Skip to main content
  • 197 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.4. References

  1. P. J. Randle, Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years, Diabetes Metab Rev 14:263–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. G. Boden, and G. I. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction, Eur J Clin Invest 32Suppl 3:14–23 (2002).

    CAS  PubMed  Google Scholar 

  3. J. McGarry, Banting lecture, 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes, Diabetes 51:7–18 (2002).

    CAS  PubMed  Google Scholar 

  4. T. A. Hopkins, M. C. Sugden, M. J. Holness, R. Kozak, J. R. Dyck, and G. D. Lopaschuk, Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-alpha transgenic mice, Am J Physiol Heart Circ Physiol 285:H270–6 (2003).

    CAS  PubMed  Google Scholar 

  5. J. Scaife, and H. Brohee, An investigation of factors influencing mitotic G2 delay in synchronous cultures of human kidney cells and X-irradiation, Can J Biochem 47:237–249 (1969).

    CAS  PubMed  Google Scholar 

  6. S. Ishiguro, H. Yamaguchi, Y. Oka, and H. Miyamoto, Change in energy metabolism in the cell cycle of mouse L cells, Cell Structure Function 3:331–340 (1978).

    CAS  Google Scholar 

  7. S. Skog, B. Tribukait, and G. Sundius, Energy metabolism and ATP turnover time during the cell cycle of Ehrlich ascites tumour cells, Exp Cell Res 141:23–29 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. S. Skog, B. Tribukait, and G. Sundius, Energy metabolism and ATP turnover time during the cell cycle in roentgen irradiated Ehrlich ascites tumour cells, Acta Radiol Oncol 22:369–379 (1983).

    CAS  PubMed  Google Scholar 

  9. C. Van den Bogert, P. Muus, C. Haanen, A. Pennings, T. Melis, and A. Kroon, Mitochondrial biogenesis and mitochondrial activity during the progression of the cell cycle of human leukemic cells, Exp Cell Res 178:143–153 (1988).

    PubMed  Google Scholar 

  10. L. Xie, and D. Wang, Energy metabolism and ATP balance in animal cell cultivation using a stoichiometrically based reaction network, Biotech Bioengineering 521:591–601 (1996).

    Google Scholar 

  11. S. Talha, and L. Harel, Early stimulation of ATP turnover induced by growth factors: Synergistic effect of EGF and insulin and correlation with DNA synthesis, Exp Cell Res 158:311–320 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. V. Jain, I. Gupta, and K. Lata, Energetics of cellular repair processes in a respiratorydeficient mutant of yeast, Rad Res 92:463–473 (1982).

    CAS  Google Scholar 

  13. Y. Li, G. Sattler, and H. Pitot, Oxaloacetate induces DNA synthesis and mitosis in primary cultured rat hepatocytes in the absence of EGF, Biochem Biophys Res Commun 193:1339–1346 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. S. Linke, K. Clarkin, L. Di, A. Tsou, and G. Wahl, A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage, Genes Devel 10:934–947 (1996).

    CAS  PubMed  Google Scholar 

  15. T. Gaal, M. Bartlett, W. Ross, C. Turnbough, Jr, and R. Gourse, Transcription regulation by intiating NTP concentration: rRNA synthesis in bacteria., Science 278:2092–2097 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. D. Jones, Intracellular diffusion gradients of O2 and ATP, Am J Physiol 250:C663–C675 (1986).

    CAS  PubMed  Google Scholar 

  17. E. Fontaine, C. Keriel, S. Lantuejoul, M. Rigoulet, X. Leverve, and V. Saks, Cytoplasmic cellular structures control permeability of outer mitochondrial membrane for ADP and oxidative phosphorylation in rat liver cells., Biochem Biophys Res Commun 213:138–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. E. Takahashi, H. Endoh, and K. Doi, Intracellular gradients of O 2 supply to mitochondria in actively respiring single cardiomyocyte of rats, Am J Physiol 276:H718–724 (1999).

    CAS  PubMed  Google Scholar 

  19. O. Warburg. Uber den stoffwechsel den tumoren: Arbeiten aus dem Kaiser Wilhelm-Institut fur biologie, ed., J Springer, Berlin (1926), pp. 115–149.

    Google Scholar 

  20. P. Pedersen, Tumor mitochondria and the bioenergetics of cancer cells, Prog Exp Tumor Res 22:190–274 (1978).

    CAS  PubMed  Google Scholar 

  21. F. Kallinowski, K. Schlenger, M. Kloes, M. Stohrer, and P. Vaupel, Tumor blood flow: the principal modulator of oxidative and glycolytic metabolism, and of the metabolic micromilieu of human tumor xenografts in vivo, Intl J Cancer 44: 266–272 (1989).

    CAS  Google Scholar 

  22. S. Mazurek, C. Boschek, and E. Eigenbrodt, The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy, J Bioenerg Biomembranes 29:315–330 (1997).

    CAS  Google Scholar 

  23. P. L. Pedersen, S. Mathupala, A. Rempel, J. F. Geschwind, and Y. H. Ko, Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention, Biochim Biophys Acta 1555:14–20 (2002).

    CAS  PubMed  Google Scholar 

  24. P. Bannasch, Pathogenesis of hepatocellular carcinoma: sequential cellular, molecular, and metabolic changes., Prog Liver Dis 14:161–197 (1996).

    CAS  PubMed  Google Scholar 

  25. M. Younes, L. Lechago, J. Somoano, M. Mosharaf, and J. Lechago, Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers, Cancer Res 56:1164–1167 (1996).

    CAS  PubMed  Google Scholar 

  26. J. Flier, M. Mueckler, P. Usher, and H. Lodish, Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes., Science 235:1492–1495 (1987).

    CAS  PubMed  Google Scholar 

  27. M. Birnbaum, H. Haspel, and O. Rosen, Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription., Science 235:1495–1498 (1987).

    CAS  PubMed  Google Scholar 

  28. E. Riu, F. Bosch, and A. Valera, Prevention of diabetic alterations in transgenic mice overexpressing Myc in the liver, Proc Natl Acad Sci USA 93:2198–2202 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. M. Tiedge, and S. Lenzen, Effects of sodium butyrate on glucose transporter and glucosephosphorylating enzyme gene expression in RINm5F insulinoma cells, J Molec Endocrinol 17:19–26 (1996).

    CAS  Google Scholar 

  30. B. Gelb, V. Adams, S. Jones, L. Griffin, G. Macgregor, and E. Mccabe, Targeting of hexokinase 1 to liver and hepatoma mitochondria., Proc Natl Acad Sci USA 89:202–206 (1992).

    CAS  PubMed  Google Scholar 

  31. S. Mathupala, A. Rempel, and P. Pedersen, Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions, J Biol Chem 276:43407–43412 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. A. Goel, S. P. Mathupala, and P. L. Pedersen, Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression, J Biol Chem 278:15333–40 (2003).

    CAS  PubMed  Google Scholar 

  33. G. Beutner, A. Rück, B. Riede, and D. Brdiczka, Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore: Implication for regulation of permeability transition by the kinases., Biochim Biophys Acta 1368:7–18 (1998).

    CAS  PubMed  Google Scholar 

  34. N. Zamzami, C. Brenner, I. Marzo, S. Susin, and G. Kroemer, Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins, Oncogene 16:2265–2282 (1998).

    CAS  PubMed  Google Scholar 

  35. I. Marzo, C. Brenner, N. Zamzami, et al., The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins, J Exper Med 187:1261–1271 (1998).

    Article  CAS  Google Scholar 

  36. V. Lemeshko, Model of the outer membrane potential generation by the inner membrane of mitochondria, Biophys J 82:684–692 (2002).

    CAS  PubMed  Google Scholar 

  37. J. Pastorino, N. Shulga, and J. Hoek, Mitochondrial binding of hexokinase II inhibits Baxinduced cytochrome c release and apoptosis, J Biol Chem 277:7610–7618 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. M. Y. Vyssokikh, and D. Brdiczka, The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis, Acta Biochim Pol 50:389–404 (2003).

    CAS  PubMed  Google Scholar 

  39. E. McCabe, Microcompartmentation of energy metabolism at the outer mitochondrial membrane: role in diabetes mellitus and other diseases, J Bioenerg Biomembranes 26:317–325 (1994).

    CAS  Google Scholar 

  40. M. Fanciulli, M. Paggi, T. Bruno, et al., Glycolysis and growth rate in normal and in hexokinase-transfected NIH-3T3 cells., Oncol Res 6:405–409 (1994).

    CAS  PubMed  Google Scholar 

  41. M. Board, A. Colquhoun, and E. Newsholme, High Km glucose-phosphorylating (glucokinase) activities in a range of tumor cell lines and inhibition of rates of tumor growth by the specific enzyme inhibitor mannoheptulose., Cancer Res 55:3278–3285 (1995).

    CAS  PubMed  Google Scholar 

  42. D. Mayer, F. Klimek, A. Rempel, and P. Bannasch, Hexokinase expression in liver preneoplasia and neoplasia (Review), Biochem Soc Trans 25:122–127 (1997).

    CAS  PubMed  Google Scholar 

  43. Y. Shinohara, T. Ishida, M. Hino, N. Yamazaki, Y. Baba, and H. Terada, Characterization of porin isoforms expressed in tumor cells, Eur J Biochem 267:6067–6073 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. R. Ockner, Apoptosis and liver diseases: Recent concepts of mechanisms and significance, J Gastroenterol Hepatol 16:248–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. L. Hue, and G. Rousseau, Fructose 2,6-bisphosphate and the control of glycolysis by growth factors, tumor promoters and oncogenes, Adv Enzyme Regul 33:97–110 (1993).

    CAS  PubMed  Google Scholar 

  46. M. Joaquin, J. Rosa, C. Salvado, et al., Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures, Biochem J 314:235–240 (1996).

    CAS  PubMed  Google Scholar 

  47. G. Thoresen, and T. Christoffersen, Transforming growth factor beta 1 increases the phosphoenolpyruvate carboxykinase mRNA level in cultured rat hepatocytes, Cell Biol Intl 18:171–175 (1994).

    CAS  Google Scholar 

  48. K. Sasaki, T. Cripe, S. Koch, et al., Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription: The dominant role of insulin, J Biol Chem 259:15242–15251 (1984).

    CAS  PubMed  Google Scholar 

  49. C. Fillat, A. Valera, and F. Bosch, Epidermal growth factor inhibits phosphoenolpyruvate carboxykinase gene expression in rat hepatocytes in primary culture., FEBS Lett. 318: 287–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. D. Persons, N. Schek, B. Hall, and O. Finn, Increased expression of glycolysis-associated genes in oncogene-transformed and growth-accelerated states, Mol Carcinog 2:88–94 (1989).

    CAS  PubMed  Google Scholar 

  51. O. Kaplan, J. Jaroszewski, P. Faustino, et al., Toxicity and effects of epidermal growth factor on glucose metabolism of MDA-468 human breast cancer cells, J Biol Chem 265:13641–13649 (1990).

    CAS  PubMed  Google Scholar 

  52. K. Yamada, and T. Noguchi, Regulation of pyruvate kinase M gene expression, Biochem Biophys Res Commun 256:257–262 (1999).

    CAS  PubMed  Google Scholar 

  53. P. Bannasch, F. Klimek, and D. Mayer, Early bioenergetic changes in hepatocarcinogenesis: preneoplastic phenotypes mimic responses to insulin and thyroid hormone., J Bioenergetics Biomembranes 29:303–313 (1997).

    CAS  Google Scholar 

  54. D. Nehrbass, F. Klimek, and P. Bannasch, Overexpression of insulin receptor substrate-1 emerges early in hepatocarcinogenesis and elicits preneoplastic hepatic glycogenosis, Am J Pathol 152:341–345 (1998).

    CAS  PubMed  Google Scholar 

  55. W. Tian, L. Braunstein, J. Pang, et al., Importance of glucose-6-phosphate dehydrogenase activity for cell growth, J Biol Chem 273:10609–10617 (1998).

    CAS  PubMed  Google Scholar 

  56. S. Soboll, Regulation of energy metabolism in liver, J Bioenergetics Biomembranes 27:571–582 (1995).

    CAS  Google Scholar 

  57. S. Sweet, and G. Singh, Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints, Cancer Res 55:5164–5167 (1995).

    CAS  PubMed  Google Scholar 

  58. L. Sauer, and R. Dauchy, Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats, Cancer Res 43:3497–3503 (1983).

    CAS  PubMed  Google Scholar 

  59. J. Boren, M. Cascante, S. Marin, et al., Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells., J Biol Chem 276:37747–37753 (2001).

    CAS  PubMed  Google Scholar 

  60. S. Miccadei, M. Fanciulli, T. Bruno, M. Paggi, and A. Floridi, Energy metabolism of adriamycin-sensitive and-resistant Ehrlich ascites tumor cells, Oncol Res 8:27–35 (1996).

    CAS  PubMed  Google Scholar 

  61. R. Nakashima, M. Paggi, and P. Pedersen, Contributions of glycolysis and oxidative phosphorylation to adenosine 5’-triphosphate production in AS-30D hepatoma cells, Cancer Res 44:5702–5706 (1984).

    CAS  PubMed  Google Scholar 

  62. V. Goossens, J. Grooten, and W. Fiers, The oxidative metabolism of glutamine: A modulator of reactive oxygen intermediate-mediated cytotoxicity of tumor necrosis factor in L929 fibrosarcoma cells, J Biol Chem 271:192–196 (1996).

    CAS  PubMed  Google Scholar 

  63. Z. Kovacevic, and J. Mcgivan, Mitochondrial metabolism of glutamine and glutamate and its physiological significance, Physiol Rev 63:547–605 (1983).

    CAS  PubMed  Google Scholar 

  64. M. Board, S. Humm, and E. Newsholme, Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells., Biochem J 265:503–509 (1990).

    CAS  PubMed  Google Scholar 

  65. L. Chen, Mitochondrial membrane potential in living cells., Annu Rev Cell Biol 4:155–181 (1988).

    Article  CAS  PubMed  Google Scholar 

  66. P. Maxwell, G. Dachs, J. Gleadle, et al., Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth, Proc Natl Acad Sci USA 94:8104–8109 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. N. Chandel, D. McClintock, C. Feliciano, et al., Reactive oxygfen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1 alpha during hypoxia: a mechanism of O2 sensing., J Biol Chem 275:25130–25138 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. O. Genbacev, Y. Zhou, J. Ludlow, and S. Fisher, Regulation of human placental development by oxygen tension., Science 277:1669–1672 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. E. Greiner, M. Guppy, and K. Brand, Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production, J Biol Chem 269:31484–31490 (1994).

    CAS  PubMed  Google Scholar 

  70. G. Semenza, HIF-1 and tumor progression: pathophysiology and therapeutics., Trends Molec Med 8:S62–S67 (2002).

    CAS  Google Scholar 

  71. N. Goda, H. Ryan, B. Khadivi, W. McNulty, R. Rickert, and R. Johnson, Hypoxiainducible factor 1a is essential for cell cycle arrest during hypoxia, Molec Cell Biol 23:359–369 (2003).

    CAS  PubMed  Google Scholar 

  72. Z. Z. Chong, J. Q. Kang, and K. Maiese, Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases, Circulation 106:2973–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. T. Graeber, C. Osmanian, T. Jacks, et al., Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours, Nature 379:88–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. I. Sussman, M. Erecinska, and D. F. Wilson, Regulation of cellular energy metabolism: the Crabtree effect, Biochim Biophys Acta 591:209–23 (1980).

    CAS  PubMed  Google Scholar 

  75. L. Wojtczak, V. Teplova, K. Bogucka, et al., Effect of glucose and deoxyglucose on the redistribution of calcium in ehrlich ascites tumour and Zajdela hepatoma cells and its consequences for mitochondrial energetics: Further arguments for the role of Ca(2+) in the mechanism of the crabtree effect, Eur J Biochem 263:495–501 (1999B).

    Article  CAS  PubMed  Google Scholar 

  76. S. Rodriguez-Enriquez, O. Juarez, J. Rodriguez-Zavala, and R. Moreno-Sanchez, Multisite control of the Crabtree effect in ascites hepatoma cells, Eur J Biochem 268:2512–2519 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. M. Peifer, Beta-catenin as oncogene: the smoking gun, Science 275:1752–1753 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. M. Hart, R. De Los Santos, I. Albert, B. Rubinfeld, and P. Polakis, Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, betacatenin and GSK3 beta, Current Biol 8:573–581 (1998).

    CAS  Google Scholar 

  79. F. McCormick, Signalling networks that cause cancer, Trends Biochem Sci 24:M53–M56 (1999).

    Article  Google Scholar 

  80. D. Plas, S. Talapatra, A. Edinger, J. Rathmell, and C. Thompson, Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology, J Biol Chem 276:12041–12048 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. L. Cantley, and B. Neel, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway., Proc Natl Acad Sci USA 96:4240–4245 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. M. M. Hill, and B. A. Hemmings, Inhibition of protein kinase B/Akt. implications for cancer therapy, Pharmacol Ther 93:243–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. B. Vanhaesebroeck, and D. Alessi, The PI3K-PDK1 connection: more than just a road to PKB, Biochem J 346:561–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. R. Tuttle, N. Gill, W. Pugh, et al., Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha, Nat Med 7:1133–1137 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. K. A. Longo, J. A. Kennell, M. J. Ochocinska, S. E. Ross, W. S. Wright, and O. A. MacDougald, Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors, J Biol Chem 277:38239–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. K. Gottlob, N. Majewski, S. Kennedy, E. Kandel, R. Robey, and N. Hay, Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase, Genes Devel 15:1406–1418 (2001).

    CAS  PubMed  Google Scholar 

  87. A. Ahmad, S. Ahmad, B. K. Schneider, C. B. Allen, L. Y. Chang, and C. W. White, Elevated expression of hexokinase II protects human lung epithelial-like AS49 cells against oxidative injury, Am J Physiol Lung Cell Mol Physiol 283:L573–84 (2002).

    CAS  PubMed  Google Scholar 

  88. T. Burdon, A. Smith, and P. Savatier, Signalling, cell cycle and pluripotency in embryonic stem cells, Trends Cell Biol 12:432–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. T. Reya, A. W. Duncan, L. Ailles, et al., A role for Wnt signalling in self-renewal of haematopoietic stem cells, Nature 423:409–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. S. Datta, H. Dudek, X. Tao, et al., Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery., Cell 91:231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. M. Cardone, N. Roy, H. Stennicke, et al., Regulation of cell death protease caspase-9 by phosphorylation., Science 282:1318–1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. O. Ozes, L. Mayo, J. Gustin, S. Pfeffer, L. Pfeffer, and D. Donner, NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase, Nature 401:82–85 (1999).

    CAS  PubMed  Google Scholar 

  93. R. G. Jones, A. R. Elford, M. J. Parsons, et al., CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly, J Exp Med 196:335–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. D. McClintock, M. Santore, V. Lee, et al., Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death, Mol Cell Biol 22:94–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. A. Brunet, A. Bonni, M. Zigmond, et al., Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor., Cell 96:857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. E. Shtivelman, J. Sussman, and D. Stokoe, A role for PI 3-kinase and PKB activity in the G2/M phase of the cell cycle, Curr Biol 12:919–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. R. Medema, G. Kops, J. Bos, and B. Burgering, AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1, Nature 404:782–788 (2000).

    CAS  PubMed  Google Scholar 

  98. H. Tran, A. Brunet, J. Grenier, et al., DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein, Science 296:530–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Y. Honda, and S. Honda, The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans, FASEB J 13:1385–1393 (1999).

    CAS  PubMed  Google Scholar 

  100. S. Ghaffari, Z. Jagani, C. Kitidis, H. F. Lodish, and R. Khosravi-Far, Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor, Proc Natl Acad Sci U S A 100:6523–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. B. Gumbiner, Carcinogenesis: a balance between beta-catenin and APC, Current Biol 7:R443–R446 (1997).

    CAS  Google Scholar 

  102. A. Yap, W, Brieher, and B. Gumbiner, Molecular and functional analysis ofcadherinbased adherens junctions, Ann Rev Cell Dev Biol 13:119–146 (1997).

    CAS  Google Scholar 

  103. M. Hoshi, A. Takashima, K. Noguchi, et al., Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain, Proc Natl Acad Sci USA 93:2719–2723 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. J. Diehl, M. Cheng, M. Roussel, and C. Sherr, Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization., Genes Devel 12:3499–3511 (1998).

    CAS  PubMed  Google Scholar 

  105. O. Tetsu, and F. Mccormick, Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells, Nature 398:422–426 (1999).

    CAS  PubMed  Google Scholar 

  106. H. C. Crawford, B. M. Fingleton, L. A. Rudolph-Owen, et al., The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors, Oncogene 18:2883–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. T. He, A. Sparks, C. Rago, et al., Identification of c-MYC as a target of the APC pathway, Science 281:1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. G. Christofori, and H. Semb, The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene., Trends Biochem Sci 24:73–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. H. Hermeking, C. Rago, M. Schuhmacher, et al., Identification of CDK4 as a target of c-MYC, Proc Natl Acad Sci USA 97:2229–2234 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. D. R. Wonsey, K. I. Zeller, and C. V. Dang, The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation, Proc Natl Acad Sci U S A 99:6649–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. P. Staller, K. Peukert, A. Kiermaier, et al., Repression of p15INK4b expression by Myc through association with Miz-1, Nature Cell Biol 3:392–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. I. Perez-Roger, S. Kim, B. Griffiths, A. Sewing, and H. Land, Cyclins D1 and D2 mediate Myc-induced proliferation via sequestration of p27(Kip1) and p21(Cip1), EMBO J 18:5310–5320 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. C. Sherr, and J. Roberts, CDK inhibitors: positive and negative regulators of Gl-phase progression, Genes Dev 13:1501–12 (1999).

    CAS  PubMed  Google Scholar 

  114. O. Coqueret, New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment?, Trends Cell Biol 13:65–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. L. Rossig, C. Badorff, Y. Holzmann, A. M. Zeiher, and S. Dimmeler, Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation, J Biol Chem 277:9684–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Y. Li, D. Dowbenko, and L. A. Lasky, AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival, J Biol Chem 277:11352–61 (2002).

    CAS  PubMed  Google Scholar 

  117. B. Zhou, Y. Liao, W. Xia, B. Spohn, M. Lee, and M. Hung, Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells, Nat Cell Biol 3:245–252 (2001).

    CAS  PubMed  Google Scholar 

  118. I. Shin, F. M. Yakes, F. Rojo, et al., PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization, Nat Med 8:1145–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. J. Liang, J. Zubovitz, T. Petrocelli, et al., PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest, Nat Med 8:1153–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. A. Kohn, S. Summers, M. Birnbaum, and R. Roth, Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation, J Biol Chem 271:31372–31378 (1996).

    CAS  PubMed  Google Scholar 

  121. J. Deprez, D. Vertommen, D. Alessi, L. Hue, and M. Rider, Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades., J Biol Chem 272:17269–17275 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. D. Corcos, S. Vaulont, N. Denis, et al., Expression of c-myc is under dietary control in rat liver, Oncogene Res 1:193–199 (1987).

    CAS  PubMed  Google Scholar 

  123. J. W. Kim, J. E. Lee, M. J. Kim, E. G. Cho, S. G. Cho, and E. J. Choi, Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1), J Biol Chem 278:13995–14001 (2003).

    CAS  PubMed  Google Scholar 

  124. K. Hoeflich, J. Luo, E. Rubie, M. Tsao, O. Jin, and J. Woodgett, Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation, Nature 406:86–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. R. F. Schwabe, and D. A. Brenner, Role of glycogen synthase kinase-3 in TNF-alphainduced NF-kappaB activation and apoptosis in hepatocytes, Am J Physiol Gastrointest Liver Physiol 283:G204–11 (2002).

    CAS  PubMed  Google Scholar 

  126. C. Sutherland, I. Leighton, and P. Cohen, Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling, Biochem J 296:15–19 (1993).

    CAS  PubMed  Google Scholar 

  127. H. Eldar-Finkelman, and E. Krebs, Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action., Proc Natl Acad Sci USA 94:9660–9664 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. P. Shepherd, D. Withers, and K. Siddle, Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling, Biochem J 333:471–490 (1998).

    CAS  PubMed  Google Scholar 

  129. D. Decraene, P. Agostinis, R. Bouillon, H. Degreef, and M. Garmyn, Insulin-like growth factor-1-mediated AKT activation postpones the onset of ultraviolet B-induced apoptosis, providing more time for cyclobutane thymine dimer removal in primary human keratinocytes, J Biol Chem 277:32587–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. D. Taupin, K. Kinoshita, and D. Podolsky, Intestinal trefoil factor confers colonic epithelial resistance to apoptosis, Proc Natl Acad Sci USA 97:799–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. G. Skouteris, and E. Georgakopoulos, Hepatocyte growth factor-induced proliferation of primary hepatocytes is mediated by activation of phosphatidylinositol 3-kinase, Biochem Biophys Res Commun 218:229–233 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. J. Papkoff, and M. Aikawa, WNT-1 and HGF regulate GSK3-beta activity and betacatenin signaling in mammary epithelial cells, Biochem Biophys Res Comm 247:851–858 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. S. Andjelic, C. Hsia, H. Suzuki, T. Kadowaki, S. Koyasu, and H.-C. Liou, Phosphatidylinositol 3-kinase and NF-kB/Rel are at the divergence of CD40-mediated proliferation and survival pathways., J Immunol 165: 3860–3867 (2000).

    CAS  PubMed  Google Scholar 

  134. K. Willert, J. D. Brown, E. Danenberg, et al., Wnt proteins are lipid-modified and can act as stem cell growth factors, Nature 423:448–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. M. Delcommenne, C. Tan, V. Gray, L. Rue, J. Woodgett, and S. Dedhar, Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase., Proc Natl Acad Sci USA 95:11211–11216 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. D. Cook, M. Fry, K. Hughes, R. Sumathipala, J. Woodgett, and T. Dale, Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C., Embo J 15:4526–4536 (1996).

    CAS  PubMed  Google Scholar 

  137. E. Dempsey, A. Newton, D. Mochly-Rosen, et al., Protein kinase C isozymes and the regulation of diverse cell responses., Am J Physiol Lung Cell Mol Physiol 279:L429–L438 (2000).

    CAS  PubMed  Google Scholar 

  138. N. Murray, L. Davidson, R. Chapkin, W. Gustafson, D. Shattenberg, and A. Fields, Overexpression of protein kinase C betaII induces colonic hyperproliferation and increased sensitivity to colon carcinogenesis, J Cell Biol 145:699–711 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. X. Chen, N. Iqbal, and G. Boden, The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects., J Clin Invest 103:365–372 (1999).

    CAS  PubMed  Google Scholar 

  140. A. Dresner, D. Laurent, M. Marcucci, et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity., J Clin Invest 103:253–259 (1999).

    CAS  PubMed  Google Scholar 

  141. M. E. Griffin, M. J. Marcucci, G. W. Cline, et al., Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade, Diabetes 48:1270–4 (1999).

    CAS  PubMed  Google Scholar 

  142. K. Cusi, K. Maezono, A. Osman, et al., Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle., J Clin Invest 105:311–320 (2000).

    CAS  PubMed  Google Scholar 

  143. H. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin, and A. Baron, Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production, Diabetes 49:1231–1238(2000).

    CAS  PubMed  Google Scholar 

  144. P. Arner, Insulin resistance in type 2 diabetes: role of fatty acids, Diabetes Metab Res Rev 18Suppl 2:S5–9 (2002).

    CAS  PubMed  Google Scholar 

  145. Y. Kruszynska, D. Worrall, J. Ofrecio, J. Frias, G. Macaraeg, and J. Olefsky, Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation, J Clin Endocrinol Metab 87:226–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. T. K. Lam, H. Yoshii, C. A. Haber, et al., Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta, Am J Physiol Endocrinol Metab 283:E682–91 (2002).

    CAS  PubMed  Google Scholar 

  147. C. L. Soltys, L. Buchholz, M. Gandhi, A. S. Clanachan, K. Walsh, and J. R. Dyck, Phosphorylation of cardiac protein kinase B is regulated by palmitate, Am J Physiol Heart Circ Physiol 283:H1056–64 (2002).

    CAS  PubMed  Google Scholar 

  148. C. Yu, Y. Chen, G. W. Cline, et al., Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle, J Biol Chem 277:50230–50236 (2002).

    CAS  PubMed  Google Scholar 

  149. Z. Jiang, Y. Lin, A. Clemont, et al., Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats, J Clin Invest 104:447–457 (1999).

    CAS  PubMed  Google Scholar 

  150. S. Kim, K. Jee, D. Kim, H. Koh, and J. Chung, Cyclic AMP inhibits Akt activity by blocking the membrane localization of PDK1, J Biol Chem 276:12864–70 (2001).

    CAS  PubMed  Google Scholar 

  151. Z. Xu, D. Stokoe, L. P. Kane, and A. Weiss, The inducible expression of the tumor suppressor gene PTEN promotes apoptosis and decreases cell size by inhibiting the PI3K/Akt pathway in Jurkat T cells, Cell Growth Differ 13:285–96 (2002).

    CAS  PubMed  Google Scholar 

  152. A. Takashima, M. Murayama, O. Murayama, et al., Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau, Proc Natl Acad Sci USA 95:9637–9641 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. M. Murayama, S. Tanaka, J. Palacino, et al., Direct association of presenilin-1 with betacatenin, FEBS Letters 433:73–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. F. Kirschenbaum, S.-C. Hsu, B. Cordell, and J. McCarthy, Substitution of a glycogen synthase kinase-3b phosphorylation site in presenilin 1 separates presenilin function from b-catenin signaling, J Biol Chem 276:7266–7375 (2001).

    Google Scholar 

  155. M. Packard, D. Mathew, and V. Budnik, Wnts and TGF beta in synaptogenesis: old friends signalling at new places, Nat Rev Neurosci 4:113–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. C. Bossenmeyer-Pourie, R. Kannan, S. Ribieras, et al., The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis, J Cell Biol 157:761–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. P. Klein, and D. Melton, A molecular mechanism for the effect of lithium on development, Proc Natl Acad Sci USA 93:8455–8459 (1996).

    CAS  PubMed  Google Scholar 

  158. V. Stambolic, L. Ruel, and J. Woodgett, Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells, Curr Biol 6:1664–1668 (1996).

    Article  CAS  PubMed  Google Scholar 

  159. E. Chalecka-Franaszek, and D. Chuang, Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons., Proc Natl Acad Sci USA 96:8745–8750 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. S. Summers, A. Kao, A. Kohn, et al., The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism, J Biol Chem 274:17934–17940 (1999).

    CAS  PubMed  Google Scholar 

  161. S. Nonaka, C. Hough, and D. Chuang, Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, Proc Natl Acad Sci USA 95: 2642–2647 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. H. Wei, P. Leeds, Y. Qian, W. Wei, R.-W. Chen, and D.-M. Chuang, Beta-amyloid peptide-induced death of PC 12 cells and cerebellar granule cell neurons is inhibited by long-term lithium treatment, Eur J Pharmacol 392:117–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. F. Staal, B. Burgering, M. van de Wetering, and H. Clevers, Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells, Intl Immunol 11:317–323 (1999).

    CAS  Google Scholar 

  164. K. Ptashne, F. Stockdale, and S. Conlon, Initiation of DNA synthesis in mammary epithelium and mammary tumors by lithium ions, J Cellular Physiol 103:41–6 (1980).

    CAS  Google Scholar 

  165. H. Cui, Y. Meng, and R. Bulleit, Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells., Brain Research Devel Brain Res 111:177–188 (1998).

    CAS  Google Scholar 

  166. T. Finkel, Redox-dependent signal transduction., FEBS Letters 476:52–54 (2000A).

    Article  CAS  PubMed  Google Scholar 

  167. V. Thannickal, R. Day, S. Klinz, M. Bastien, J. Larios, and B. Fanburg, Ras-dependent and-independent regulation of reactive oxygen species by mitogenic growth factors and TGF-b1, FASEB J 14:1741–1748 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. S. Nemoto, and T. Finkel, Redox regulation of forkhead proteins through a p66shcdependent signaling pathway, Science 295:2450–2452 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. S. Lee, K. Kwon, S. Kim, and S. Rhee, Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor, J Biol Chem 273:15366–15372(1998).

    CAS  PubMed  Google Scholar 

  170. W. Barrett, J. DeGnore, Y. Keng, Z. Zhang, M. Yim, and P. Chock, Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B., J Biol Chem 274:34543–34546 (1999).

    Article  CAS  PubMed  Google Scholar 

  171. Y. Bae, J. Sung, O. Kim, et al., Platelet-derived growth factor-induced H 2 O 2 production requires the activation of phosphatidylinositol 3-kinase., J Biol Chem 275:10527–10531 (2000).

    CAS  PubMed  Google Scholar 

  172. S. Qin, E. Stadtman, and P. Chock, Regulation of oxidative stress-induced calcium release by phosphatidylinositol 3-kinase and Bruton’s tyrosine kinase in B cells, Proc Natl Acad Sci USA 97:7118–7123 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. J. Ding, T. Takano, S. Gao, et al., Syk is required for the activation of Akt survival pathway in B cells exposed to oxidative stress., J Biol Chem 275:30873–30877 (2000).

    CAS  PubMed  Google Scholar 

  174. K. M. Mearow, M. E. Dodge, M. Rahimtula, and C. Yegappan, Stress-mediated signaling in PC12 cells — the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal, J Neurochem 83:452–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. S. Sato, N. Fujita, and T. Tsuruo, Modulation of Akt kinase activity by binding to Hsp90, Proc Natl Acad Sci USA 97:10832–10837 (2000).

    CAS  PubMed  Google Scholar 

  176. A. D. Basso, D. B. Solit, G. Chiosis, B. Giri, P. Tsichlis, and N. Rosen, Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function, J Biol Chem 277:39858–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. C. Schroedl, D. S. McClintock, G. R. Budinger, and N. S. Chandel, Hypoxic but not anoxic stabilization of HIF-1 alpha requires mitochondrial reactive oxygen species, Am J Physiol Lung Cell Mol Physiol 283:L922–31 (2002).

    CAS  PubMed  Google Scholar 

  178. C. Sen, and L. Packer, Antioxidant and redox regulation of gene transcription, FASEB J 10:709–720 (1996).

    CAS  PubMed  Google Scholar 

  179. V. Lakshminarayanan, E. Drab-Weiss, and K. Roebuck, H 2 O 2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells, J Biol Chem 273:32670–32678 (1998).

    Article  CAS  PubMed  Google Scholar 

  180. E. Shaulian, and M. Karin, AP-1 as a regulator of cell life and death, Nat Cell Biol 4:E131–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. E. Zelzer, Y. Levy, C. Kahana, B. Shilo, M. Rubinstein, and B. Cohen, Insulin induces transcripition of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT, EMBO J 17:5085–5094 (1998).

    Article  CAS  PubMed  Google Scholar 

  182. T. Soucek, R. Cumming, R. Dargusch, P. Maher, and D. Schubert, The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide, Neuron 39:43–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. V. Easwaran, S. H. Lee, L. Inge, et al., beta-Catenin regulates vascular endothelial growth factor expression in colon cancer, Cancer Res 63:3145–53 (2003).

    CAS  PubMed  Google Scholar 

  184. T. T. Tang, and L. A. Lasky, The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 alpha by a von Hippel-Lindau proteinindependent mechanism, J Biol Chem 278:30125–35 (2003).

    CAS  PubMed  Google Scholar 

  185. J. Dypbukt, M. Ankarcrona, M. Burkitt, et al., Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells: The role of intracellular polyamines., J Biol Chem 269:30553–30560 (1994).

    CAS  PubMed  Google Scholar 

  186. V. Borutaite, and G. Brown, Caspases are reversibly inactivated by hydrogen peroxide., FEBS Lett. 500:114–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. R. Ockner, R. Kaikaus, and N. Bass, Fatty acid metabolism and the pathogenesis of hepatocellular carcinoma: review and hypothesis, Hepatology 18:669–676 (1993).

    CAS  PubMed  Google Scholar 

  188. Q. Zhang, D. Piston, and R. Goodman, Regulation of corepressor function by nuclear NADH, Science 295:1895–1897 (2002).

    CAS  PubMed  Google Scholar 

  189. F. H. Agani, M. Puchowicz, J. C. Chavez, P. Pichiule, and J. LaManna, Role of nitric oxide in the regulation of HIF-1 alpha expression during hypoxia, Am J Physiol Cell Physiol 283:C178–86 (2002).

    CAS  PubMed  Google Scholar 

  190. T. J. Collins, M. J. Berridge, P. Lipp, and M. D. Bootman, Mitochondria are morphologically and functionally heterogeneous within cells, Embo J 21:1616–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  191. M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Stochastic gene expression in a single cell, Science 297:1183–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. N. Fedoroff, and W. Fontana, Genetic networks. Small numbers of big molecules, Science 297:1129–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  193. J. M. Levsky, S. M. Shenoy, R. C. Pezo, and R. H. Singer, Single-cell gene expression profiling, Science 297:836–40 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2004). Nutrient and Energy Metabolism in Cell Proliferation. In: Integration of Metabolism, Energetics, and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/0-306-48529-X_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48529-X_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48471-1

  • Online ISBN: 978-0-306-48529-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics