Advertisement

Neuronal Energy Metabolism in Brain: Astrocyte as both Metabolic “Buffer” and Mediator of Neuronal Injury

Keywords

Cerebral Blood Flow Electron Transport Chain Long Term Potentiation AMPA Receptor Ketone Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14.6. References

  1. 1.
    P. Fox, M. Raichle, M. Mintun, and C. Dence, Nonoxidative glucose consumption during focal physiologic neural activity, Science 241:462–464 (1988).PubMedGoogle Scholar
  2. 2.
    P. Madsen, S. Hasselbalch, L. Hagemann, et al., Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique, J Cerebral Blood Flow Metab 15:485–491 (1995).Google Scholar
  3. 3.
    F. Hyder, D. Rothman, G. Mason, A. Rangarajan, K. Behar, and R. Shulman, Oxidative glucose metabolism in rat brain during single forepaw stimulation: a spatially localized 1H13C nuclear magnetic resonance study, J Cerebral Blood Flow Metab 17:1040–1047 (1997).Google Scholar
  4. 4.
    P. Madsen, N. Cruz, L. Sokoloff, and G. Dienel, Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue, J Cerebral Blood Flow Metab 19:393–400 (1999).Google Scholar
  5. 5.
    I. Vanzetta, and A. Grinvald, Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging, Science 286:1555–8 (1999).CrossRefPubMedGoogle Scholar
  6. 6.
    R. Buxton, The elusive initial dip, Neuroimage 13:953–958 (2001).CrossRefPubMedGoogle Scholar
  7. 7.
    M. Mintun, B. Lundstrom, A. Snyder, A. Vlassenko, G. Shulman, and M. Raichle, Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data, Proc Natl Acad Sci U S A 98:6859–6864 (2001).CrossRefPubMedGoogle Scholar
  8. 8.
    R. Shulman, F. Hyder, and D. Rothman, Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging, Proc Natl Acad Sci U S A 98:6417–6422 (2001A).PubMedGoogle Scholar
  9. 9.
    R. Shulman, F. Hyder, and D. Rothman, Lactate efflux and the neuroenergetic basis of brain function, NMR Biomed 14:389–396 (2001B).CrossRefPubMedGoogle Scholar
  10. 10.
    R. Hoge, J. Atkinson, B. Gill, G. Crelier, S. Marrett, and G. Pike, Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex, Proc Natl Acad Sci USA 96:9403–9408 (1999A).CrossRefPubMedGoogle Scholar
  11. 11.
    R. Hoge, J. Atkinson, B. Gill, G. Crelier, S. Marrett, and G. Pike, Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model, Magnetic Resonance Med 42:849–863 (1999B).Google Scholar
  12. 12.
    J. Oja, J. Gillen, R. Kauppinen, M. Kraut, and P. van Zijl, Determination of oxygen extraction ratios by magnetic resonance imaging, J Cerebral Blood Flow Metab 19:1289–1295 (1999).Google Scholar
  13. 13.
    M. Vafaee, and A. Gjedde, Model of blood-brain transfer of oxygen explains nonlinear flow-metabolism coupling during stimulation of visual cortex, J Cerebral Blood Flow Metab 20:747–754 (2000).Google Scholar
  14. 14.
    L. Hertz, R. Dringen, A. Schousboe, and S. Robinson, Astrocytes: glutamate producers for neurons, J Neurosci Res 57:417–428 (1999).CrossRefPubMedGoogle Scholar
  15. 15.
    L. Hertz, A. Yu, G. Kala, and A. Schousboe, Neuronal-astrocytic and cytosolicmitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation, Neurochem Intl 37:83–102 (2000).Google Scholar
  16. 16.
    E. Fraze, C. Donner, A. Swislocki, Y. Chiou, Y. Chen, and G. Reaven, Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance, J Clin Endocrinol Metab 61:807–811 (1985).PubMedGoogle Scholar
  17. 17.
    Y. Chen, A. Golay, A. Swislocki, and G. Reaven, Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in noninsulin-dependent diabetes mellitus, J Clin Endocrinol Metab 64:17–21 (1987).PubMedGoogle Scholar
  18. 18.
    A. Golay, A. Swislocki, Y. Chen, and G. Reaven, Relationships between plasma-free fatty acid concentration, endogenous glucose production, and fasting hyperglycemia in normal and non-insulin-dependent diabetic individuals, Metab Clin Exp 36:692–696 (1987).PubMedGoogle Scholar
  19. 19.
    R. Young, O. Petroff, B. Chen, J. Gore, and W. Aquila, Brain energy state and lactate metabolism during status epilepticus in the neonatal dog: in vivo 31P and 1H nuclear magnetic resonance study, Ped Res 29:191–195 (1991).Google Scholar
  20. 20.
    T. E. Cullingford, D. A. Eagles, and H. Sato, The ketogenic diet upregulates expression of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in rat brain, Epilepsy Res 49:99–107 (2002).CrossRefPubMedGoogle Scholar
  21. 21.
    R. Wing, J. Vazquez, and C. Ryan, Cognitive effects of ketogenic weight-reducing diets, Intl J Obesity Rel Metab Disord 19:811–816 (1995).Google Scholar
  22. 22.
    S. Su, M. Cilio, Y. Sogawa, D. Silveira, G. Holmes, and C. Stafstrom, Timing of ketogenic diet initiation in an experimental epilepsy model, Devel Brain Res 29125:131–138 (2000).Google Scholar
  23. 23.
    P. Schwartzkroin, Mechanisms underlying the anti-epileptic efficacy of the ketogenic diet, Epilepsy Research 37:171–180 (1999).CrossRefPubMedGoogle Scholar
  24. 24.
    M. Erecinska, D. Nelson, Y. Daikhin, and M. Yudkoff, Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium, and ketone bodies, J Neurochem 67:2325–2334 (1996C).PubMedGoogle Scholar
  25. 25.
    M. Yudkoff, Y. Daikhin, I. Nissim, A. Lazarow, and I. Nissim, Ketogenic diet, amino acid metabolism, and seizure control, J Neurosci Res 66:931–940 (2001).PubMedGoogle Scholar
  26. 26.
    S. Lipton, and P. Rosenberg, Excitatory amino acids as a final common pathway for neurologic disorders, New Engl J Med 330:613–622 (1994).CrossRefPubMedGoogle Scholar
  27. 27.
    S. Ozawa, H. Kamiya, and K. Tsuzuki, Glutamate receptors in the mammalian central nervous system, Prog Neurobiol 54:581–618 (1998).CrossRefPubMedGoogle Scholar
  28. 28.
    J. Lisman, Bursts as a unit of neural information: making unreliable synapses reliable, Trends Neurosci 20:38–43 (1997).CrossRefPubMedGoogle Scholar
  29. 29.
    A. Riehle, S. Grün, M. Diesmann, and A. Aertsen, Spike synchronization and rate modulation differentially involved in motor cortical function, Science 278:1950–1953 (1997).CrossRefPubMedGoogle Scholar
  30. 30.
    Y. Kanai, and M. Hediger, Primary structure and functional characterization of a high-affinity glutamate transporter, Nature 360:467–471 (1992).CrossRefPubMedGoogle Scholar
  31. 31.
    M. Takahashi, M. Sarantis, and D. Attwell, Postsynaptic glutamate uptake in rat cerebellar Purkinje cells, J Physiol 497:523–530 (1996).PubMedGoogle Scholar
  32. 32.
    S. Coco, C. Verderio, D. Trotti, J. Rothstein, A. Volterra, and M. Matteoli, Non-synaptic localization of the glutamate transporter EAAC1 in cultured hippocampal neurons, Eur J Neurosci 9:1902–1910 (1997).PubMedGoogle Scholar
  33. 33.
    A. Furuta, L. Martin, C. Lin, M. Dykes-Hoberg, and J. Rothstein, Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4, Neurosci 81:1031–1042 (1997).CrossRefGoogle Scholar
  34. 34.
    T. Otis, M. Kavanaugh, and C. Jahr, Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse, Science 277:1515–1518 (1997).CrossRefPubMedGoogle Scholar
  35. 35.
    S. Eliasof, J, Arriza, B. Leighton, M. Kavanaugh, and S. Amara, Excitatory amino acid transporters of the salamander retina: identification, localization, and function, J Neurosci 18:698–712 (1998).PubMedGoogle Scholar
  36. 36.
    L. Gaal, B. Roska, S. Picaud, S. Wu, R. Marc, and F. Werblin, Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors, J Neurophysiol 79:190–196 (1998).PubMedGoogle Scholar
  37. 37.
    G. Gegelashvili, and A. Schousboe, Cellular distribution and kinetic properties of high-affinity glutamate transporters, Brain Res Bull 45:233–238 (1998).CrossRefPubMedGoogle Scholar
  38. 38.
    W. Fairman, and S. Amara, Functional diversity of excitatory amino acid transporters: ion channel and transport modes, American Journal of Physiology 277:F481–6 (1999).PubMedGoogle Scholar
  39. 39.
    K. Sims, and M. Robinson, Expression patterns and regulation of glutamate transporters in the developing and adult nervous system, Crit Rev Neurobiol 13:169–197 (1999).PubMedGoogle Scholar
  40. 40.
    J. Levenson, E. Weeber, J. Selcher, L. Kategaya, J. Sweatt, and A. Eskin, Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake, Nat Neurosci 5:155–161 (2002).CrossRefPubMedGoogle Scholar
  41. 41.
    C. Arias, I. Arrieta, L. Massieu, and R. Tapia, Neuronal damage and MAP2 changes induced by the glutamate transport inhibitor dihydrokainate and by kainate in rat hippocampus in vivo, Exp Brain Res 116:467–476 (1997).CrossRefPubMedGoogle Scholar
  42. 42.
    A. Hirata, R. Nakamura, S. Kwak, N. Nagata, and K. Kamakura, AMPA receptor-mediated slow neuronal death in the rat spinal cord induced by long-term blockade of glutamate transporters with THA, Brain Res 771:37–44 (1997).CrossRefPubMedGoogle Scholar
  43. 43.
    J. Liévens, M. Dutertre, C. Forni, P. Salin, and L. Kerkerian-Le Goff, Continuous administration of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylate produces striatal lesion, Brain Research Molec Brain Res 50:181–189 (1997).Google Scholar
  44. 44.
    L. Massieu, and R. Tapia, Glutamate uptake impairment and neuronal damage in young and aged rats in vivo, J Neurochem 69:1151–1160 (1997).PubMedGoogle Scholar
  45. 45.
    J. Rothstein, M. Dykes-Hoberg, C. Pardo, et al., Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate, Neuron 16:675–686 (1996).CrossRefPubMedGoogle Scholar
  46. 46.
    L. Martin, A. Brambrink, C. Lehmann, et al., Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum, Ann Neurol 42:335–348 (1997).CrossRefPubMedGoogle Scholar
  47. 47.
    C. Pereira, and C. Oliveria, Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca2+ homeostasis, Neurosci Res 37:227–236 (2000).CrossRefPubMedGoogle Scholar
  48. 48.
    R. Malenka, and R. Nicoll, Long-term potentiation — a decade of progress?, Science 285:1870–1874 (1999).CrossRefPubMedGoogle Scholar
  49. 49.
    M. Beal, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?, Ann Neurol 31:119–130 (1992).CrossRefPubMedGoogle Scholar
  50. 50.
    J. Schulz, R. Matthews, T. Klockgether, J. Dichgans, and M. Beal, The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases, Molec Cell Biochem 174:193–197 (1997).PubMedGoogle Scholar
  51. 51.
    Z. Kovacevic, and J. McGivan, Mitochondrial metabolism of glutamine and glutamate and its physiological significance, Physiolog Rev 63:547–605 (1983).Google Scholar
  52. 52.
    M. McKenna, U. Sonnewald, X. Huang, J. Stevenson, and Zielke, HR, Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes, J Neurochem 66:386–393 (1996).PubMedGoogle Scholar
  53. 53.
    M. McKenna, J. Stevenson, X. Huang, and I. Hopkins, Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals, Neurochem Intl 37:229–241 (2000).Google Scholar
  54. 54.
    D. Gincel, S. Silberberg, and V. Shoshan-Barmatz, Modulation of the voltagedependent anion channel (VDAC) by glutamate, J Bioenerg Biomembranes 32:571–583 (2000).Google Scholar
  55. 55.
    Z. Pfund, D. Chugani, C. Juhász, et al., Evidence for coupling between glucose metabolism and glutamate cycling using FDG PET and 1H magnetic resonance spectroscopy in patients with epilepsy, J Cerebral Blood Flow Metab 20:871–878 (2000).Google Scholar
  56. 56.
    H. Qu, J. Konradsen, M. van Hengel, S. Wolt, and U. Sonnewald, Effect of glutamine and GABA on [U-(13)C]glutamate metabolism in cerebellar astrocytes and granule neurons, J Neurosci Res 66:885–890 (2001).PubMedGoogle Scholar
  57. 57.
    S._S. Korshunov, V. P. Skulachev, and A. A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett 416:15–8 (1997).CrossRefPubMedGoogle Scholar
  58. 58.
    S._S. Liu, Cooperation of a “reactive oxygen cycle” with the Q cycle and the proton cycle in the respiratory chain—superoxide generating and cycling mechanisms in mitochondria, J Bioenerg Biomembr 31:367–76 (1999).PubMedGoogle Scholar
  59. 59.
    I. Lee, E. Bender, and B. Kadenbach, Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase, Mol Cell Biochem 234–235:63–70 (2002).PubMedGoogle Scholar
  60. 60.
    D. Richard, S. Clavel, Q. Huang, D. Sanchis, and D. Ricquier, Uncoupling protein 2 in the brain: distribution and function, Biochem Soc Trans 29:812–817 (2001).CrossRefPubMedGoogle Scholar
  61. 61.
    T. Horvath, C. Warden, M. Hajos, A. Lombardi, F. Goglia, and S. Diano, Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers, J Neurosci 19:10417–10427 (1999).PubMedGoogle Scholar
  62. 62.
    S. Diano, H. Urbanski, B. Horvath, et al., Mitochondrial uncoupling protein 2 (UCP2) in the nonhuman primate brain and pituitary, Endocrinol 141:4226–4238 (2000).CrossRefGoogle Scholar
  63. 63.
    T. L. Horvath, S. Diano, and C. Barnstable, Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector, Biochem Pharmacol 65:1917–21 (2003).CrossRefPubMedGoogle Scholar
  64. 64.
    I. Reynolds, and T. Hastings, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J Neurosci 15:3318–3327 (1995).PubMedGoogle Scholar
  65. 65.
    V. Skulachev, Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Quart Rev Biophys 29:169–202 (1996).Google Scholar
  66. 66.
    A. Nègre-Salvayre, C. Hirtz, G. Carrera, et al., A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, FASEB J 11:809–815 (1997).PubMedGoogle Scholar
  67. 67.
    A. Stout, H. Raphael, B. Kanterewicz, E. Klann, and I. Reynolds, Glutamate-induced neuron death requires mitochondrial calcium uptake, Nature Neurosci 1:366–373 (1998).PubMedGoogle Scholar
  68. 68.
    S. Korshunov, O. Korkina, E. Ruuge, V. Skulachev, and A. Starkov, Fatty acids as natural uncouplers preventing generation of O2-and H2O2 by mitochondria in the resting state, FEBS Letts 435:215–218 (1998).CrossRefGoogle Scholar
  69. 69.
    D. F. Rolfe, A. J. Hulbert, and M. D. Brand, Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat, Biochim Biophys Acta 1188:405–16 (1994).PubMedGoogle Scholar
  70. 70.
    Y. Ge, X. Wang, Z. Chen, N. Landman, E. H. Lo, and J. X. Kang, Gene transfer of the Caenorhabditis elegans n-3 fatty acid desaturase inhibits neuronal apoptosis, J Neurochem 82:1360–6 (2002).CrossRefPubMedGoogle Scholar
  71. 71.
    D. S. Martin, P. E. Lonergan, B. Boland, et al., Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid, J Biol Chem 277:34239–46 (2002).PubMedGoogle Scholar
  72. 72.
    P. E. Lonergan, D. S. Martin, D. F. Horrobin, and M. A. Lynch, Neuroprotective effect of eicosapentaenoic acid in hippocampus of rats exposed to gamma-irradiation, J Biol Chem 277:20804–11 (2002).CrossRefPubMedGoogle Scholar
  73. 73.
    D. Yablonskiy, J. Ackerman, and M. Raichle, Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation, Proc Natl Acad Sci USA 97:7603–7608 (2000).CrossRefPubMedGoogle Scholar
  74. 74.
    D. Feldman, R. Nicoll, and R. Malenka, Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses, J Neurobiol 41:92–101 (1999).CrossRefPubMedGoogle Scholar
  75. 75.
    J. Zhu, I. Esteban, Y. Hayashi, and R. Malinow, Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity, Nature Neurosci 3:1098–1106 (2000).PubMedGoogle Scholar
  76. 76.
    E. J. Weeber, M. Levy, M. J. Sampson, et al., The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity, J Biol Chem 277:18891–7 (2002).PubMedGoogle Scholar
  77. 77.
    J. Lisman, H. Schulman, and H. Cline, The molecular basis of CaMKII function in synaptic and behavioural memory, Nat Rev Neurosci 3:175–190 (2002).CrossRefPubMedGoogle Scholar
  78. 78.
    M. Perkinton, J. Ip, G. Wood, A. Crossthwaite, and R. Williams, Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones, J Neurochem 80:239–254 (2002).CrossRefPubMedGoogle Scholar
  79. 79.
    J. McCormack, and R. Denton, The role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in mammalian tissues, Biochem Soc Trans 21:793–799 (1993).PubMedGoogle Scholar
  80. 80.
    O. Kann, S. Schuchmann, K. Buchheim, and U. Heinemann, Coupling of neuronal activity and mitochondrial metabolism as revealed by NAD(P)H fluorescence signals in organotypic hippocampal slice cultures of the rat, Neuroscience 119:87–100 (2003).CrossRefPubMedGoogle Scholar
  81. 81.
    J. A. Esteban, S. H. Shi, C. Wilson, M. Nuriya, R. L. Huganir, and R. Malinow, PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity, Nat Neurosci 6:136–43 (2003).CrossRefPubMedGoogle Scholar
  82. 82.
    Y. Hayashi, S. Shi, J. Esteban, A. Piccini, J. Poncer, and R. Malinow, Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction, Science 287:2262–2267 (2000).PubMedGoogle Scholar
  83. 83.
    E. Beattie, D. Stellwagen, W. Morishita, et al., Control of synaptic strength by glial TNFalpha, Science 295:2282–2285 (2002).CrossRefPubMedGoogle Scholar
  84. 84.
    O. Ozes, L. Mayo, J. Gustin, S. Pfeffer, L. Pfeffer, and D. Donner, NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase, Nature 401:82–85 (1999).PubMedGoogle Scholar
  85. 85.
    Q. Wang, L. Liu, L. Pei, et al., Control of synaptic strength, a novel function of Akt, Neuron 38:915–28 (2003).CrossRefPubMedGoogle Scholar
  86. 86.
    P. Sanna, M. Cammalleri, F. Berton, et al., Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region, J Neurosci 22:3359–3365 (2002).PubMedGoogle Scholar
  87. 87.
    P. Opazo, A. M. Watabe, S. G. Grant, and T. J. O’Dell, Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms, J Neurosci 23:3679–88 (2003).PubMedGoogle Scholar
  88. 88.
    H. Y. Man, Q. Wang, W. Y. Lu, et al., Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons, Neuron 38:611–24 (2003).CrossRefPubMedGoogle Scholar
  89. 89.
    J. Lin, W. Ju, K. Foster, et al., Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization, Nat Neurosci 3:1282–1290 (2000).CrossRefPubMedGoogle Scholar
  90. 90.
    H. Y. Man, J. W. Lin, W. H. Ju, et al., Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization, Neuron 25:649–62 (2000).CrossRefPubMedGoogle Scholar
  91. 91.
    R. C. Carroll, E. C. Beattie, M. von Zastrow, and R. C. Malenka, Role of AMPA receptor endocytosis in synaptic plasticity, Nat Rev Neurosci 2:315–24 (2001).CrossRefPubMedGoogle Scholar
  92. 92.
    I. Song, and R. L. Huganir, Regulation of AMPA receptors during synaptic plasticity, Trends Neurosci 25:578–88 (2002).CrossRefPubMedGoogle Scholar
  93. 93.
    M. Delcommenne, C. Tan, V. Gray, L. Rue, J. Woodgett, and S. Dedhar, Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase, Proc Natl Acad Sci USA 95:11211–11216 (1998).CrossRefPubMedGoogle Scholar
  94. 94.
    C. S. Chan, E. J. Weeber, S. Kurup, J. D. Sweatt, and R. L. Davis, Integrin requirement for hippocampal synaptic plasticity and spatial memory, J Neurosci 23:7107–16 (2003).PubMedGoogle Scholar
  95. 95.
    M. Ehlers, Reinsertion or degradation of AMPA receptors determined by activitydependent endocytic sorting, Neuron 28:511–525 (2000).CrossRefPubMedGoogle Scholar
  96. 96.
    M. Sheng, and S. Hyoung Lee, AMPA receptor trafficking and synaptic plasticity: major unanswered questions, Neurosci Res 46:127–34 (2003).PubMedGoogle Scholar
  97. 97.
    T. Soderling, and V. Derkach, Postsynaptic protein phosphorylation and LTP, Trends Neurosci 23:75–80 (2000).CrossRefPubMedGoogle Scholar
  98. 98.
    S. Hrabetova, P. Serrano, N. Blace, et al., Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction, J Neurosci 20:1–6 (2000).Google Scholar
  99. 99.
    C. Thornton, R. Yaka, S. Dinh, and D. Ron, H-Ras modulates N-methyl-D-aspartate receptor function via inhibition of Src tyrosine kinase activity, J Biol Chem 278:23823–9 (2003).CrossRefPubMedGoogle Scholar
  100. 100.
    L. T. Knapp, and E. Klann, Role of reactive oxygen species in hippocampal longterm potentiation: contributory or inhibitory?, J Neurosci Res 70:1–7 (2002).CrossRefPubMedGoogle Scholar
  101. 101.
    N. Z. Gerges, A. M. Aleisa, and K. A. Alkadhi, Impaired long-term potentiation in obese Zucker rats: possible involvement of presynaptic mechanism, Neuroscience 120:535–9 (2003).CrossRefPubMedGoogle Scholar
  102. 102.
    M. Ankarcrona, J. Dypbukt, E. Bonfoco, et al., Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function, Neuron 15:961–973 (1995).CrossRefPubMedGoogle Scholar
  103. 103.
    M. Leist, and P. Nicotera, Apoptosis, excitotoxicity, and neuropathology, Exper Cell Res 239:183–201 (1998).Google Scholar
  104. 104.
    P. Nicotera, and S. Lipton, Excitotoxins in neuronal apoptosis and necrosis, J Cerebral Blood Flow Metab 19:583–591 (1999).Google Scholar
  105. 105.
    C. Wallin, S. Weber, and M. Sandberg, Glutathione efflux induced by NMDA and kainite: implications in neurotoxicity?, J Neurochem 73:1566–1572 (1999).CrossRefPubMedGoogle Scholar
  106. 106.
    L. Dugan, S. Sensi, L. Canzoniero, et al., Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate, J Neurosci 15:6377–6388 (1995).PubMedGoogle Scholar
  107. 107.
    M. Schramm, S. Eimerl, and E. Costa, Serum and depolarizing agents cause acute neurotoxicity in cultured cerebellar granule cells: role of the glutamate receptor responsive to N-methyl-D-aspartate, Proc Natl Acad Sci USA 87:1193–1197 (1990).PubMedGoogle Scholar
  108. 108.
    M. Nishimura, K. Sato, T. Okada, P. Schloss, S. Shimada, and M. Tohyama, MK-801 blocks monoamine transporters expressed in HEK cells, FEBS Lett 423:376–380 (1998).CrossRefPubMedGoogle Scholar
  109. 109.
    J. Lee, M. Grabb, G. Zipfel, and D. Choi, Brain tissue responses to ischemia, J Clin Invest 106:723–731 (2000).PubMedGoogle Scholar
  110. 110.
    C. Pereira, M. Santos, and C. Oliveira, Metabolic inhibition increases glutamate susceptibility on a PC12 cell line, J Neurosci Res 51:360–370 (1998).CrossRefPubMedGoogle Scholar
  111. 111.
    M. Ward, A. Rego, B. Frenguelli, and D. Nicholls, Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells, J Neurosci 20:7208–7219 (2000).PubMedGoogle Scholar
  112. 112.
    A. Frandsen, and A. Schousboe, Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons, J Neurochem 56:1075–1078 (1991).PubMedGoogle Scholar
  113. 113.
    A. Frandsen, and A. Schousboe, Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate and kainate in cultured cerebral cortical neurons, Proc Natl Acad Sci USA 89:2590–2594 (1992).PubMedGoogle Scholar
  114. 114.
    S. Lei, D. Zhang, A. Abele, and S. Lipton, Blockade of NMDA receptor-mediated mobilization of intracellular Ca2+ prevents neurotoxicity, Brain Res 598:196–202 (1992).CrossRefPubMedGoogle Scholar
  115. 115.
    S. Budd, and D. Nicholls, Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells, J Neurochem 67:2282–2291 (1996).PubMedGoogle Scholar
  116. 116.
    J. Dubinsky, and S. Rothman, Intracellular calcium concentrations during “chemical hypoxia” and excitotoxic neuronal injury, J Neurosci 11:2545–2551 (1991).PubMedGoogle Scholar
  117. 117.
    H. Wei, W. Wei, D. Bredesen, and D. Perry, Bcl-2 protects against apoptosis in neuronal cell line caused by thapsigargin-induced depletion of intracellular calcium stores, J Neurochem 70:2305–2314 (1998).PubMedGoogle Scholar
  118. 118.
    M. Villalba, A. Martínez-Serrano, P. Gómez-Puertas, et al., The role of pyruvate in neuronal calcium homeostasis: Effects on intracellular calcium pools, J Biol Chem 269:2468–2476 (1994).PubMedGoogle Scholar
  119. 119.
    F. Ruiz, G. Alvarez, R. Pereira, et al., Protection by pyruvate and malate against glutamate-mediated neurotoxicity, Neuroreport 9:1277–1282 (1998).PubMedGoogle Scholar
  120. 120.
    E. Bonfoco, D. Krainc, M. Ankarcrona, P. Nicotera, and S. Lipton, Apoptosis and necrosis: two distinct events induced respectively by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures, Proc Natl Acad Sci USA 92:7162–7166 (1995).PubMedGoogle Scholar
  121. 121.
    J. Carretero, E. Obrador, J. Pellicer, A. Pascual, and J. Estrela, Mitochondrial glutathione depletion by glutamine in growing tumor cells, Free Radical Biol Med 29:913–923 (2000).CrossRefGoogle Scholar
  122. 122.
    R. White, and I. Reynolds, Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure, J Neurosci 16:5688–5697 (1996).PubMedGoogle Scholar
  123. 123.
    D. G. Nicholls, Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease, Int J Biochem Cell Biol 34:1372–81 (2002).CrossRefPubMedGoogle Scholar
  124. 124.
    A. Boldyrev, D. Carpenter, M. Huentelman, C. Peters, and P. Johnson, Sources of reactive oxygen species production in excitotoxin-stimulated cerebellar granule cells, Biochem Biophys Res Comm 256:320–324 (1999).CrossRefPubMedGoogle Scholar
  125. 125.
    R. Castilho, M. Ward, and D. Nicholls, Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells, J Neurochem 72:1394–1401 (1999).CrossRefPubMedGoogle Scholar
  126. 126.
    C. Sen, and L. Packer, Antioxidant and redox regulation of gene transcription, FASEB J 10:709–720 (1996).PubMedGoogle Scholar
  127. 127.
    V. Lakshminarayanan, E. Drab-Weiss, and K. Roebuck, H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells, J Biol Chem 273:32670–32678 (1998).CrossRefPubMedGoogle Scholar
  128. 128.
    E. Shaulian, and M. Karin, AP-1 as a regulator of cell life and death, Nat Cell Biol 4:E131–6 (2002).CrossRefPubMedGoogle Scholar
  129. 129.
    W. Kaufmann, P. Worley, J. Pegg, M. Bremer, and P. Isakson, COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex, Proc Natl Acad Sci USA 93:2317–2321 (1996).PubMedGoogle Scholar
  130. 130.
    J. Marks, V. Bindokas, and X. Zhang, Maturation of vulnerability to excitotoxicity: intracellular mechanisms in cultured postnatal hippocampal neurons, Brain Res Devel Brain Res 124:101–116 (2000).Google Scholar
  131. 131.
    M. Grilli, M. Pizzi, M. Memo, and Spano, P, Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation, Science 274:1383–1385 (1996).CrossRefPubMedGoogle Scholar
  132. 132.
    H. Ko, K. Park, H. Kim, et al., Ca2+-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B by NMDA in cortical cell cultures, J Neurochem 71:1390–1395 (1998).PubMedGoogle Scholar
  133. 133.
    M. Grilli, and M. Memo, Possible role of NF-kappaB and p53 in the glutamateinduced pro-apoptotic nuonal pathway, Cell Death Differen 6:22–27 (1999).Google Scholar
  134. 134.
    G. Cambonie, L. Laplanche, J. Kamenka, and G. Barbanel, N-methyl-D-aspartate but not glutamate induces the release of hydroxyl radicals in the neonatal rat: modulation by group I metabotropic glutamate receptors, J Neurosci Res 62:84–90 (2000).CrossRefPubMedGoogle Scholar
  135. 135.
    N. Perkins, The Rel/NF-kappa B family: friend and foe, Trends Biochem Sci 25:434–440 (2000).CrossRefPubMedGoogle Scholar
  136. 136.
    S. Budd, R. Castilho, and D. Nicholls, Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells, FEBS Lett 415:21–4 (1997).CrossRefPubMedGoogle Scholar
  137. 137.
    E. Chalecka-Franaszek, and D. Chuang, Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons, Proc Natl Acad Sci USA 96:8745–8750 (1999).CrossRefPubMedGoogle Scholar
  138. 138.
    M. Hossain, J. Russell, R. Gomes, and J. Laterra, Neuroprotection by scatter factor/hepatocyte growth factor and FGF-1 in cerebellar granule neurons is phosphatidylinositol 3-kinase/Akt-dependent and MAPK/CREB-independent, J Neurochem 81:365–378 (2002).PubMedGoogle Scholar
  139. 139.
    S. Nonaka, C. Hough, and D. Chuang, Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, Proc Natl Acad Sci USA 95:2642–2647 (1998).CrossRefPubMedGoogle Scholar
  140. 140.
    R. Hashimoto, C. Hough, T. Nakazawa, T. Yamamoto, and D. Chuang, Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation, J Neurochem 80:589–597 (2002).PubMedGoogle Scholar
  141. 141.
    P. Rosenberg, S. Amin, and M. Leitner, Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture, J Neurosci 12:56–61 (1992).PubMedGoogle Scholar
  142. 142.
    A. Volterra, D. Trotti, C. Tromba, S. Floridi, and Racagni, G, Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes, J Neurosci 14:2924–2932 (1994).PubMedGoogle Scholar
  143. 143.
    D. Trotti, D. Rossi, O. Gjesdal, et al., Peroxynitrite inhibits glutamate transporter subtypes, J Biol Chem 271:5976–5979 (1996).PubMedGoogle Scholar
  144. 144.
    Y. Chen, W. Ying, V. Simma, et al., Overexpression of Cu,Zn superoxide dismutase attenuates oxidative inhibition of astrocyte glutamate uptake, J Neurochem 75:939–945 (2000).PubMedGoogle Scholar
  145. 145.
    M. Harris, Y. Wang, N. Pedigo, Jr, K. Hensley, D. Butterfield, and J. Carney, Amyloid beta peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures, J Neurochem 67:277–286 (1996).PubMedGoogle Scholar
  146. 146.
    S. Fine, R. Angel, S. Perry, et al., Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes: Implications for pathogenesis of HIV-1 dementia, J Biol Chem 271:15303–15306 (1996).PubMedGoogle Scholar
  147. 147.
    M. Beal, E. Brouillet, B. Jenkins, R. Henshaw, B. Rosen, and B. Hyman, Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate, J Neurochem 61:1147–1150 (1993).PubMedGoogle Scholar
  148. 148.
    J. Greene, R. Porter, R. Eller, and J. Greenamyre, Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum, J Neurochem 61:1151–1154 (1993).PubMedGoogle Scholar
  149. 149.
    W. Maragos, and F. Silverstein, The mitochondrial inhibitor malonate enhances NMDA toxicity in the neonatal rat striatum, Dev Brain Res 88:117–121 (1995).CrossRefGoogle Scholar
  150. 150.
    Z. Binienda, and C. Kim, Increase in levels of total free fatty acids in rat brain regions following 3-nitropropionic acid administration, Neurosci Lett 230:199–201 (1997).CrossRefPubMedGoogle Scholar
  151. 151.
    M. Patel, R. Peoples, G. Yim, and G. Isom, Enhancement of NMDA-mediated responses by cyanide, Neurochem Res 19:1319–1323 (1994).CrossRefPubMedGoogle Scholar
  152. 152.
    C. Pereira, and C. Oliveira, Glutamate toxicity on a PC12 cell line involves glutathione (GSH) depletion and oxidative stress, Free Radical Biol Med 23:637–647 (1997).CrossRefGoogle Scholar
  153. 153.
    T. Murphy, R. Schnaar, J. Coyle, and A. Sastre, Glutamate cytotoxicity in a neuronal cell line is blocked by membrane depolarization, Brain Res 460:155–160 (1988).CrossRefPubMedGoogle Scholar
  154. 154.
    G. Davey, S. Peuchen, and J. Clark, Energy thresholds in brain mitochondria: Potential involvement in neurodegeneration, J Biol Chem 273:12753–12757 (1998).CrossRefPubMedGoogle Scholar
  155. 155.
    I. Inoue, S. Katayama, K. Takahashi, et al., Troglitazone has a scavenging effect on reactive oxygen species, Biochem Biophys Res Commun 235:113–116 (1997).PubMedGoogle Scholar
  156. 156.
    S. Uryu, J. Harada, M. Hisamoto, and T. Oda, Troglitazone inhibits both postglutamate neurotoxicity and low-potassium-induced apoptosis in cerebellar granule neurons, Brain Res 924:229–236 (2002).CrossRefPubMedGoogle Scholar
  157. 157.
    Y. Owada, T. Yoshimoto, and H. Kondo, Increased expression of the mRNA for brain-and skin-type but not heart-type fatty acid binding proteins following kainic acid systemic administration in the hippocampal glia of adult rats, Brain Res Molec Brain Res 42:156–160 (1996A).Google Scholar
  158. 158.
    D. Rhoads, R. Ockner, N. Peterson, and E. Raghupathy, Modulation of membrane transport by free fatty acids: inhibition of synaptosomal sodium-dependent amino acid uptake, Biochem 22:1965–1970 (1983).Google Scholar
  159. 159.
    A. Volterra, D. Trotti, P. Cassutti, et al., High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes, J Neurochem 59:600–606 (1992).PubMedGoogle Scholar
  160. 160.
    C. Blázquez, C. Sánchez, A. Daza, I. Galve-Roperh, and M. Guzmán, The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme, J Neurochem 72:1759–1768 (1999A).PubMedGoogle Scholar
  161. 161.
    M. Guzmán, and C. Sánchez, Effects of cannabinoids on energy metabolism, Life Sci 65:657–664 (1999).PubMedGoogle Scholar
  162. 162.
    B. Costa, and M. Colleoni, Changes in rat brain energetic metabolism after exposure to anandamide or delta9-tetrahydrocannabinol, Eur J Pharmacol 395:1–7 (2000).CrossRefPubMedGoogle Scholar
  163. 163.
    L. Walter, A. Franklin, A. Witting, T. Moller, and N. Stella, Astrocytes in culture produce anandamide and other acylethanolamides, J Biol Chem 277:20869–76 (2002).CrossRefPubMedGoogle Scholar
  164. 164.
    H. H. Hansen, I. Azcoitia, S. Pons, et al., Blockade of cannabinoid CB(1) receptor function protects against in vivo disseminating brain damage following NMDAinduced excitotoxicity, J Neurochem 82:154–8 (2002).CrossRefPubMedGoogle Scholar
  165. 165.
    T. Gomez Del Pulgar, M. L. De Ceballos, M. Guzman, and G. Velasco, Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway, J Biol Chem 277:36527–33 (2002).CrossRefPubMedGoogle Scholar
  166. 166.
    M. Egertova, B. F. Cravatt, and M. R. Elphick, Comparative analysis of fatty acid amide hydrolase and CB(1) cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling, Neuroscience 119:481–96 (2003).CrossRefPubMedGoogle Scholar
  167. 167.
    K. Kozak, and L. Marnett, Oxidative metabolism of endocannabinoids, Prostaglandins Leukotrienes and Essential Fatty Acids 66:211–220 (2002).CrossRefGoogle Scholar
  168. 168.
    C. Fowler, Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents: non-psychoactive cannabinoids, “entourage” compounds and inhibitors of Nacyl ethanolamine breadkown as therapeutic strategies to avoid psychotropic effects, Brain Research Reviews 41:26–43 (2003).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Personalised recommendations