Skip to main content

Pathogenesis of Alzheimer Disease: Metabolic Factors

  • Chapter
  • 192 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15.6. References

  1. R. Mahley, B. Nathan, and R. Pitas, Apolipoprotein E: Structure, function, and possible roles in Alzheimer’s disease, Ann NY Acad Sci 777:139–145 (1996).

    PubMed  CAS  Google Scholar 

  2. W. Strittmatter, and A. Roses, Apolipoprotein E and Alzheimer’s disease, Ann Rev Neurosci 19:53–77 (1996).

    PubMed  CAS  Google Scholar 

  3. B. Yankner, Mechanisms of neuronal degeneration in Alzheimer’s disease, Neuron 16:921–932 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. D. Selkoe, Alzheimer’s disease: genes, protein, and therapy, Physiol Rev 81:741–766 (2001).

    PubMed  CAS  Google Scholar 

  5. J. Price, and J. Morris, Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease, Ann Neural 45:358–368 (1999).

    CAS  Google Scholar 

  6. J. Hardy, and D. J. Selkoe, The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science 297:353–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. N. Andreasen, E. Vanmechelen, H. Vanderstichele, P. Davidsson, and K. Blennow, Cerebrospinal fluid levels of total-tau, phospho-tau and A beta 42 predicts development of Alzheimer’s disease in patients with mild cognitive impairment, Acta Neurol Scand Suppl 170(Suppl. 179):47–51 (2003).

    Google Scholar 

  8. T. Sunderland, G. Linker, N. Mirza, et al., Decreased beta-amyloid 1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease, JAMA 289:2094–103 (2003).

    Google Scholar 

  9. K. Hirai, G. Aliev, A. Nunomura, et al., Mitochondrial abnormalities in Alzheimer’s disease, J Neurosci 21:3017–23 (2001).

    PubMed  CAS  Google Scholar 

  10. R. Mahley, and S. Rall, Jr, Apolipoprotein E: Far more than a lipid transport protein, Annu Rev Genomics Hum Genet 1:507–37 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. D. J. Selkoe, Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease, J Clin Invest 110:1375–81 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. B. Schwiegelshohn, J. Presley, M. Gorecki, et al., Effects of apoprotein E on intracellular metabolism of model triglyceride-rich particles are distinct from effects on cell particle uptake, J Biol Chem 270:1761–1769 (1995).

    PubMed  CAS  Google Scholar 

  13. R. Pitas, J. Boyles, S. Lee, D. Foss, and R. Mahley, Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins, Biochim Biophys Acta 917:148–161 (1987).

    PubMed  CAS  Google Scholar 

  14. S. Han, G. Einstein, K. Weisgraber, et al., Apolipoprotein E is localized to the cytoplasm of human cortical neurons: a light and electron microscopic study, J Neuropathol Exp Neurol 53:535–544 (1994).

    PubMed  CAS  Google Scholar 

  15. R. DeMattos, L. Curtiss, and D. Williams, A minimally lipidated form of cell-derived apolipoprotein E exhibits isoform-specific stimulation of neurite outgrowth in the absence of exogenous lipids or lipoproteins, J Biol Chem 273:4206–4212 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. W. Pedersen, S. Chan, and M. Mattson, A mechanism for the neuroprotective effect of apolipoprotein E: isoform-specific modification by the lipid peroxidation product 4-hydroxynonenal, J Neurochem 74:1426–1433 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. T. Tokuda, M. Calero, E. Matsubara, et al., Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid beta peptides, Biochem J 348:358–365 (2000).

    Article  Google Scholar 

  18. L. Myllykangas, T. Polvikoski, K. Reunanen, et al., ApoE epsilon3-haplotype modulates Alzheimer beta-amyloid deposition in the brain, Am J Med Genet 114:288–291 (2002).

    Article  PubMed  Google Scholar 

  19. D. Mauch, K. Nagler, S. Schumacher, et al., CNS synaptogenesis promoted by gliaderived cholesterol, Science 294:1354–1357 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. N. Bogdanovic, L. Bretillon, E. Lund, et al., On the turnover of brain cholesterol in patients with Alzheimer’s disease: Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells, Neurosci Lett 314:45–48 (2001B).

    Article  PubMed  CAS  Google Scholar 

  21. A. Cedazo-Minguez, and R. Cowburn, Apolipoprotein E isoform-specific disruption of phosphoinositide hydrolysis: protection by estrogen and glutathione, FEBS Lett 504:45–49 (2001).

    PubMed  CAS  Google Scholar 

  22. Y. Hashimoto, H. Jiang, T. Niikura, et al., Neuronal apoptosis by apoplipoprotein E4 through low-density lipoprotein receptor-related protein and heterotrimeric GTPases, J Neurosci 20:8401–8409 (2000).

    PubMed  CAS  Google Scholar 

  23. D. Kang, C. Pietrzik, L. Baum, et al., Modulation of amyloid beta-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor-related protein pathway, J Clin Invest 106:1159–1166 (2000).

    PubMed  CAS  Google Scholar 

  24. M. Shibata, S. Yamada, S. Kumar, et al., Clearance of Alzheimer’s amyloid-beta(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier, J Clin Invest 106:1489–1499 (2000).

    PubMed  CAS  Google Scholar 

  25. L. Puglielli, R. E. Tanzi, and D. M. Kovacs, Alzheimer’s disease: the cholesterol connection, Nat Neurosci 6:345–51 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. M. Meyer, J. Tschanz, M. Norton, et al., APOE genotype predicts when—not whether—one is predisposed to develop Alzheimer disease, Nature Genet 1199:321–322 (1998).

    Google Scholar 

  27. S. Craft, L. Teri, S. Edland, et al., Accelerated decline in apolipoprotein E-epsilon4 homozygotes with Alzheimer’s disease, Neurology 51:149–53 (1998B).

    PubMed  CAS  Google Scholar 

  28. E. Reiman, R. Caselli, L. Yun, et al., Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E, New Engl J Med 334:752–8 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. E. Reiman, R. Caselli, K. Chen, G. Alexander, D. Bandy, and J. Frost, Declining brain activity in cognitively normal apolipoprotein E epsilon4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease, Proc Natl Acad Sci USA 98:3334–3339 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. N. R. Graff-Radford, R. C. Green, R. C. Go, et al., Association between apolipoprotein E genotype and Alzheimer disease in African American subjects, Arch Neurol 59:594–600 (2002).

    Article  PubMed  Google Scholar 

  31. P. Greenwood, T. Sunderland, J. Friz, and R. Parasuraman, Genetics and visual attention: selective deficits in healthy adult carriers of the epsilon 4 allele of the apolipoprotein E gene, Proc Natl Acad Sci USA 97:11661–11666 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. G. Gibson, V. Haroutunian, H. Zhang, et al., Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype, Ann Neurol 48:297–303 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. D. Schmechel, A. Saunders, W. Strittmatter, et al., Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in lateonset Alzheimer disease, Proc Natl Acad Sci USA 90:9649–9653 (1993).

    PubMed  CAS  Google Scholar 

  34. D. Cook, L. JB, P. McMillan, et al., Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-episilon4 allele, American Journal of Pathology 162:313–319 (2003).

    PubMed  CAS  Google Scholar 

  35. E. Corder, K. Robertson, L. Lannfelt, et al., HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy, Nature Med 4:1182–1184 (1998).

    PubMed  CAS  Google Scholar 

  36. B. Tardiff, M. Newman, A. Saunders, et al., Preliminary report of a genetic basis for cognitive decline after cardiac operations: The Neurologic Outcome Research Group of the Duke Heart Center, Ann Thorac Surg 64:715–720 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. B. Jordan, N. Relkin, L. Ravdin, A. Jacobs, A. Bennett, and S. Gandy, Apolipoprotein E epsilon4 associated with chronic traumatic brain injury in boxing, J Am Med Assoc 278:136–140 (1997).

    Article  CAS  Google Scholar 

  38. G. Teasdale, J. Nicoll, G. Murray, and M. Fiddes, Association of apolipoprotein E polymorphism with outcome after head injury, Lancet 350:1069–1071 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. D. M. Holtzman, K. R. Bales, T. Tenkova, et al., Apolipoprotein E isoformdependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease, Proc Natl Acad Sci U S A 97:2892–7 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. Z. S. Ji, R. D. Miranda, Y. M. Newhouse, K. H. Weisgraber, Y. Huang, and R. W. Mahley, Apolipoprotein E4 potentiates amyloid beta peptide-induced lysosomal leakage and apoptosis in neuronal cells, J Biol Chem 277:21821–8 (2002).

    PubMed  CAS  Google Scholar 

  41. R. Mayeux, A. Saunders, S. Shea, et al., Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease, New Engl J Med 338:506–511 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. G. Small, L. Ercoli, D. Silverman, et al., Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease, Proc Natl Acad Sci USA 97:6037–6042 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. S. Rapoport, Functional brain imaging to identify affected subjects genetically at risk for Alzheimer’s disease, Proc Natl Acad Sci USA 97:5696–5698 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. G. Alexander, K. Chen, P. Pietrini, S. Rapoport, and E. Reiman, Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer’s Disease Treatment Studies, Am J Psychiatry 159:738–745 (2002).

    Article  PubMed  Google Scholar 

  45. V. Mooser, N. Helbecque, J. Miklossy, S. Marcovina, P. Nicod, and P. Amouyel, Interactions between apolipoprotein E and apolipoprotein(a) in patients with lateonset Alzheimer disease, Annals Internal Med 132:533–537 (2000).

    CAS  Google Scholar 

  46. L. Fairer, L. Cupples, J. Haines, et al., Effects of age sex and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: A metaanalysis. APOE and Alzheimer Disease Meta Analysis Consortium, J Am Med Assoc 278:1349–1356 (1997).

    Google Scholar 

  47. M. Tang, Y. Stern, K. Marder, et al., The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, Whites and Hispanics, J Am Med Assoc 279:751–755 (1998).

    Article  CAS  Google Scholar 

  48. G. Thinakaran, The role of presenilins in Alzheimer’s disease, Journal of Clinical Investigation 104:1321–7 (1999).

    PubMed  CAS  Google Scholar 

  49. O. Murayama, T. Tomita, N. Nihonmatsu, et al., Enhancement of amyloid beta 42 secretion by 28 different presenilin 1 mutations of familial Alzheimer’s disease, Neurosci Lett 265:61–63 (1999).

    Article  PubMed  CAS  Google Scholar 

  50. R. Kopan, and A. Goate, A common enzyme connects notch signaling and Alzheimer’s disease, Genes Devel 14:2799–2806 (2000).

    PubMed  CAS  Google Scholar 

  51. S. Sisodia, and P. St. George-Hyslop, gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in?, Nat Rev Neurosci 3:281–290 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. W. Dowjat, H. Wisniewski, and T. Wisniewski, Alzheimer’s disease presenilin-1 expression modulates the assembly of neurofilaments, Neurosci 103:1–8 (2001).

    Article  CAS  Google Scholar 

  53. V. Askanas, W. Engel, C.-C. Yang, R. Alvarez, V.-Y. Lee, and T. Wisniewski, Light and electron microscopic immunolocalization of Presenilin 1 in abnormal muscle fibers of patients with sporadic inclusion-body myositis and autosomal-recessive inclusion-body myopathy, Am J Pathol 152:889–895 (1998A).

    PubMed  CAS  Google Scholar 

  54. V. Askanas, and W. Engel, Does overexpression of betaAPP in aging muscle have a pathogenic role and a relevance to Alzheimer’s disease? Clues from inclusion body myositis cultured human muscle and transgenic mice, Am J Path 153:1673–1677 (1998B).

    PubMed  CAS  Google Scholar 

  55. G. Vattemi, W. Engel, J. McFerrin, J. Buxbaum, L. Pastorino, and V. Askanas, Presence of BACE1 and BACE2 in muscle fibres of patients with sporadic inclusionbody myositis, Lancet 358:1962–1964 (2001).

    Article  PubMed  CAS  Google Scholar 

  56. M. S. Brown, J. Ye, R. B. Rawson, and J. L. Goldstein, Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans, Cell 100:391–8 (2000).

    Article  PubMed  CAS  Google Scholar 

  57. S. Soriano, D. E. Kang, M. Fu, et al., Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing, J Cell Biol 152:785–94 (2001).

    Article  PubMed  CAS  Google Scholar 

  58. X. Xia, S. Qian, S. Soriano, et al., Loss of presenilin 1 is associated with enhanced beta-catenin signaling and skin tumorigenesis, Proc Natl Acad Sci U S A 98:10863–8 (2001).

    PubMed  CAS  Google Scholar 

  59. D. Hartmann, J. Toumoy, P. Saftig, W. Annaert, and B. De Strooper, Implication of APP secretases in notch signaling, J Mol Neurosci 17:171–81 (2001).

    PubMed  CAS  Google Scholar 

  60. L. Bertram, D. Blacker, K. Mullin, et al., Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q, Science 290:2302–2303 (2000).

    Article  PubMed  CAS  Google Scholar 

  61. N. Ertekin-Taner, N. Graff-Radford, L. Younkin, et al., Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees, Science 290:2303–2304 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. A. Myers, P. Holmans, H. Marshall, et al., Susceptibility locus for Alzheimer’s disease on chromosome 10, Science 290:2304–2305 (2000).

    Article  PubMed  CAS  Google Scholar 

  63. A. Takeuchi, M. Irizarry, K. Duff, et al., Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss, Am J Pathol 157:331–339 (2000).

    PubMed  CAS  Google Scholar 

  64. J. Liu, D. W. Killilea, and B. N. Ames, Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid, Proc Natl Acad Sci U S A 99:1876–81 (2002).

    PubMed  CAS  Google Scholar 

  65. G. Fiskum, A. Murphy, and M. Beal, Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases, J Cerebral Blood Flow Metab 19:351–369 (1999).

    CAS  Google Scholar 

  66. M. P. Mattson, S. L. Chan, and W. Duan, Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior, Physiol Rev 82:637–72 (2002).

    PubMed  CAS  Google Scholar 

  67. D. Kuhl, E. Metter, W. Riege, and R. Hawkins, The effect of normal aging on patterns of local cerebral glucose utilization, Ann Neurol 15:S133–S137 (1984).

    PubMed  Google Scholar 

  68. G. Reaven, L. Thompson, D. Nahum, and E, Haskins, Relationship between hyperglycemia and cognitive function in older NIDDM patients, Diabetes Care 13:16–21 (1990).

    PubMed  CAS  Google Scholar 

  69. A. McCall, The impact of diabetes on the CNS, Diabetes 41:557–570 (1992).

    PubMed  CAS  Google Scholar 

  70. G. J. Biessels, L. P. van der Heide, A. Kamal, R. L. Bleys, and W. H. Gispen, Ageing and diabetes: implications for brain function, Eur J Pharmacol 441:1–14 (2002).

    Article  PubMed  CAS  Google Scholar 

  71. J. Heitner, and D. Dickson, Diabetics do not have increased Alzheimer-type pathology compared with age-matched control subjects:A retrospective postmortem immunocytochemical and histofluorescent study, Neurol 49:1306–1311 (1997).

    CAS  Google Scholar 

  72. J. Halter, Alzheimer’s disease and non-insulin-dependent diabetes mellitus: common features do not make common bedfellows, J Am Geriatr Soc 44:992–993 (1996).

    PubMed  CAS  Google Scholar 

  73. C. Brayne, F. Matthews, J. Xuereb, J. Broome, a. et, and m. o. t. N. G. o. t. M. C. F. a. A. Study), Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales, Lancet 357:169–175 (2001).

    Google Scholar 

  74. A. Barber, E. Lieth, S. Khin, D. Antonetti, A. Buchanan, and T. Gardner, Neural apoptosis in the retina during experimental and human diabetes:Early onset and effect of insulin, J Clin Invest 102:783–791 (1998).

    PubMed  CAS  Google Scholar 

  75. L. V. Johnson, W. P. Leitner, A. J. Rivest, M. K. Staples, M. J. Radeke, and D. H. Anderson, The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration, Proc Natl Acad Sci U S A 99:11830–5 (2002).

    PubMed  CAS  Google Scholar 

  76. S. Yamagishi, T. Okamoto, S. Amano, et al., Palmitate-induced apoptosis of microvascular endothelial cells and pericytes, Mol Med 8:179–84 (2002).

    PubMed  CAS  Google Scholar 

  77. S. E. Vermeer, N. D. Prins, T. den Heijer, A. Hofman, P. J. Koudstaal, and M. M. Breteler, Silent brain infarcts and the risk of dementia and cognitive decline, N Engl J Med 348:1215–22 (2003).

    Article  PubMed  Google Scholar 

  78. S. Kalmijn, E. Feskens, L. Launer, T. Stijnen, and D. Kromhout, Glucose intolerance, hyperinsulinaemia and cognitive function in a general population of elderly men, Diabetologia 38:1096–1102 (1995).

    PubMed  CAS  Google Scholar 

  79. A. Ott, R. Stolk, A. Hofman, F. van Harskamp, D. Grobbee, and M. Breteler, Association of diabetes mellitus and dementia: the Rotterdam Study, Diabetologia 39:1392–1397 (1996).

    Article  PubMed  CAS  Google Scholar 

  80. J. Kuusisto, K. Koivisto, L. Mykkänen, et al., Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study, Brit Med J 315:1045–104 (1997).

    PubMed  CAS  Google Scholar 

  81. C. Leibson, W. Rocca, V. Hanson, et al., Risk of dementia among persons with diabetes mellitus: a population-based cohort study, Am J Epidemiol 145:301–308 (1997).

    PubMed  CAS  Google Scholar 

  82. E. Gregg, K. Yaffe, J. Cauley, et al., Is diabetes associated with cognitive impairment and cognitive decline among older women?, Arch Intern Med 160:174–180 (2000).

    Article  PubMed  CAS  Google Scholar 

  83. D. Bennett, Diabetes and change in cognitive function, Arch Intern Med 160:141–143 (2000).

    Article  PubMed  CAS  Google Scholar 

  84. E. Feskens, L. Havekes, S. Kalmijn, P. de Knijff, L. Launer, and D. Kromhout, Apolipoprotein e4 allele and cognitive decline in elderly men, Brit Med J 309:1202–1206 (1994).

    PubMed  CAS  Google Scholar 

  85. G. Razay, and G. Wilcock, Hyperinsulinaemia and Alzheimer’s disease, Age Ageing 23:396–399 (1994).

    PubMed  CAS  Google Scholar 

  86. S. Craft, E. Peskind, M. Schwartz, G. Schellenberg, M. Raskind, and D. Porte, Jr, Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype, Neurol 50:164–168 (1998A).

    CAS  Google Scholar 

  87. M. Haan, L. Shemanski, W. Jagust, T. Manolio, and L. Kuller, The role of APOE epsilon4 in modulating effects of other risk factors for cognitive decline in elderly persons, JAMA 282:40–46 (1999).

    Article  PubMed  CAS  Google Scholar 

  88. J. Molina, F. Jimenez-Jimenez, C. Vargas, et al., Cerebrospinal fluid levels of insulin in patients with Alzheimer’s disease, Acta Neurol Scand 106:347–350 (2002).

    Article  PubMed  CAS  Google Scholar 

  89. S. Kalmijn, L. Launer, A. Ott, J. Witteman, A. Hofman, and M. Breteler, Dietary fat intake and the risk of incident dementia in the Rotterdam Study, Ann Neurol 42:776–782 (1997).

    Article  PubMed  CAS  Google Scholar 

  90. A. Ott, A. Slooter, A. Hofman, et al., Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: the Rotterdam Study, Lancet 351:1840–1843 (1998).

    Article  PubMed  CAS  Google Scholar 

  91. J. Orgogozo, J. Dartigues, S. Lafont, et al., Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area., Rev Neurol 153:185–192 (1997).

    PubMed  CAS  Google Scholar 

  92. A. Ruitenberg, J. van Swieten, J. Witteman, et al., Alcohol consumption and risk of dementia: the Rotterdam Study, Lancet 359:281–286 (2002).

    Article  PubMed  Google Scholar 

  93. K. J. Mukamal, L. H. Kuller, A. L. Fitzpatrick, W. T. Longstreth, Jr., M. A. Mittleman, and D. S. Siscovick, Prospective study of alcohol consumption and risk of dementia in older adults, Jama 289:1405–13 (2003).

    Article  PubMed  CAS  Google Scholar 

  94. L. Refolo, M. Pappolla, B. Malester, et al., Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model, Neurobiol Dis 7:321–331 (2000).

    PubMed  CAS  Google Scholar 

  95. S. Hoyer, The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update, J Neural Transm 109:341–360 (2002).

    PubMed  CAS  Google Scholar 

  96. V. Grill, M. Gutniak, O. Björkman, et al., Cerebral blood flow and substrate utilization in insulin-treated diabetic subjects, Am J Physiol 258:E813–E820 (1990).

    PubMed  CAS  Google Scholar 

  97. M. Gutniak, G. Blomqvist, L. Widén, S. Stone-Elander, B. Hamberger, and V. Grill, D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects, Am J Physiol 258:E805–E812 (1990).

    PubMed  CAS  Google Scholar 

  98. C. Fanelli, C. Dence, J. Markham, et al., Blood-to-brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes, Diabetes 47:1444–1450 (1998).

    PubMed  CAS  Google Scholar 

  99. S. Hasselbalch, G. Knudsen, C. Videbaek, et al., No effect of insulin on glucose blood-brain barrier transport and cerebral metabolism in humans, Diabetes 48:1915–1921 (1999).

    PubMed  CAS  Google Scholar 

  100. P. Freychet, Insulin receptors and insulin actions in the nervous system, Diabetes/Metab Res Rev 16:390–392 (2000).

    CAS  Google Scholar 

  101. C. Park, Cognitive effects of insulin in the central nervous system, Neurosci Biobehav Rev 25:311–323 (2001).

    Article  PubMed  CAS  Google Scholar 

  102. W. Zhao, H. Chen, H. Xu, et al., Brain insulin receptors and spatial memory: Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats, J Biol Chem 274:34893–34902 (1999).

    PubMed  CAS  Google Scholar 

  103. A. Chaudhuri, Y. Kanjwal, P. Mohanty, et al., Insulin-induced vasodilatation of internal carotid artery, Metab Clin Exp 48:1470–1473 (1999).

    PubMed  CAS  Google Scholar 

  104. L. Reagan, A. Magariños, D. Yee, et al., Oxidative stress and HNE conjugation of GLUT3 are increased in the hippocampus of diabetic rats subjected to stress, Brain Res 862:292–300 (2000).

    Article  PubMed  CAS  Google Scholar 

  105. S. M. Manschot, G. J. Biessels, N. E. Cameron, et al., Angiotensin converting enzyme inhibition partially prevents deficits in water maze performance, hippocampal synaptic plasticity and cerebral blood flow in streptozotocin-diabetic rats, Brain Res 966:274–82 (2003).

    Article  PubMed  CAS  Google Scholar 

  106. M. Aragno, S. Parola, E. Tamagno, et al., Oxidative derangement in rat synaptosomes induced by hyperglycaemia: restorative effect of dehydroepiandrosterone treatment, Biochem Pharmacol 60:389–395 (2000).

    Article  PubMed  CAS  Google Scholar 

  107. P. Pietrini, M. Furey, G. Alexander, et al., Association between brain functional failure and dementia severity in Alzheimer’s disease: Resting versus stimulation PET study, Am J Psych 156:470–473 (1999).

    CAS  Google Scholar 

  108. K. Meguro, X. Blaizot, Y. Kondoh, M. Le, C, J. Baron, and C. Chavoix, Neocortical and hippocampal glucose heypometabolism following neurotixic lesions of the entorhinal and perithinal cortices in the non-human primate as shown by PET: Implications for Alzheimer’s disease, Brain 122:1519–1531 (1999).

    Article  PubMed  Google Scholar 

  109. A. Kennedy, R. Frackowiak, S. Newman, et al., Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease, Neurosci Lett 186:17–20 (1995).

    Article  PubMed  CAS  Google Scholar 

  110. K. Chandrasekaran, K. Hatanpää, D. Brady, and S. Rapoport, Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer’s disease, Exp Neurol 142:80–88 (1996).

    Article  PubMed  CAS  Google Scholar 

  111. G. Small, S. Komo, A. La Rue, et al., Early detection of Alzheimer’s disease by combining apolipoprotein E and neuroimaging, Ann NY Acad Sci 802:70–78 (1996).

    PubMed  CAS  Google Scholar 

  112. S. Rapoport, K. Hatanpää, D. Brady, and K. Chandrasekaran, Brain energy metabolism, cognitive function and down-regulated oxidative phosphorylation in Alzheimer disease, Neurodegeneration 5:473–476 (1996).

    Article  PubMed  CAS  Google Scholar 

  113. S. Rapoport, In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer’s disease, Eur Arch Psych Clin Neurosci 249Suppl3:46–55 (1999B).

    Google Scholar 

  114. G. Chetelat, and J. C. Baron, Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging, Neuroimage 18:525–41 (2003).

    Article  PubMed  Google Scholar 

  115. G. Stoppe, H. Bruhn, P. Pouwels, W. Hänicke, and J. Frahm, Alzheimer disease: Absolute quantification of cerebral metabolites in vivo using localized proton magnetic resonance spectroscopy, Alzheimer Dis Assoc Disorders 14:112–119 (2000).

    CAS  Google Scholar 

  116. V. Ibáñez, P. Pietrini, G. Alexander, et al., Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease, Neurology 50:1585–1593 (1998).

    PubMed  Google Scholar 

  117. K. Chandrasekaran, K. Hatanpää, D. Brady, J. Stoll, and S. Rapoport, Downregulation of oxidative phosphorylation in Alzheimer disease: loss of cytochrome oxidase subunit mRNA in the hippocampus and entorhinal cortex, Brain Res 796:13–19 (1998).

    Article  PubMed  CAS  Google Scholar 

  118. J. Blass, and G. Gibson, The role of oxidative abnormalities in the pathophysiology of Alzheimer’s disease, Rev Neurol 147:513–525 (1991).

    PubMed  CAS  Google Scholar 

  119. F. Mastrogiacomo, C. Bergeron, and S. Kish, Brain alpha-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease, J Neurochem 61:2007–2014 (1993).

    PubMed  CAS  Google Scholar 

  120. K. Sheu, A. Cooper, K. Koike, M. Koike, J. Lindsay, and J. Blass, Abnormality of the alpha-ketoglutarate dehydrogenase complex in fibroblasts from familial Alzheimer’s disease, Ann Neurol 35:312–38 (1994).

    Article  PubMed  CAS  Google Scholar 

  121. S. Hoyer, Oxidative metabolism deficiencies in brains of patients with Alzheimer’s disease, Acta Neurol Scand Suppl 165:18–24 (1996).

    PubMed  CAS  Google Scholar 

  122. G. Gibson, H. Zhang, K. Sheu, et al., Alpha-ketoglutarate dehydrogenase in Alzheimer brains bearing the APP670/671 mutation, Ann Neurol 44:676–681 (1998).

    Article  PubMed  CAS  Google Scholar 

  123. A. Nulton-Persson, and L. Szweda, Modulation of mitochondrial function by hydrogen peroxide, J Biol Chem 276:23357–23361 (2001).

    Article  PubMed  CAS  Google Scholar 

  124. L. Frölich, D. Blum-Degen, H. Bernstein, et al., Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease, J Neural Transmission 105:423–438 (1998).

    Article  Google Scholar 

  125. R. Russell, 3d, and H. Taegtmeyer, Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate, J Clin Invest 87:384–390 (1991).

    PubMed  CAS  Google Scholar 

  126. R. Russell, 3d, and H. Taegtmeyer, Coenzyme A sequestration in rat hearts oxidizing ketone bodies, J Clin Invest 89:968–973 (1992).

    PubMed  CAS  Google Scholar 

  127. L. Tretter, and V. Adam-Vizi, Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress, J Neurosci 20:8972–8979 (2000).

    PubMed  CAS  Google Scholar 

  128. V. I. Bunik, and C. Sievers, Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species, Eur J Biochem 269:5004–15 (2002).

    Article  PubMed  CAS  Google Scholar 

  129. S. Kish, Brain energy metabolizing enzymes in Alzheimer’s disease: alphaketoglutarate dehydrogenase complex and cytochrome oxidase, Ann NY Acad Sci 826:218–228 (1997).

    PubMed  CAS  Google Scholar 

  130. F. Mastrogiacomo, J. Lindsay, L. Bettendorff, J. Rice, and S. Kish, Brain protein and alpha-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease, Ann Neurol 39:592–598 (1996).

    Google Scholar 

  131. N. Sims, Energy metabolism, oxidative stress and neuronal degeneration in Alzheimer’s disease, Neurodegeneration 5:435–440 (1996).

    Article  PubMed  CAS  Google Scholar 

  132. J. Bolaños, A. Almeida, E. Fernández, et al., Potential mechanisms for nitric oxidemediated impairment of brain mitochondrial energy metabolism, Biochem Soc Transact 25:944–949 (1997A).

    Google Scholar 

  133. J. Bolaños, A. Almeida, V. Stewart, et al., Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases, J Neurochem 68:2227–2240 (1997B).

    PubMed  Google Scholar 

  134. J. Wilson, Antioxidant defense of the brain: a role for astrocytes, Can J Physiol Pharmacol 75:1149–1163 (1997).

    Article  PubMed  CAS  Google Scholar 

  135. B. Beltrán, A. Mathur, M. Duchen, J. Erusalimsky, and S. Moncada, The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death, Proc Natl Acad Sci USA 97:14602–14607 (2000).

    PubMed  Google Scholar 

  136. P. García-Nogales, A. Almeida, and J. Bolaños, Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase in neuroprotection., Journal of Biological Chemistry 278:864–874 (2003).

    PubMed  Google Scholar 

  137. R. Ockner, N. Lysenko, N. Wu, and N. Bass, Hepatocyte growth inhibitors modulate mitochondrial and extramitochondrial fatty acid oxidation [Abstract], Hepatology 24:253A (1996).

    Google Scholar 

  138. M. Joaquin, J. Rosa, C. Salvado, et al., Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures, Biochem J 314:235–240 (1996).

    PubMed  CAS  Google Scholar 

  139. G. Thoresen, and T. Christoffersen, Transforming growth factor beta 1 increases the phosphoenolpyruvate carboxykinase mRNA level in cultured rat hepatocytes, Cell Biol Intl 18:171–175 (1994).

    CAS  Google Scholar 

  140. Y. H. Hong, H. B. Peng, V. La Fata, and J. K. Liao, Hydrogen peroxide-mediated transcriptional induction of macrophage colony-stimulating factor by TGF-beta1, J Immunol 159:2418–23 (1997).

    PubMed  CAS  Google Scholar 

  141. B. Herrera, A. M. Alvarez, A. Sanchez, et al., Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes, Faseb J 15:741–751 (2001B).

    Article  PubMed  CAS  Google Scholar 

  142. B. Herrera, M. Fernandez, A. M. Alvarez, et al., Activation of caspases occurs downstream from radical oxygen species production, Bcl-xL down-regulation, and early cytochrome C release in apoptosis induced by transforming growth factor beta in rat fetal hepatocytes, Hepatology 34:548–56 (2001A).

    Article  PubMed  CAS  Google Scholar 

  143. E. Masliah, G. Ho, and T. Wyss-Coray, Functional role of TGF beta in Alzheimer’s disease microvascular injury: lessons from transgenic mice, Neurochem Int 39:393–400 (2001).

    Article  PubMed  CAS  Google Scholar 

  144. A. Ruocco, O. Nicole, F. Docagne, et al., A transforming growth factor-beta antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury, J Cereb Blood Flow Metab 19:1345–1353 (1999).

    PubMed  CAS  Google Scholar 

  145. M. Packard, D. Mathew, and V. Budnik, Wnts and TGF beta in synaptogenesis: old friends signalling at new places, Nat Rev Neurosci 4:113–20 (2003).

    Article  PubMed  CAS  Google Scholar 

  146. S. Hoyer, Oxidative energy metabolism in Alzheimer brain: Studies in early-onset and late-onset cases, Molec Chem Neuropath 16:207–224 (1992).

    CAS  Google Scholar 

  147. H. Fukuyama, M. Ogawa, H. Yamauchi, et al., Altered cerebral energy metabolism in Alzheimer’s disease: a PET study, J Nucl Med 35:1–6 (1994).

    PubMed  CAS  Google Scholar 

  148. S. Hasselbalch, P. Madsen, L. Hageman, et al., Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia, Am J Physiol 270:E746–51 (1996).

    PubMed  CAS  Google Scholar 

  149. S. Bookheimer, M. Strojwas, M. Cohen, et al., Patterns of brain activation in people at risk for Alzheimer’s disease, N Engl J Med 343:450–456 (2000).

    Article  PubMed  CAS  Google Scholar 

  150. J. Zhou, U. Liyanage, M. Medina, et al., Presenilin 1 interaction in the brain with a novel member of the Armadillo family, Neuroreport 8:2085–2090 (1997).

    PubMed  CAS  Google Scholar 

  151. G. Yu, F. Chen, G. Levesque, et al., The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin, J Biol Chem 273:16470–16475 (1998).

    PubMed  CAS  Google Scholar 

  152. A. Takashima, M. Murayama, O. Murayama, et al., Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau, Proc Natl Acad Sci USA 95:9637–9641 (1998).

    Article  PubMed  CAS  Google Scholar 

  153. G. Levesque, G. Yu, M. Nishimura, et al., Presenilins interact with armadillo proteins including neural-specific plakophilin-related protein and beta-catenin, J Neurochem 72:999–1008 (1999).

    Article  PubMed  CAS  Google Scholar 

  154. F. Kirschenbaum, S. Hsu, B. Cordell, and J. McCarthy, Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signaling, J Biol Chem 276:7366–7375 (2001).

    PubMed  CAS  Google Scholar 

  155. M. Murayama, S. Tanaka, J. Palacino, et al., Direct association of presenilin-1 with beta-catenin, FEBS Lett 433:73-77 (1998).

    Google Scholar 

  156. E. Planel, X. Sun, and A. Takeshima, Role of GSK-3beta in Alzheimer’s disease pathology, Drug Dev Res 56:491–510 (2002).

    Article  CAS  Google Scholar 

  157. M. Peifer, Beta-catenin as oncogene: the smoking gun, Science 275:1752–1753 (1997).

    Article  PubMed  CAS  Google Scholar 

  158. M. Hart, R. de los Santos, I. Albert, B. Rubinfeld, and P. Polakis, Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, betacatenin and GSK3 beta, Current Biol 8:573–581 (1998).

    CAS  Google Scholar 

  159. J. Brakeman, S. Gu, X. Wang, G. Dolin, and J. Baraban, Neuronal localization of the Adenomatous polyposis coli tumor suppressor protein, Neurosci 91:661–572 (1999).

    Article  CAS  Google Scholar 

  160. G. De Ferrari, and N. Inestrosa, Wnt signaling function in Alzheimer’s disease, Brain Res Rev 33:1–12 (2000).

    PubMed  Google Scholar 

  161. A. Patapoutian, and L. Reichardt, Roles of Wnt proteins in neural development and maintenance, Curr Opin Neurobiol 10:392–399 (2000).

    Article  PubMed  CAS  Google Scholar 

  162. C. Sutherland, I. Leighton, and P. Cohen, Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling, Biochem J 296:15–19 (1993).

    PubMed  CAS  Google Scholar 

  163. H. Eldar-Finkelman, and E. Krebs, Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action, Proc Natl Acad Sci USA 94:9660–9664 (1997).

    Article  PubMed  CAS  Google Scholar 

  164. P. Shepherd, D. Withers, and K. Siddle, Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling, Biochem J 333:471–490 (1998).

    PubMed  CAS  Google Scholar 

  165. M. Delcommenne, C. Tan, V. Gray, L. Rue, J. Woodgett, and S. Dedhar, Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase, Proc Natl Acad Sci USA 95:11211–11216 (1998).

    Article  PubMed  CAS  Google Scholar 

  166. J. Papkoff, and M. Aikawa, WNT-1 and HGF regulate GSK3-beta activity and betacatenin signaling in mammary epithelial cells, Biochem Biophys Res Comm 247:851–858 (1998).

    Article  PubMed  CAS  Google Scholar 

  167. N. Klöcker, P. Kermer, J. Weishaupt, M. Labes, R. Ankerhold, and M. Bähr, Brainderived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling, J Neurosci 20:6962–6967 (2000).

    PubMed  Google Scholar 

  168. A. Vaillant, I. Mazzoni, C. Tudan, M. Boudreau, D. Kaplan, and F. Miller, Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival, J Cell Biol 146:955–966 (1999).

    Article  PubMed  CAS  Google Scholar 

  169. P. Bannasch, F. Klimek, and D. Mayer, Early bioenergetic changes in hepatocarcinogenesis: preneoplastic phenotypes mimic responses to insulin and thyroid hormone, J Bioenergetics Biomembranes 29:303–313 (1997).

    CAS  Google Scholar 

  170. D. Nehrbass, F. Klimek, and P. Bannasch, Overexpression of insulin receptor substrate-1 emerges early in hepatocarcinogenesis and elicits preneoplastic hepatic glycogenosis, Am J Pathol 152:341–345 (1998).

    PubMed  CAS  Google Scholar 

  171. B. Anderton, Alzheimer’s disease: clues from flies and worms, Curr Biol 9:R106–R109 (1999).

    Article  PubMed  CAS  Google Scholar 

  172. R. Bhat, J. Shanley, M. Correll, et al., Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration, Proc Natl Acad Sci USA 97:11074–11079 (2000).

    Article  PubMed  CAS  Google Scholar 

  173. M. Hetman, J. Cavanaugh, D. Kimelman, and Z. Xia, Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal, J Neurosci 20:2567–2574 (2000).

    PubMed  CAS  Google Scholar 

  174. A. Georgakopoulos, P. Marambaud, S. Efthimiopoulos, et al., Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synaptic contacts, Mol Cell 4:893–902 (1999).

    Article  PubMed  CAS  Google Scholar 

  175. P. Marambaud, J. Shioi, G. Serban, et al., A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions, EMBO J 21:1948–1956 (2002).

    Article  PubMed  CAS  Google Scholar 

  176. W. Nishimura, I. Yao, J. Iida, N. Tanaka, and Y. Hata, Interaction of synaptic scaffolding molecule and Beta-catenin, J Neurosci 22:757–765 (2002).

    PubMed  CAS  Google Scholar 

  177. M. Hong, and V. Lee, Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons, J Biol Chem 272:19547–19553 (1997A).

    PubMed  CAS  Google Scholar 

  178. J. Muñoz-Montaño, F. Moreno, J. Avila, and J. Diaz-Nido, Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons, FEBS Lett 411:183–188 (1997).

    Article  PubMed  Google Scholar 

  179. B. Ryu, H. Ko, I. Jou, J. Noh, and B. Gwag, Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I, J Neurobiol 39:536–546 (1999).

    Article  PubMed  CAS  Google Scholar 

  180. L. Gasparini, W. J. Netzer, P. Greengard, and H. Xu, Does insulin dysfunction play a role in Alzheimer’s disease?, Trends Pharmacol Sci 23:288–93 (2002).

    Article  PubMed  CAS  Google Scholar 

  181. D. C. Solano, M. Sironi, C. Bonfini, S. B. Solerte, S. Govoni, and M. Racchi, Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway, Faseb J 14:1015–22 (2000).

    PubMed  CAS  Google Scholar 

  182. C. J. Phiel, C. A. Wilson, V. M. Lee, and P. S. Klein, GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides, Nature 423:435–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  183. G. Cheng, Z. Yu, D. Zhou, and M. P. Mattson, Phosphatidylinositol-3-kinase-Akt kinase and p42/p44 mitogen-activated protein kinases mediate neurotrophic and excitoprotective actions of a secreted form of amyloid precursor protein, Exp Neural 175:407–14 (2002).

    CAS  Google Scholar 

  184. L. Iacovelli, V. Bruno, L. Salvatore, et al., Native group-III metabotropic glutamate receptors are coupled to the mitogen-activated protein kinase/phosphatidylinositol-3-kinase pathways, J Neurochem 82:216–23 (2002).

    Article  PubMed  CAS  Google Scholar 

  185. I. Tsujio, T. Tanaka, T. Kudo, et al., Inactivation of glycogen synthase kinase-3 by protein kinase C delta: implications for regulation of tau phosphorylation, FEBS Letters 469:111–117 (2000).

    Article  PubMed  CAS  Google Scholar 

  186. A. Shanavas, and S. Papasozomenos, tau kinases in the rat heat shock model: possible implications for Alzheimer disease, Proc Natl Acad Sci USA 97:14139–14144 (2000).

    Article  PubMed  CAS  Google Scholar 

  187. X. Zhu, C. Rottkamp, H. Boux, A. Takeda, G. Perry, and M. Smith, Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease, J Neuropathol Exper Neurol 59:880–888 (2000).

    CAS  Google Scholar 

  188. M. Bennecib, C. Gong, I. Grundke-Iqbal, and K. Iqbal, Role of protein phosphatase-2A and −1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain, FEBS Lett 485:87–93 (2000).

    Article  PubMed  CAS  Google Scholar 

  189. E. Planel, K. Yasutake, S. Fujita, and K. Ishiguro, Inhibition of protein phosphatase 2A overrides tau protein kinase I/glycogen synthase kinase 3 beta and cyclindependent kinase 5 inhibition and results in tau hyperphosphorylation in the hippocampus of starved mouse, J Biol Chem 276:34298–34306 (2001).

    Article  PubMed  CAS  Google Scholar 

  190. M. Hoshi, A. Takashima, K. Noguchi, et al., Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain, Proc Natl Acad Sci USA 93:2719–2723 (1996).

    Article  PubMed  CAS  Google Scholar 

  191. S. Kang, T. Kwon, D. Kwon, and S. Do, Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit, J Biol Chem 274:13085–13090 (1999).

    PubMed  CAS  Google Scholar 

  192. M. Mattson, and W. Klapper, Emerging roles for telomerase in neuronal development and apoptosis, J Neurosci Res 63:1–9 (2001).

    Article  PubMed  CAS  Google Scholar 

  193. R. Takano, S. Hisahara, K. Namikawa, H. Kiyama, H. Okano, and M. Miura, Nerve growth factor protects oligodendrocytes from tumor necrosis factor-alpha-induced injury through Akt-mediated signaling mechanisms, J Biol Chem 275:16360–16365 (2000).

    PubMed  CAS  Google Scholar 

  194. O. Ozes, L. Mayo, J. Gustin, S. Pfeffer, L. Pfeffer, and D. Donner, NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase, Nature 401:82–85 (1999).

    PubMed  CAS  Google Scholar 

  195. E. Beattie, D. Stellwagen, W. Morishita, et al., Control of synaptic strength by glial TNFalpha, Science 295:2282–2285 (2002).

    Article  PubMed  CAS  Google Scholar 

  196. A. Yamaguchi, M. Tamatani, H. Matsuzaki, et al., Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53, J Biol Chem 276:5256–5264 (2001).

    PubMed  CAS  Google Scholar 

  197. D. Cross, A. Culbert, K. Chalmers, L. Facci, S. Skaper, and A. Reith, Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death, J Neurochem 77:94–102 (2001).

    PubMed  CAS  Google Scholar 

  198. I. Skoog, and D. Gustafson, HRT and dementia, J Epidemiol Biostat 4:227–251 (1999).

    PubMed  CAS  Google Scholar 

  199. K. Honda, H. Sawada, T. Kihara, et al., Phosphatidylinositol 3-kinase mediates neuroprotection by estrogen in cultured cortical neurons, J Neurosci Res 60:321–327 (2000).

    Article  PubMed  CAS  Google Scholar 

  200. K. Yaffe, L. Lui, D. Grady, J. Cauley, J. Kramer, and S. Cummings, Cognitive decline in women in relation to non-protein-bound oestradiol concentrations, Lancet 356:708–712 (2000).

    Article  PubMed  CAS  Google Scholar 

  201. E. LeBlanc, J. Janowsky, B. Chan, and H. Nelson, Hormone replacement therapy and cognition: systematic review and meta-analysis, J Amer Med Assoc 285:1489–1499 (2001).

    Article  CAS  Google Scholar 

  202. B. Cholerton, C. E. Gleason, L. D. Baker, and S. Asthana, Estrogen and Alzheimer’s disease: the story so far, Drugs Aging 19:405–27 (2002).

    Article  PubMed  CAS  Google Scholar 

  203. C. M. Clark, and J. H. Karlawish, Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies, Ann Intern Med 138:400–10 (2003).

    PubMed  Google Scholar 

  204. M. Cordey, U. Gundimeda, R. Gopalakrishna, and C. J. Pike, Estrogen activates protein kinase C in neurons: role in neuroprotection, J Neurochem 84:1340–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  205. C. Toran-Allerand, M. Singh, and G. Sétáló, Jr, Novel mechanisms of estrogen action in the brain: new players in an old story, Frontiers Neuroendocrinol 20:97–121 (1999).

    CAS  Google Scholar 

  206. R. Bi, M. Foy, R. Vouimba, R. Thompson, and M. Baudry, Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway, Proc Natl Acad Sci U S A 98:13391–13395 (2001).

    PubMed  CAS  Google Scholar 

  207. D. Kang, S. Soriano, M. Frosch, et al., Presenilin 1 facilitates the constitutive turnover of beta-catenin: differential activity of Alzheimer’s disease-linked PS1 mutants in the beta-catenin-signaling pathway, J Neurosci 19:4229–4237 (1999).

    PubMed  CAS  Google Scholar 

  208. W. Stoothoff, C. Bailey, K. Mi, S. Lin, and G. Johnson, Axin negatively affects tau phosphorylation by glycogen synthase kinase 3-beta, Journal of Neurochemistry 83:904–913 (2002).

    Article  PubMed  CAS  Google Scholar 

  209. Z. Zhang, H. Hartmann, V. Do, et al., Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis, Nature 395:698–702 (1998).

    PubMed  CAS  Google Scholar 

  210. C. Weihl, G. Ghadge, S. Kennedy, N. Hay, R. Miller, and R. Roos, Mutant presenilin-1 induces apoptosis and downregulates Akt/PKB, J Neurosci 19:5360–5369 (1999).

    PubMed  CAS  Google Scholar 

  211. M. Nishimura, G. Yu, G. Levesque, et al., Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of beta-catenin a component of the presenilin protein complex, Nature Med 5:164–169 (1999).

    PubMed  CAS  Google Scholar 

  212. B. Passer, L. Pellegrini, P. Vito, J. Ganjei, and L. D’Adamio, Interaction of Alzheimer’s presenilin-1 and presenilin-2 with Bcl-X(L): A potential role in modulating the threshold of cell death, J Biol Chem 274:24007–24013 (1999).

    Article  PubMed  CAS  Google Scholar 

  213. J. Tan, T. Town, A. Placzek, A. Kundtz, H. Yu, and M. Mullan, Bcl-X(L) inhibits apoptosis and necrosis produced by Alzheimer’s beta-amyloid 1-40 peptide in PC 12 cells, Neuroscience Letters 272:5–8 (1999).

    Article  PubMed  CAS  Google Scholar 

  214. Q. Guo, W. Fu, B. Sopher, et al., Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice, Nature Med 5:101–106 (1999).

    PubMed  CAS  Google Scholar 

  215. R. Nuydens, C. Heers, A. Chadarevian, et al., Sodium butyrate induces aberrant tau phosphorylation and programmed cell death in human neuroblastoma cells, Brain Res 688:86–94 (1995).

    Article  PubMed  CAS  Google Scholar 

  216. M. Erecinska, D. Nelson, Y. Daikhin, and M. Yudkoff, Regulation of GAB A level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies, J Neurochem 67:2325–2334 (1996C).

    PubMed  CAS  Google Scholar 

  217. M. Zhang, Y. Gong, and G. Minuk, The effects of ethanol and gamma aminobutyric acid alone and in combination on hepatic regenerative activity in the rat, Journal of Hepatology 29:638–41 (1998).

    Article  PubMed  CAS  Google Scholar 

  218. G. Minuk, R. Erlitzki, Y. Gong, and M. Zhang, Identification and characterization of GAB A A receptors and GABA transport proteins in the liver, Hepatology 30:308 A (1999).

    Google Scholar 

  219. J.-P. Roperch, V. Alvaro, S. Prieur, et al., Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression, Nature Medicine 4:835–838 (1998).

    Article  PubMed  CAS  Google Scholar 

  220. R. Ren, J. Lah, A. Diehlmann, et al., Differential effects of transforming growth factor-betaS and glial cell line-derived neurotrophic factor on gene expression of presenilin-1 in human post-mitotic neurons and astrocytes, Neurosci 93:1041–1049 (1999).

    Article  CAS  Google Scholar 

  221. B. Wolozin, K. Iwasaki, P. Vito, et al., Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation, Science 274:1710–3 (1996).

    Article  PubMed  CAS  Google Scholar 

  222. A. Copani, F. Condorelli, A. Caruso, et al., Mitotic signaling by beta-amyloid causes neuronal death, FASEB J 13:2225–2234 (1999).

    PubMed  CAS  Google Scholar 

  223. A. Giovanni, E. Keramaris, E. Morris, et al., E2F1 mediates death of B-amyloidtreated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3, J Biol Chem 275:11553–11560 (2000).

    Article  PubMed  CAS  Google Scholar 

  224. Q. Wu, C. Combs, S. Cannady, D. Geldmacher, and K. Herrup, Beta-amyloid activated microglia induce cell cycling and cell death in cultured cortical neurons, Neurobiol Aging 21:797–806 (2000).

    PubMed  CAS  Google Scholar 

  225. R. Ockner, Apoptosis and liver diseases: Recent concepts of mechanism and significance, J Gastroenterol Hepatol 16:248–260 (2001).

    Article  PubMed  CAS  Google Scholar 

  226. S. Fukumoto, T. Mutoh, T. Hasegawa, et al., GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation, J Biol Chem 275:5832–8 (2000).

    Article  PubMed  CAS  Google Scholar 

  227. A. Copani, D. Melchiorri, A. Caricasole, et al., Beta-amyloid-induced synthesis of the ganglioside GD3 is a requisite for cell cycle reactivation and apoptosis in neurons, J Neurosci 22:3963–8 (2002).

    PubMed  CAS  Google Scholar 

  228. K. L. Jordan-Sciutto, L. M. Malaiyandi, and R. Bowser, Altered distribution of cell cycle transcriptional regulators during Alzheimer disease, J Neuropathol Exp Neurol 61:358–67 (2002).

    PubMed  CAS  Google Scholar 

  229. Y. Yang, E. J. Mufson, and K. Herrup, Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease, J Neurosci 23:2557–63 (2003).

    PubMed  CAS  Google Scholar 

  230. J. J. Pei, H. Braak, C. X. Gong, et al., Up-regulation of cell division cycle (cdc) 2 kinase in neurons with early stage Alzheimer’s disease neurofibrillary degeneration, Acta Neuropathol (Berl) 104:369–76 (2002).

    CAS  Google Scholar 

  231. J. Dypbukt, M. Ankarcrona, M. Burkitt, et al., Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells: The role of intracellular polyamines., J Biol Chem 269:30553–30560 (1994).

    PubMed  CAS  Google Scholar 

  232. A. Raina, M. Monteiro, A. McShea, and M. Smith, The role of cell cycle-mediated events in Alzheimer’s disease, Int J Exp Path 80:71–76 (1999).

    Article  CAS  Google Scholar 

  233. J. Busser, D. Geldmacher, and K. Herrup, Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain, J Neurosci 18:2801–2807 (1998).

    PubMed  CAS  Google Scholar 

  234. D. Liu, and L. Greene, Neuronal apoptosis at the G1/S cell cycle checkpoint, Cell Tissue Res 305:217–228 (2001).

    PubMed  CAS  Google Scholar 

  235. E. Morris, E. Keramaris, H. Rideout, et al., Cyclin-dependent kinases and P53 pathways are activated independently and mediate Bax activation in neurons after DNA damage, J Neurosci 21:5017–5026 (2001).

    PubMed  CAS  Google Scholar 

  236. T. Burton, B. Liang, A. Dibrov, and F. Amara, Transcriptional activation and increase in expression of Alzheimer’s beta-amyloid precursor protein gene is mediated by TGF-beta in normal human astrocytes, Biochem Biophys Res Commun 295:702–12 (2002).

    PubMed  CAS  Google Scholar 

  237. T. Wyss-Coray, F. Yan, A. H. Lin, et al., Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice, Proc Natl Acad Sci U S A 99:10837–42 (2002).

    Article  PubMed  CAS  Google Scholar 

  238. G. Halliday, S. Robinson, C. Shepherd, and J. Kril, Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms, Clin Exper Pharmacol Physiol 27:1–8 (2000).

    CAS  Google Scholar 

  239. P. McGeer, Cyclo-oxygenase-2 inhibitors: rationale and therapeutic potential for Alzheimer’s disease, Drugs Aging 17:1–11 (2000).

    Article  PubMed  CAS  Google Scholar 

  240. T. Wyss-Coray, and L. Mucke, Ibuprofen, inflammation and Alzheimer disease, Nature Med 6:973–974 (2000).

    PubMed  CAS  Google Scholar 

  241. B. in t’ Veld, A. Ruitenberg, A. Hofman, et al., Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease, N Engl J Med 345:1515–1521 (2001).

    Google Scholar 

  242. P. Zandi, and J. Breitner, Do NSAIDs prevent Alzheimer’s disease? And, if so, why? The epidemiological evidence, Neurobiol Aging 22:811–817 (2001).

    Article  PubMed  CAS  Google Scholar 

  243. S. E. Nilsson, B. Johansson, S. Takkinen, et al., Does aspirin protect against Alzheimer’s dementia? A study in a Swedish population-based sample aged ≥80 years, Eur J Clin Pharmacol 59:313–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  244. T. Thomas, T. Nadackal, and K. Thomas, Aspirin and non-steroidal antiinflammatory drugs inhibit amyloid-beta aggregation, Neuroreport 12:3263–3267 (2001).

    PubMed  CAS  Google Scholar 

  245. S. Weggen, J. Eriksen, P. Das, et al., A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity, Nature 414:212–216 (2001).

    Article  PubMed  CAS  Google Scholar 

  246. T. Morihara, T. Chu, O. Ubeda, W. Beech, and G. Cole, Selective inhibition of Abeta42 production, Journal of Neurochemistry 83:1009–1012 (2002).

    Article  PubMed  CAS  Google Scholar 

  247. J. L. Eriksen, S. A. Sagi, T. E. Smith, et al., NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo, J Clin Invest 112:440–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  248. S. A. Sagi, S. Weggen, J. Eriksen, T. E. Golde, and E. H. Koo, The noncyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of kappa B kinase, and NF kappa B, do not reduce amyloid beta 42 production, J Biol Chem 278:31825–30 (2003).

    PubMed  CAS  Google Scholar 

  249. P. S. Aisen, K. A. Schafer, M. Grundman, et al., Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial, JAMA 289:2819–26 (2003).

    Article  PubMed  CAS  Google Scholar 

  250. J. Yuan, and B. Yankner, Apoptosis in the nervous system, Nature 407:802–809 (2000).

    Article  PubMed  CAS  Google Scholar 

  251. P. Klein, and D. Melton, A molecular mechanism for the effect of lithium on development, Proc Natl Acad Sci USA 93:8455–8459 (1996).

    PubMed  CAS  Google Scholar 

  252. V. Stambolic, L. Ruel, and J. Woodgett, Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells, Curr Biol 6:1664–1668 (1996).

    Article  PubMed  CAS  Google Scholar 

  253. E. Chalecka-Franaszek, and D. Chuang, Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons, Proc Natl Acad Sci USA 96:8745–8750 (1999).

    Article  PubMed  CAS  Google Scholar 

  254. S. Summers, A. Kao, A. Kohn, et al., The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism, J Biol Chem 274:17934–17940 (1999).

    PubMed  CAS  Google Scholar 

  255. F. Staal, B. Burgering, M. van de Wetering, and H. Clevers, Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells, Intl Immunol 11:317–323 (1999).

    CAS  Google Scholar 

  256. K. Ptashne, F. Stockdale, and S. Conlon, Initiation of DNA synthesis in mammary epithelium and mammary tumors by lithium ions, J Cellular Physiol 103:41–6 (1980).

    CAS  Google Scholar 

  257. H. Cui, Y. Meng, and R. Bulleit, Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells, Brain Research Devel Brain Res 111:177–188 (1998).

    CAS  Google Scholar 

  258. G. Moore, J. Bebchuk, I. Wilds, G. Chen, and H. Menji, Lithium-induced increase in human brain grey matter, Lancet 356:1241–1242 (2000).

    PubMed  CAS  Google Scholar 

  259. S. Nonaka, C. Hough, and D. Chuang, Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, Proc Natl Acad Sci USA 95:2642–2647 (1998).

    Article  PubMed  CAS  Google Scholar 

  260. F. Lucas, R. Goold, P. Gordon-Weeks, and P. Salinas, Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium, J Cell Sce 111:1351–1361 (1998).

    CAS  Google Scholar 

  261. M. Hong, D. Chen, P. Klein, and V. Lee, Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3, J Biol Chem 272:25326–25332 (1997B).

    PubMed  CAS  Google Scholar 

  262. I. Blasko, M. Wagner, N. Whitaker, B. Grubeck-Loebenstein, and P. Jansen-Dürr, The amyloid beta peptide abeta (25-35) induces apoptosis independent of p53, FEBS Letters 470:221–225 (2000).

    Article  PubMed  CAS  Google Scholar 

  263. E. Paradis, H. Douillard, M. Koutroumanis, C. Goodyer, and A. LeBlanc, Amyloid beta peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates bax expression in human neurons, J Neurosci 16:7533–7539 (1996).

    PubMed  CAS  Google Scholar 

  264. G. Alvarez, J. Muñoz-Montaño, J. Satrústegui, J. Avila, E. Bogónez, and J. Díaz-Nido, Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration, FEBS Letters 453:260–264 (1999).

    Article  PubMed  CAS  Google Scholar 

  265. H. Wei, P. Leeds, Y. Qian, W. Wei, R.-W. Chen, and D.-M. Chuang, Beta-amyloid peptide-induced death of PC 12 cells and cerebellar granule cell neurons is inhibited by long-term lithium treatment, Eur J Pharmacol 392:117–123 (2000).

    Article  PubMed  CAS  Google Scholar 

  266. O. Ghribi, M. M. Herman, and J. Savory, Lithium inhibits Abeta-induced stress in endoplasmic reticulum of rabbit hippocampus but does not prevent oxidative damage and tau phosphorylation, J Neurosci Res 71:853–62 (2003).

    Article  PubMed  CAS  Google Scholar 

  267. R. S. Jope, and G. N. Bijur, Mood stabilizers, glycogen synthase kinase-3beta and cell survival, Mol Psychiatry 7Suppl 1:S35–45 (2002).

    PubMed  CAS  Google Scholar 

  268. J. C. Soares, Can brain-imaging studies provide a ‘mood stabilizer signature?’ Mol Psychiatry 7Suppl 1:S64–70 (2002).

    PubMed  Google Scholar 

  269. S. Washizuka, C. Kakiuchi, K. Mori, et al., Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder, Am J Med Genet Part B 120B:72–8 (2003).

    Google Scholar 

  270. P. Videbech, B. Ravnkilde, T. H. Pedersen, et al., The Danish PET/depression project: clinical symptoms and cerebral blood flow. A regions-of-interest analysis, Acta Psychiatr Scand 106:35–44 (2002).

    Article  PubMed  CAS  Google Scholar 

  271. N. Jha, O. Jurma, G. Lalli, et al., Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity: Implications for Parkinson’s disease, J Biol Chem 275:26096–26101 (2000).

    Article  PubMed  CAS  Google Scholar 

  272. K. Conway, J. Rochet, R. Bieganski, and P. Lansbury, Jr, Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct, Science 294:1346–1349 (2001).

    Article  PubMed  CAS  Google Scholar 

  273. R. Sharon, M. Goldberg, I. Bar-Josef, R. Betensky, J. Shen, and D. Selkoe, alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins, Proc Natl Acad Sci U S A 98:9110–9115 (2001).

    Article  PubMed  CAS  Google Scholar 

  274. S. Prusiner, Prions, Proc Natl Acad Sci USA 95:13363–13383 (1998).

    Article  PubMed  CAS  Google Scholar 

  275. T. Voigtlander, S. Kloppel, P. Birner, et al., Marked increase of neuronal prion protein immunoreactivity in Alzheimer’s disease and human prion diseases, Acta Neuropathol (Berl) 101:417–423 (2001).

    CAS  Google Scholar 

  276. S. Mouillet-Richard, M. Ermonval, C. Chebassier, et al., Signal transduction through prion protein, Science 289:1925–1928 (2000).

    Article  PubMed  CAS  Google Scholar 

  277. C. Wu, S. Butz, Y. Ying, and R. Anderson, Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane, J Biol Chem 272:3554–3559 (1997).

    PubMed  CAS  Google Scholar 

  278. H. Chapman, Y. Wei, D. Simon, and D. Waltz, Role of urokinase receptor and caveolin in regulation of integrin signaling, Thromb Haemostasis 82:291–297 (1999).

    CAS  Google Scholar 

  279. X. Sun, S. Pons, T. Asano, M. Myers, Jr, E. Glasheen, and M. White, The Fyn tyrosine kinase binds Irs-1 and forms a distinct signaling complex during insulin stimulation, J Biol Chem 271:10583–10587 (1996).

    PubMed  CAS  Google Scholar 

  280. M. Resh, Fyn a Src family tyrosine kinase, Intl J Biochem Cell Biol 30:1159–1162 (1998).

    CAS  Google Scholar 

  281. S. Grant, T. O’Dell, K. Karl, P. Stein, P. Soriano, and E. Kandel, Impaired long-term potentiation spatial learning and hippocampal development in fyn mutant mice, Science 258:1903–1910 (1992).

    PubMed  CAS  Google Scholar 

  282. C. Mastick, and A. Saltiel, Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells, J Biol Chem 272:20706–20714 (1997).

    Article  PubMed  CAS  Google Scholar 

  283. H. Beggs, S. Baragona, J. Hemperly, and P. Maness, NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn), J Biol Chem 272:8310–8319 (1997).

    PubMed  CAS  Google Scholar 

  284. C. O’Donovan, D. Tobin, and T. Cotter, Prion protein fragment PrP-(106–126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells, J Biol Chem 276:43516–43523 (2001).

    PubMed  CAS  Google Scholar 

  285. M. Perez, A. I. Rojo, F. Wandosell, J. Diaz-Nido, and J. Avila, Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3, Biochem J 372:129–36 (2003).

    PubMed  CAS  Google Scholar 

  286. D. Pratico, Alzheimer’s disease and oxygen radicals: new insights, Biochem Pharmacol 63:563–567 (2002).

    PubMed  CAS  Google Scholar 

  287. D. A. Butterfield, and C. B. Pocernich, The glutamatergic system and Alzheimer’s disease: therapeutic implications, CNS Drugs 17:641–52 (2003).

    Article  PubMed  CAS  Google Scholar 

  288. R. J. Mark, Z. Pang, J. W. Geddes, K. Uchida, and M. P. Mattson, Amyloid betapeptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation, J Neurosci 17:1046–54 (1997).

    PubMed  CAS  Google Scholar 

  289. T. Prapong, J. Buss, W. Hsu, P. Heine, H. West Greenlee, and E. Uemura, Amyloid beta-peptide decreases neuronal glucose uptake despite causing increase in GLUT3 mRNA transcription and GLUT3 translocation to the plasma membrane, Exp Neurol 174:253–258 (2002).

    Article  PubMed  CAS  Google Scholar 

  290. E. Uemura, and H. Greenlee, Amyloid beta-peptide inhibits neuronal glucose uptake by preventing exocytosis, Exp Neurol 170:270–276 (2001).

    Article  PubMed  CAS  Google Scholar 

  291. I. Kaneko, N. Yamada, Y. Sakuraba, M. Kamenosono, and S. Tutumi, Suppression of mitochondrial succinate dehydrogenase, a primary target of beta-amyloid, and its derivative racemized at Ser residue, J Neurochem 65:2585–2593 (1995).

    PubMed  CAS  Google Scholar 

  292. J. N. Keller, Z. Pang, J. W. Geddes, et al., Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal, J Neurochem 69:273–84 (1997).

    PubMed  CAS  Google Scholar 

  293. L. Canevari, J. B. Clark, and T. E. Bates, beta-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria, FEBS Lett 457:131–4 (1999).

    Article  PubMed  CAS  Google Scholar 

  294. C. Rodrigues, S. Sola, M. Brito, C. Brondino, D. Brites, and J. Moura, Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate, Biochem Biophys Res Commun 281:468–474 (2001).

    Article  PubMed  CAS  Google Scholar 

  295. F. Bosetti, F. Brizzi, S. Barogi, et al., Cytochrome c oxidase and mitochondrial F(1)F(0)-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease, Neurobiol Aging 23:371–376 (2002).

    Article  PubMed  CAS  Google Scholar 

  296. C. Casley, L. Canevari, J. Land, J. Clark, and M. Sharpe, Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities, J Neurochem 80:91–100 (2002).

    Article  PubMed  CAS  Google Scholar 

  297. L. Mucke, E. Masliah, G. Q. Yu, et al., High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation, J Neurosci 20:4050–8 (2000).

    PubMed  CAS  Google Scholar 

  298. S. Cardoso, R. Swerdlow, and C. Oliveira, Induction of cytochrome c-mediated apoptosis by amyloid beta 25–35 requires functional mitochondria, Brain Res 931:117–125 (2002).

    Google Scholar 

  299. P. Kienlen-Campard, S. Miolet, B. Tasiaux, and J. N. Octave, Intracellular amyloidbeta 1–42, but not extracellular soluble amyloid-beta peptides, induces neuronal apoptosis, J Biol Chem 277:15666–70 (2002).

    Article  PubMed  CAS  Google Scholar 

  300. Y. Zhang, R. McLaughlin, C. Goodyer, and A. LeBlanc, Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons, J Cell Biol 156:519–29 (2002).

    Article  PubMed  CAS  Google Scholar 

  301. L. E. Goldstein, J. A. Muffat, R. A. Cherny, et al., Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease, Lancet 361:1258–65 (2003).

    PubMed  CAS  Google Scholar 

  302. R. Kayed, E. Head, J. L. Thompson, et al., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science 300:486–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  303. V. Fonte, V. Kapulkin, A. Taft, A. Fluet, D. Friedman, and C. D. Link, Interaction of intracellular beta amyloid peptide with chaperone proteins, Proc Natl Acad Sci U S A 99:9439–44 (2002).

    Article  PubMed  CAS  Google Scholar 

  304. G. Alvarez, M. Ramos, F. Ruiz, J. Satrustegui, and E. Bogonez, Pyruvate protection against beta-amyloid-induced neuronal death: role of mitochondrial redox state, J Neurosci Res 73:260–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  305. H. Y. Wang, M. R. D’Andrea, and R. G. Nagele, Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells, Neurobiol Aging 23:213–23 (2002).

    PubMed  CAS  Google Scholar 

  306. G. K. Gouras, J. Tsai, J. Naslund, et al., Intraneuronal Abeta42 accumulation in human brain, Am J Pathol 156:15–20 (2000).

    PubMed  CAS  Google Scholar 

  307. L. Xie, E. Helmerhorst, K. Taddei, B. Plewright, W. Van Bronswijk, and R. Martins, Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor, J Neurosci 22:RC221–5 (2002).

    PubMed  Google Scholar 

  308. M. Harris, Y. Wang, N. Pedigo, Jr, K. Hensley, D. Butterfield, and J. Carney, Amyloid beta peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures, J Neurochem 67:277–286 (1996).

    PubMed  CAS  Google Scholar 

  309. Y. Ikegaya, S. Matsuura, S. Ueno, et al., Beta-amyloid enhances glial glutamate uptake activity and attenuates synaptic efficacy, J Biol Chem 277:32180–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  310. W. Farris, S. Mansourian, Y. Chang, et al., Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo, Proc Natl Acad Sci U S A 100:4162–7 (2003).

    Article  PubMed  CAS  Google Scholar 

  311. B. C. Miller, E. A. Eckman, K. Sambamurti, et al., Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo, Proc Natl Acad Sci U S A 100:6221–6 (2003).

    PubMed  CAS  Google Scholar 

  312. D. Gabuzda, J. Busciglio, L. Chen, P. Matsudaira, and B. Yankner, Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative, J Biol Chem 269:13623–13628 (1994).

    PubMed  CAS  Google Scholar 

  313. W. Meier-Ruge, and C. Bertoni-Freddari, The significance of glucose turnover in the brain in the pathogenetic mechanisms of Alzheimer’s disease, Reviews in the Neurosciences 7:1–19 (1996).

    PubMed  CAS  Google Scholar 

  314. L. Zhang, B. Zhao, D. T. Yew, J. W. Kusiak, and G. S. Roth, Processing of Alzheimer’s amyloid precursor protein during H2O2-induced apoptosis in human neuronal cells, Biochem Biophys Res Commun 235:845–8 (1997).

    Article  PubMed  CAS  Google Scholar 

  315. F. Ekinci, M. Linsley, and T. Shea, Beta-amyloid-induced calcium influx induces apoptosis in culture by oxidative stress rather than tau phosphorylation, Molec Brain Res 76:389–395 (2000).

    Article  PubMed  CAS  Google Scholar 

  316. H. Misonou, M. Morishima-Kawashima, and Y. Ihara, Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells, Biochemistry 39:6951–9 (2000).

    Article  PubMed  CAS  Google Scholar 

  317. D. Paola, C. Domenicotti, M. Nitti, et al., Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells, Biochem Biophys Research Commun 268:642–646 (2000).

    CAS  Google Scholar 

  318. E. Tamagno, P. Bardini, A. Obbili, et al., Oxidative stress increases expression and activity of BACE in NT2 neurons, Neurobiol Dis 10:279–88 (2002).

    Article  PubMed  CAS  Google Scholar 

  319. A. Volterra, D. Trotti, C. Tromba, S. Floridi, and G. Racagni, Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes, J Neurosci 14:2924–2932 (1994).

    PubMed  CAS  Google Scholar 

  320. D. Trotti, D. Rossi, O. Gjesdal, et al., Peroxynitrite inhibits glutamate transporter subtypes, J Biol Chem 271:5976–5979 (1996).

    PubMed  CAS  Google Scholar 

  321. Y. Chen, W. Ying, V. Simma, et al., Overexpression of Cu,Zn superoxide dismutase attenuates oxidative inhibition of astrocyte glutamate uptake, J Neurochem 75:939–945 (2000).

    PubMed  CAS  Google Scholar 

  322. N. Bogdanovic, M. Zilmer, K. Zilmer, A. Rehema, and E. Karelson, The Swedish APP670/671 Alzheimer’s disease mutation: the first evidence for strikingly increased oxidative injury in the temporal inferior cortex, Dement Geriatr Cogn Disord 12:364–370 (2001 A).

    Article  PubMed  CAS  Google Scholar 

  323. Y. Huang, X. Q. Liu, T. Wyss-Coray, W. J. Brecht, D. A. Sanan, and R. W. Mahley, Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons, Proc Natl Acad Sci U S A 98:8838–43 (2001).

    PubMed  CAS  Google Scholar 

  324. A. Dresner, D. Laurent, M. Marcucci, et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity, J Clin Invest 103:253–259 (1999).

    PubMed  CAS  Google Scholar 

  325. Z. Jiang, Y. Lin, A. Clemont, et al., Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats, J Clin Invest 104:447–457 (1999).

    PubMed  CAS  Google Scholar 

  326. K. Cusi, K. Maezono, A. Osman, et al., Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle, J Clin Invest 105:311–320 (2000).

    PubMed  CAS  Google Scholar 

  327. H. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin, and A. Baron, Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production, Diabetes 49:1231–1238 (2000).

    PubMed  CAS  Google Scholar 

  328. Y. Kruszynska, D. Worrall, J. Ofrecio, J. Frias, G. Macaraeg, and J. Olefsky, Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation, J Clin Endocrinol Metab 87:226–234 (2002).

    Article  PubMed  CAS  Google Scholar 

  329. A. Volterra, D. Trotti, P. Cassutti, et al., High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes, J Neurochem 59:600–606 (1992).

    PubMed  CAS  Google Scholar 

  330. N. Ruderman, P. Ross, M. Berger, and MN. Goodman, Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats, Biochem J 138:1–10 (1974).

    PubMed  CAS  Google Scholar 

  331. M. Lovell, W. Ehmann, M. Mattson, and WR. Markesbery, Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease, Neurobiol Aging 18:457–461 (1997).

    Article  PubMed  CAS  Google Scholar 

  332. L. McGrath, B. McGleenon, S. Brennan, D. McColl, S. McILroy, and A. Passmore, Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde, QJM 94:485–490 (2001).

    Article  PubMed  CAS  Google Scholar 

  333. I. Kruman, A. Bruce-Keller, D. Bredesen, G. Waeg, and M. Mattson, Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis, J Neurosci 17:5089–5100 (1997).

    PubMed  CAS  Google Scholar 

  334. M. Arai, H. Yamazaki, K. Inoue, and T. Fushiki, Effects of intracranial injection of transforming growth factor-beta relevant to central fatigue on the waking electroencephalogram of rats: Comparison with effects of exercise, Prog Neuro-Psychopharmacol Biol Psych 26:307–312 (2002).

    CAS  Google Scholar 

  335. H. Yamazaki, M. Arai, S. Matsumura, K. Inoue, and T. Fushiki, Intracranial administration of transforming growth factor-beta3 increases fat oxidation in rats, Am J Physiol Endocrinol Metab 283:E536–44 (2002).

    PubMed  CAS  Google Scholar 

  336. F. Lezoualc’h, Y. Sagara, F. Holsboer, and C. Behl, High constitutive NF-kappa B activity mediates resistance to oxidative stress in neuronal cells, J Neurosci 18:3224–3232 (1998).

    PubMed  CAS  Google Scholar 

  337. B. Kaltschmidt, M. Uherek, H. Wellmann, B. Volk, and C. Kaltschmidt, Inhibition of NF-kappaB potentiates amyloid beta-mediated neuronal apoptosis, Proc Natl Acad Sci USA 96:9409–14 (1999).

    Article  PubMed  CAS  Google Scholar 

  338. A. Beg, and D. Baltimore, An essential role for NK-kappaB in preventing TNFalpha-induced cell death, Science 274:782–784 (1996).

    Article  PubMed  CAS  Google Scholar 

  339. D. Van Antwerp, S. Martin, T. Kafri, D. Green, and I. Verma, Suppression of TNFalpha-induced apoptosis by NF-kappaB, Science 274:787–789 (1996).

    PubMed  Google Scholar 

  340. C.-Y. Wang, M. Mayo, and A. Baldwin, Jr, TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB, Science 274:784–787 (1996).

    Article  PubMed  CAS  Google Scholar 

  341. C. Sen, and L. Packer, Antioxidant and redox regulation of gene transcription, FASEB J 10:709–720 (1996).

    PubMed  CAS  Google Scholar 

  342. V. Lakshminarayanan, E. Drab-Weiss, and K. Roebuck, H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells, J Biol Chem 273:32670–32678 (1998).

    Article  PubMed  CAS  Google Scholar 

  343. E. Shaulian, and M. Karin, AP-1 as a regulator of cell life and death, Nat Cell Biol 4:E131–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  344. P. Sanna, M. Cammalleri, F. Berton, et al., Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region, J Neurosci 22:3359–3365 (2002).

    PubMed  CAS  Google Scholar 

  345. H. Y. Man, Q. Wang, W. Y. Lu, et al., Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons, Neuron 38:611–24 (2003).

    Article  PubMed  CAS  Google Scholar 

  346. P. Opazo, A. M. Watabe, S. G. Grant, and T. J. O’Dell, Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signalrelated kinase-independent mechanisms, J Neurosci 23:3679–88 (2003).

    PubMed  CAS  Google Scholar 

  347. Q. Wang, L. Liu, L. Pei, et al., Control of synaptic strength, a novel function of Akt, Neuron 38:915–28 (2003).

    Article  PubMed  CAS  Google Scholar 

  348. L. Zhang, G. Xing, J. Barker, et al., Alpha-lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway, Neurosci Lett 312:125–128 (2001).

    Article  PubMed  CAS  Google Scholar 

  349. R. Dodel, Y. Du, K. Bales, F. Gao, and S. Paul, Sodium salicylate and 17betaestradiol attenuate nuclear transcription factor NF-kappaB translocation in cultured rat astroglial cultures following exposure to amyloid A beta(1-40) and lipopolysaccharides, J Neurochem 73:1453–1460 (1999).

    Article  PubMed  CAS  Google Scholar 

  350. C. Glabe, Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease, J Mol Neurosci 17:137–145 (2001).

    PubMed  CAS  Google Scholar 

  351. M. Ogawa, H. Fukuyama, Y. Ouchi, H. Yamauchi, and J. Kimura, Altered energy metabolism in Alzheimer’s disease, J Neurol Sci 139:78–82 (1996).

    Article  PubMed  CAS  Google Scholar 

  352. M. Bergman, H. Salman, Y. Beloosesky, M. Djaldetti, and H. Bessler, Are peripheral blood cells from patients with Alzheimer disease more sensitive to apoptotic stimuli?, Alzheimer Dis Assoc Disord 16:156–60 (2002).

    Article  PubMed  CAS  Google Scholar 

  353. D. Uberti, T. Carsana, E. Bernardi, et al., Selective impairment of p53-mediated cell death in fibroblasts from sporadic Alzheimer’s disease patients, J Cell Sci 115:3131–8 (2002).

    PubMed  CAS  Google Scholar 

  354. C. Cecchi, C. Fiorillo, S. Sorbi, et al., Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients, Free Radical Biol Med 33:1372–1379 (2002).

    Article  CAS  Google Scholar 

  355. Y. Kitamura, T. Taniguchi, and S. Shimohama, Apoptotic cell death in neurons and glial cells: implications for Alzheimer’s disease, Jpn J Pharmacol 79:1–5 (1999).

    Article  PubMed  CAS  Google Scholar 

  356. N. Chattopadhyay, D. Singh, O. Heese, et al., Expression of peroxisome proliferator-activated receptors (PPARs) in human astrocytic cells: PPARgamma agonists as inducers of apoptosis, J Neurosci Res 61:67–74 (2000).

    Article  PubMed  CAS  Google Scholar 

  357. M. C. Sugden, K. Bulmer, G. F. Gibbons, B. L. Knight, and M. J. Holness, Peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin, Biochem J 364:361–8 (2002).

    Article  PubMed  CAS  Google Scholar 

  358. D. Slosman, C, Ludwig, S. Zerarka, et al., Brain energy metabolism in Alzheimer’s disease: 99mTc-HMPAO SPECT imaging during verbal fluency and role of astrocytes in the cellular mechanism of 99mTc-HMPAO retention, Brain Res Rev 36:230–240 (2001).

    Article  PubMed  CAS  Google Scholar 

  359. Neuroinflammation Working Group, Inflammation and Alzheimer’s disease, Neurobiol Aging 21:383–421 (2000).

    Google Scholar 

  360. A. A. Farooqui, H. C. Yang, T. A. Rosenberger, and L. A. Horrocks, Phospholipase A2 and its role in brain tissue, J Neurochem 69:889–901 (1997).

    PubMed  CAS  Google Scholar 

  361. G. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M. White, and B. Spiegelman, IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alphaand obesity-induced insulin resistance, Science 271:665–8 (1996A).

    PubMed  CAS  Google Scholar 

  362. E. Sternberg, Neural-immune interactions in health and disease, J Clin Invest 100:2641–2647 (1997).

    PubMed  CAS  Google Scholar 

  363. N. Rothwell, S. Allan, and S. Toulmond, The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications, J Clin Invest 100:2648–2652 (1997).

    PubMed  CAS  Google Scholar 

  364. J. Licinio, and M.-L. Wong, Pathways and mechanisms for cytokine signaling of the central nervous system, J Clin Invest 100:2941–2947 (1997).

    PubMed  CAS  Google Scholar 

  365. C. Greenwood, and G. Winocur, Glucose treatment reduces memory deficits in young adult rats fed high-fat diets, Neurobiol Learning Memory 75:179–189 (2001).

    CAS  Google Scholar 

  366. R. Wing, J. Vazquez, and C. Ryan, Cognitive effects of ketogenic weight-reducing diets, Intl J Obesity Rel Metab Disord 19:811–816 (1995).

    CAS  Google Scholar 

  367. S. Su, M. Cilio, Y. Sogawa, D. Silveira, G. Holmes, and C. Stafstrom, Timing of ketogenic diet initiation in an experimental epilepsy model, Devel Brain Res 29125:131–138 (2000).

    Google Scholar 

  368. X. L. Li, S. Aou, Y. Oomura, N. Hori, K. Fukunaga, and T. Hori, Impairment of longterm potentiation and spatial memory in leptin receptor-deficient rodents, Neuroscience 113:607–15 (2002).

    PubMed  CAS  Google Scholar 

  369. N. Z. Gerges, A. M. Aleisa, and K. A. Alkadhi, Impaired long-term potentiation in obese Zucker rats: possible involvement of presynaptic mechanism, Neuroscience 120:535–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  370. A. Navarro, M. Sanchez Del Pino, C. Gomez, J. Peralta, and A. Boveris, Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice, Am J Physiol Regul Integr Comp Physiol 282:R985–R992 (2002).

    PubMed  CAS  Google Scholar 

  371. Z. Guo, A. Ersoz, D. Butterfield, and M. Mattson, Beneficial effects of dietary restriction on cerebral cortical synaptic terminals: Preservation of glucose and glutamate transport and mitochondrial function after exposure to amyloid betapeptide, iron, and 3-nitropropionic acid, J Neurochem 75:314–320 (2000).

    Article  PubMed  CAS  Google Scholar 

  372. M. Mattson, Emerging neuroprotective strategies for Alzheimer’s disease: dietary restriction telomerase activation and stem cell therapy, Exper Gerontol 35:489–502 (2000).

    CAS  Google Scholar 

  373. Z. Radák, T. Kaneko, S. Tahara, et al., Regular exercise improves cognitive function and decreases oxidative damage in rat brain, Neurochem Intl 38:17–23 (2001).

    Google Scholar 

  374. J. A. Luchsinger, M. X. Tang, S. Shea, and R. Mayeux, Caloric intake and the risk of Alzheimer disease, Arch Neurol 59:1258–63 (2002).

    Article  PubMed  Google Scholar 

  375. D. J. Foley, and L. R. White, Dietary intake of antioxidants and risk of Alzheimer disease: food for thought, Jama 287:3261–3 (2002).

    Article  PubMed  Google Scholar 

  376. H. Jick, G. Zornberg, S. Jick, S. Seshadri, and D. Drachman, Statins and the risk of dementia, Lancet 356:1627–1631 (2000).

    Article  PubMed  CAS  Google Scholar 

  377. B. Wolozin, W. Kellman, P. Ruosseau, G. Celesia, and G. Siegel, Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors, Arch Neurol 57:1439–1443 (2000).

    PubMed  CAS  Google Scholar 

  378. K. Fassbender, M. Stroick, T. Bertsch, et al., Effects of statins on human cerebral cholesterol metabolism and secretion of Alzheimer amyloid peptide, Neurology 59:1257–8 (2002).

    PubMed  CAS  Google Scholar 

  379. K. Fassbender, M. Simons, C. Bergmann, et al., Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo, Proc Natl Acad Sci USA 98:5856–5861 (2001).

    Article  PubMed  CAS  Google Scholar 

  380. R. L. Raffai, and K. H. Weisgraber, Cholesterol: from heart attacks to Alzheimer’s disease, J Lipid Res 44:1423–30 (2003).

    PubMed  CAS  Google Scholar 

  381. A. Naidu, Q. Xu, R. Catalano, and B. Cordell, Secretion of apolipoprotein E by brain glia requires protein prenylation and is suppressed by statins, Brain Research 958:100–111 (2002).

    Article  PubMed  CAS  Google Scholar 

  382. C. Geula, C.-K. Wu, D. Saroff, A. Lorenzo, M. Yuan, and B. Yankner, Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity, Nature Med 4:827–831 (1998).

    PubMed  CAS  Google Scholar 

  383. P. Cryer, M. Haymond, J. Santiago, and S. Shah, Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events, New England Journal of Medicine 295:573–7 (76).

    Google Scholar 

  384. M. Hellerstein, N. Benowitz, R. Neese, et al., Effects of cigarette smoking and its cessation on lipid metabolism and energy expenditure in heavy smokers, Journal of Clinical Investigation 93:265–72 (1994).

    PubMed  CAS  Google Scholar 

  385. K. Fattinger, D. Verotta, and N. Benowitz, Pharmacodynamics of acute tolerance to multiple nicotinic effects in humans, J Pharmacol Exp Ther 281:1238–46 (1997).

    PubMed  CAS  Google Scholar 

  386. J. Rincón, A. Krook, D. Galuska, H. Wallberg-Henriksson, and J. Zierath, Altered skeletal muscle glucose transport and blood lipid levels in habitual cigarette smokers, Clin Physiol 19:135–142 (1999).

    PubMed  Google Scholar 

  387. J. Manson, U. Ajani, S. Liu, D. Nathan, and C. Hennekens, A prospective study of cigarette smoking and the incidence of diabetes mellitus among US male physicians, Am J Med 109:538–542 (2000).

    Article  PubMed  CAS  Google Scholar 

  388. L. Fratiglioni, and H. Wang, Smoking and Parkinson’s and Alzheimer’s disease: review of the epidemiological studies, Behaviour Brain Res 113:117–120 (2000).

    CAS  Google Scholar 

  389. W. Kukull, The association between smoking and Alzheimer’s disease: effects of study design and bias, Biol Psych 49:194–199 (2001).

    CAS  Google Scholar 

  390. S. L. Tyas, L. R. White, H. Petrovitch, et al., Mid-life smoking and late-life dementia: the Honolulu-Asia Aging Study, Neurobiol Aging 24:589–96 (2003).

    Article  PubMed  Google Scholar 

  391. O. Forlenza, J. Spink, R. Dayanandan, B. Anderton, O. Olesen, and S. Lovestone, Muscarinic agonists reduce tau phosphorylation in non-neuronal cells via GSK-3beta inhibition and in neurons, J Neural Transmission 107:1201–1212 (2000).

    Article  CAS  Google Scholar 

  392. R. Garrido, A. Malecki, B. Hennig, and M. Toborek, Nicotine attenuates arachidonic acid-induced neurotoxicity in cultured spinal cord neurons, Brain Res 861:59–68 (2000).

    Article  PubMed  CAS  Google Scholar 

  393. T. Kihara, S. Shimohama, H. Sawada, et al., alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity, J Biol Chem 276:13541–13546 (2001).

    PubMed  CAS  Google Scholar 

  394. K. West, J. Brognard, A. Clark, et al., Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells, Journal of Clinical Investigation 111:81–90 (2003).

    Article  PubMed  CAS  Google Scholar 

  395. S. Fujii, and K. Sumikawa, Acute and chronic nicotine exposure reverse age-related declines in the induction of long-term potentiation in the rat hippocampus, Brain Res 894:347–353 (2001).

    PubMed  CAS  Google Scholar 

  396. G. Jones, B. Sahakian, R. Levy, D. Warburton, and J. Gray, Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease, Psychopharmacol 108:485–494 (1992).

    CAS  Google Scholar 

  397. K. Ono, K. Hasegawa, M. Yamada, and H. Naiki, Nicotine breaks down preformed Alzheimer’s beta-amyloid fibrils in vitro, Biol Psychiatry 52:880–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  398. Z. Z. Guan, W. F. Yu, K. R. Shan, T. Nordman, J. Olsson, and A. Nordberg, Loss of nicotinic receptors induced by beta-amyloid peptides in PC 12 cells: possible mechanism involving lipid peroxidation, J Neurosci Res 71:397–406 (2003).

    Article  PubMed  CAS  Google Scholar 

  399. D. B. Freir, and C. E. Herron, Nicotine enhances the depressive actions of A beta 1-40 on long-term potentiation in the rat hippocampal CA1 region in vivo, J Neurophysiol 89:2917–22 (2003).

    PubMed  CAS  Google Scholar 

  400. G. Watson, and S. Craft, The role of insulin resistance in the pathogenesis of Alzheimer’s disease. Implications for treatment, CNS Drugs 17:27–45 (2003).

    Article  PubMed  CAS  Google Scholar 

  401. A. M. Palmer, Pharmacotherapy for Alzheimer’s disease: progress and prospects, Trends Pharmacol Sci 23:426–33 (2002).

    Article  PubMed  CAS  Google Scholar 

  402. R. Wilson, C. Mendes De Leon, L. Barnes, et al., Participation in cognitively stimulating activities and risk of incident Alzheimer disease, JAMA 287:742–748 (2002).

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2004). Pathogenesis of Alzheimer Disease: Metabolic Factors. In: Integration of Metabolism, Energetics, and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/0-306-48529-X_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-48529-X_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48471-1

  • Online ISBN: 978-0-306-48529-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics