatic nitric oxide synthase: identification as the cytokine-inducible form primarily regulated by oxidants., Molec Pharmacol 50:277–284 (1996).Google Scholar
  135. 135.
    H. Kitade, T. Kanemaki, K. Sakitani, et al., Regulation of energy metabolism by interleukin-1 beta, /but not by interleukin-6, is mediated by nitric oxide in primary cultured rat hepatocytes, Biochim Biophys Acta 1311:20–26 (1996).PubMedGoogle Scholar
  136. 136.
    R. Rai, F. Lee, A. Rosen, et al., Impaired liver regeneration in inducible nitric oxide synthase-deficient mice, Proc Natl Acad Sci USA 95:13829–13834 (1998).PubMedGoogle Scholar
  137. 137.
    R. Grimble, and P. Tappia, Modulatory influence of unsaturated fatty acids on the biology of tumour necrosis factor-alpha, Biochem Soc Trans 23:282–287 (1995).PubMedGoogle Scholar
  138. 138.
    P. Sierra, P. Ling, N. Istfan, and B. Bistrian, Fish oil feeding improves muscle glucose uptake in tumor necrosis factor-treated rats, Metabolism 44:1365–1370 (1995).CrossRefPubMedGoogle Scholar
  139. 139.
    C. Mondon, and H. Starnes, Jr, Differential metabolic responses to tumor necrosis factor with increase in age, Metabolism 41:970–981 (1992).CrossRefPubMedGoogle Scholar
  140. 140.
    A. Beg, and D. Baltimore, An essential role for NF-kappaB in preventing TNF-alpha-induced cell death., Science 274:782–784 (1996).CrossRefPubMedGoogle Scholar
  141. 141.
    C.-Y. Wang, M. Mayo, and J. Baldwin, AS TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB, Science 274:784–787 (1996).CrossRefPubMedGoogle Scholar
  142. 142.
    D. Van Antwerp, S. Martin, T. Kafri, D. Green, and I. Verma, Suppression of TNF-alpha-induced apoptosis by NF-kappaB, Science 274:787–789 (1996).PubMedGoogle Scholar
  143. 143.
    O. Ozes, L. Mayo, J. Gustin, S. Pfeffer, L. Pfeffer, and D. Donner, NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85 (1999).PubMedGoogle Scholar
  144. 144.
    C. Sen, and L. Packer, Antioxidant and redox regulation of gene transcription, FASEB J 10:709–720 (1996).PubMedGoogle Scholar
  145. 145.
    V. Lakshminarayanan, E. Drab-Weiss, and K. Roebuck, H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells, J Biol Chem 273:32670–32678 (1998).CrossRefPubMedGoogle Scholar
  146. 146.
    E. Shaulian, and M. Karin, AP-1 as a regulator of cell life and death, Nat Cell Biol 4:E131–6 (2002).CrossRefPubMedGoogle Scholar
  147. 147.
    T. Vos, H. Van Goor, L. Tuyt, et al., Expression of inducible nitric oxide synthase in endotoxemic rat hepatocytes is dependent on the cellular glutathione status, Hepatology 29:421–426 (1999).PubMedGoogle Scholar
  148. 148.
    K. Yamamoto, T. Arakawa, N. Ueda, and S. Yamamoto, Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells, J Biol Chem 270:31315–31320 (1995).PubMedGoogle Scholar
  149. 149.
    M. Tamatani, Y. Che, H. Matsuzaki, et al., Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons, J Biol Chem 274:8531–8538 (1999).CrossRefPubMedGoogle Scholar
  150. 150.
    W. Zong, L. Edelstein, C. Chen, J. Bash, and C. Gélinas, The prosurvival Bcl-2 homolog Bfl-2/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis, Genes Development 13:382–387 (1999).PubMedGoogle Scholar
  151. 151.
    F. Lee, Y. Li, H. Zhu, et al., Tumor necrosis factor increases mitochondrial oxidant production and induces expression of uncoupling protein-2 in the regenerating mouse liver, Hepatology 29:677–687 (1999).CrossRefPubMedGoogle Scholar
  152. 152.
    K. Echtay, D. Roussel, J. St-Pierre, et al., Superoxide activates mitochondrial uncoupling proteins., Nature 415:96–99 (2002).CrossRefPubMedGoogle Scholar
  153. 153.
    F. Bertrand, A. Atfi, A. Cadoret, et al., A role for nuclear factor kappa B in the antiapoptotic function of insulin., J Biol Chem 273:2931–2938 (1998).CrossRefPubMedGoogle Scholar
  154. 154.
    S. Heck, F. Lezoualc’h, S. Engert, and C. Behl, Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappaB, J Biol Chem 274:9828–9835 (1999).CrossRefPubMedGoogle Scholar
  155. 155.
    K. Pahan, F. Sheikh, M. Khan, A. Namboodiri, and I. Singh, Sphingomyelinase and ceramide stimulate the expression of inducible nitric-oxide synthase in rat primary astrocytes, J Biol Chem 273:2591–2600 (1998).PubMedGoogle Scholar
  156. 156.
    Y. Kim, R. Talanian, and T. Billiar, Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms, J Biol Chem 272:31138–31148 (1997).PubMedGoogle Scholar
  157. 157.
    Y. Kim, T. Kim, D. Seol, R. Talanian, and T. Billiar, Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release, J Biol Chem 273:31437–31441 (1998).PubMedGoogle Scholar
  158. 158.
    J. Li, and T. Billiar, Nitric Oxide, IV: Determinants of nitric oxide protection and toxicity in liver, Am J Physiol 276:G1069–G1073 (1999).PubMedGoogle Scholar
  159. 159.
    S. Moncada, and J. Erusalimsky, Does nitric oxide modulate mitochondrial energy generation and apoptosis?, Nat Rev Mol Cell Biol 3:214–220 (2002).CrossRefPubMedGoogle Scholar
  160. 160.
    H. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin, and A. Baron, Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production, Diabetes 49:1231–1238 (2000).PubMedGoogle Scholar
  161. 161.
    O. Micheau, and J. Tschopp, Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell 114:181–90 (2003).CrossRefPubMedGoogle Scholar
  162. 162.
    N. Fausto, A. Laird, and E. Webber, Liver regeneration, 2: Role of growth factors and cytokines in hepatic regeneration., FASEB J 9:1527–1536 (1995).PubMedGoogle Scholar
  163. 163.
    Y. Li, L. Leung, H. Glauert, and B. Spear, Treatment of rats with the peroxisome proliferator ciprofibrate results in increased liver NF-kappaB activity, Carcinogenesis 17:2305–2309 (1996).PubMedGoogle Scholar
  164. 164.
    M. Menegazzi, P. Carcereri-De, A, H. Suzuki, et al., Liver cell proliferation induced by nafenopin and cyproterone acetate is not associated with increases in activation of transcription factors NF-kappaB and AP-1 or with expression of tumor necrosis factor alpha, Hepatology 25:585–592 (1997).CrossRefPubMedGoogle Scholar
  165. 165.
    Y. Iimuro, T. Nishiura, C. Hellerbrand, et al., NF kappa B prevents apoptosis and liver dysfunction during liver regeneration, J Clin Invest 101:802–811 (1998).PubMedGoogle Scholar
  166. 166.
    B. Kren, J. Trembley, S. Krajewski, T. Behrens, J. Reed, and C. Steer, Modulation of apoptosis-associated genes bcl-2, bcl-x, and bax during rat liver regeneration, Cell Growth Differentiation 7:1633–1642 (1996).PubMedGoogle Scholar
  167. 167.
    S. Tzung, N. Fausto, and D. Hockenbery, Expression of Bcl-2 family during liver regeneration and identification of Bcl-x as a delayed early response gene, Am J Pathol 150:1985–1995 (1997).PubMedGoogle Scholar
  168. 168.
    N. Zamzami, C. Brenner, I. Marzo, S. Susin, and G. Kroemer, Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins, Oncogene 16:2265–2282 (1998).PubMedGoogle Scholar
  169. 169.
    M._L. Chaisson, J. T. Brooling, W. Ladiges, S. Tsai, and N. Fausto, Hepatocyte-specific inhibition of NF-kappaB leads to apoptosis after TNF treatment, but not after partial hepatectomy, J Clin Invest 110:193–202 (2002).CrossRefPubMedGoogle Scholar
  170. 170.
    P. Parker, I. Burr, A. Slonim, F. Ghishan, and H. Greene, Regression of hepatic adenomas in type Ia glycogen storage disease with dietary therapy, Gastroenterology 81:534–536 (1981).PubMedGoogle Scholar
  171. 171.
    R. Ockner, R. Kaikaus, and N. Bass, Fatty acid metabolism and the pathogenesis of hepatocellular carcinoma: review and hypothesis, Hepatology 18:669–676 (1993).PubMedGoogle Scholar
  172. 172.
    D. Hardie, D. Carling, and M. Carlson, The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?, Annu Rev Biochem 67:821–855 (1998).CrossRefPubMedGoogle Scholar
  173. 173.
    S. Sweet, and G. Singh, Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints, Cancer Res 55:5164–5167 (1995).PubMedGoogle Scholar
  174. 174.
    R. Sheaff, M. Groudine, M. Gordon, J. Roberts, and B. Clurman, Cyclin E-CDK2 is a regulator of p27Kipl, Genes Devel 11:1464–1478 (1997).PubMedGoogle Scholar
  175. 175.
    M. Pagano, S. Tam, A. Theodoras, et al., Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27, Science 269:682–685 (1995).PubMedGoogle Scholar
  176. 176.
    W. Kaufmann, and T. Goldsworthy, Regulation of the hepatocyte cell cycle, Prog Liver Dis 15:31–56 (1997).Google Scholar
  177. 177.
    A. Hall, Rho GTPases and the actin cytoskeleton, Science 279:509–514 (1998).CrossRefPubMedGoogle Scholar
  178. 178.
    D. Colgan, K. Murthy, C. Prives, and J. Manley, Cell-cycle related regulation of poly(A)polymerase by phosphorylation., Nature 384:282–285 (1996).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Personalised recommendations