Skip to main content
  • 204 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.5. References

  1. H. Wiesinger, B. Hamprecht, and R. Dringen, Metabolic pathways for glucose in astrocytes, Glia 21:22–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. M. Hamai, Y. Minokoshi, and T. Shimazu, L-Glutamate and insulin enhance glycogen synthesis in cultured astrocytes from the rat brain through different intracellular mechanisms, J Neurochem 73:400–407 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. J. Gotoh, Y. Itoh, T. Kuang, M. Cook, M. Law, and L. Sokoloff, Negligible glucose-6-phosphatase activity in cultured astroglia, J Neurochem 74:1400–1408 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. R. Dringen, R. Gebhardt, and B. Hamprecht, Glycogen in astrocytes: possible function as lactate supply for neighboring cells, Brain Res 623:208–214 (1993A).

    Article  CAS  PubMed  Google Scholar 

  5. A. Schousboe, N. Westergaard, H. Waagepetersen, O. Larsson, I. Bakken, and U. Sonnewald, Trafficking between glia and neurons of TCA cycle intermediates and related metabolites, Glia 21:99–105 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. R. Dringen, H. Wiesinger, and B. Hamprecht, Uptake of L-lactate by cultured rat brain neurons, Neurosci Letters 163:5–7 (1993D).

    Article  CAS  Google Scholar 

  7. L. Pellerin, G. Pellegri, J.-L. Martin, and P. Magistretti, Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs adult brain, Proc Natl Aca Sci USA 95:3990–3995 (1998).

    CAS  Google Scholar 

  8. M. McKenna, J. Tildon, J. Stevenson, and I. Hopkins, Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: evidence for multiple compartments of tricarboxylic acid cycle activity, Dev Neurosci 16:291–300 (1994).

    CAS  PubMed  Google Scholar 

  9. R. Dringen, and B. Hamprecht, Differences in glycogen metabolism in astroglia-rich primary cultures and sorbitol-selected astroglial cultures derived from mouse brain, Glia 8:143–149 (1993B).

    Article  CAS  PubMed  Google Scholar 

  10. L. Pellerin, and P. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc Natl Acad Sci USA 91:10625–10629 (1994).

    CAS  PubMed  Google Scholar 

  11. L. Pellerin, Lactate as a pivotal element in neuron-glia metabolic cooperation, Neurochem Int 43:331–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. A. Schurr, C. West, and B. Rigor, Lactate-supported synaptic function in the rat hippocampal slice preparation, Science 240:1326–1328 (1988).

    CAS  PubMed  Google Scholar 

  13. Y. Izumi, A. Benz, C. Zorumski, and J. Olney, Effects of lactate and pyruvate on glucose deprivation in rat hippocampal slices, Neuroreport 5:617–620 (1994).

    CAS  PubMed  Google Scholar 

  14. B. Hassel, and A. Bråthe, Neuronal pyruvate carboxylation supports formation of transmitter glutamate, J Neurosci 20:1342–1347 (2000B).

    CAS  PubMed  Google Scholar 

  15. B. Hassel, Pyruvate carboxylation in neurons, J Neurosci Res 66:755–762 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. H. Waagepetersen, H. Qu, A. Schousboe, and U. Sonnewald, Elucidation of the quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes, J Neurosci Res 66:763–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. A. Gjedde, and S. Marrett, Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo, J Cereb Blood Flow Metab 21:1384–1392 (2001).

    CAS  PubMed  Google Scholar 

  18. Takata, T. Sakurai, B. Yang, K. Yokono, and Y. Okada, Effect of lactate on the synaptic potential, energy metabolism, calcium homeostasis and extracellular glutamate concentration in the dentate gyrus of the hippocampus from guinea-pig, Neuroscience 104:371–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. G. Leegsma-Vogt, K. Venema, and J. Korf, Evidence for a lactate pool in the rat brain that is not used as an energy supply under normoglycemic conditions, J Cereb Blood Flow Metab 23:933–41 (2003).

    CAS  PubMed  Google Scholar 

  20. P. Fafournoux, C. Demigé and C. Rémésy, Carrier-mediated uptake of lactate in rat hepatocytes: Effects of pH and possible mechanisms for L-lactate transport, J Biol Chem 260:292–299 (1985).

    CAS  PubMed  Google Scholar 

  21. R. Poole, and A. Halestrap, Transport of lactate and other monocarboxylates across mammalian plasma membranes, Am J Physiol 264:C761–C782 (1993).

    CAS  PubMed  Google Scholar 

  22. M. Cesar, and B. Hamprecht, Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase, J Neurochem 64:2312–2318 (1995).

    CAS  PubMed  Google Scholar 

  23. M. McKenna, J. Tildon, J. Stevenson, X. Huang, and K. Kingwell, Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes, Neurochem Res 20:1491–1501 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. J. Wilson, Antioxidant defense of the brain: a role for astrocytes, Can J Physiol Pharmacol 75:1149–1163 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. P. Alves, R. Nunes, C. Zhang, et al., Metabolism of 3-(13)C-malate in primary cultures of mouse astrocytes, Devel Neurosci 22:456–462 (2000).

    CAS  Google Scholar 

  26. W. Gamberino, D. Berkich, C. Lynch, B. Xu, and K. LaNoue, Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes, J Neurochem 69:2312–2325 (1997).

    CAS  PubMed  Google Scholar 

  27. U. Sonnewald, N. Westergaard, and A. Schousboe, Glutamate transport and metabolism in astrocytes, Glia 21:56–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. L. Hertz, R. Dringen, A. Schousboe, and S. Robinson, Astrocytes: glutamate producers for neurons, J Neurosci Res 57:417–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. L. Hertz, A. Yu, G. Kala, and A. Schousboe, Neuronal-astrocytic and cytosolic-mitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation, Neurochem Intl 37:83–102 (2000).

    CAS  Google Scholar 

  30. M. McKenna, J. Stevenson, X. Huang, and I. Hopkins, Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals, Neurochem Intl 37:229–241 (2000).

    CAS  Google Scholar 

  31. E. Kaufman, and B. Driscoll, Evidence for cooperativity between neurons and astroglia in the regulation of CO2 fixation in vitro, Dev Neursci 15:299–305 (1993).

    CAS  Google Scholar 

  32. H. Waagepetersen, U. Sonnewald, O. Larsson, and A. Schousboe, A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons, J Neurochem 75:471–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Z. Kovacevic, and J. McGivan, Mitochondrial metabolism of glutamine and glutamate and its physiological significance, Physiolog Rev 63:547–605 (1983).

    CAS  Google Scholar 

  34. M. Board, S. Humm, and E. Newsholme, Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells, Biochem J 265:503–509 (1990).

    CAS  PubMed  Google Scholar 

  35. R. Nakashima, M. Paggi, and P. Pedersen, Contributions of glycolysis and oxidative phosphorylation to adenosine 5′-triphosphate production in AS-30D hepatoma cells, Cancer Res 44:5702–5706 (1984).

    CAS  PubMed  Google Scholar 

  36. V. Goossens, J. Grooten, and W. Fiers, The oxidative metabolism of glutamine: A modulator of reactive oxygen intermediate-mediated cytotoxicity of tumor necrosis factor in L929 fibrosarcoma cells, J Biol Chem 271:192–196 (1996).

    CAS  PubMed  Google Scholar 

  37. N. Sibson, A. Dhankhar, G. Mason, D. Rothman, K. Behar, and R. Shulman, Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity, Proc Natl Acad Sci USA 95:316–321 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. P. Magistretti, L. Pellerin, D. Rothman, and R. Shulman, Energy on demand, Science 283:496–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. N. Cholet, L. Pellerin, P. Magistretti, and E. Hamel, Similar Perisynaptic Glial Localization for the Na(+),K(+)-ATPase alpha(2) Subunit and the Glutamate Transporters GLAST and GLT-1 in the Rat Somatosensory Cortex, Cereb Cortex 12:515–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. H. Qu, E. Faerø, P. Jøgensen, et al., Decreased glutamate metabolism in cultured astrocytes in the presence of thiopental, Biochem Pharmacol 58:1075–1080 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. V. Lebon, K. Petersen, G. Cline, et al., Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism, J Neurosci 22:1523–1531 (2002).

    CAS  PubMed  Google Scholar 

  42. U. Sonnewald, and M. McKenna, Metabolic compartmentation in cortical synaptosomes: influence of glucose and preferential incorporation of endogenous glutamate into GABA, Neurochem Res 27:43–50 (2002).

    CAS  PubMed  Google Scholar 

  43. B. Hassel, and A. Bråhe, Cerebral metabolism of lactate in vivo: Evidence for neuronal pyruvate carboxylation, J Cerebral Blood Flow Metab 20:327–336 (2000A).

    CAS  Google Scholar 

  44. G. Dienel, and L. Hertz, Glucose and lactate metabolism during brain activation, J Neurosci Res 66:824–838 (2001).

    CAS  PubMed  Google Scholar 

  45. E. McNay, T. Fries, and P. Gold, Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task, Proc Natl Acad Sci USA 97:2881–2885 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. S. Vannucci, F. Maher, and I. Simpson, Glucose transporter proteins in brain: delivery of glucose to neurons and glia, Glia 21:2–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. C. Chih, and E. Roberts, Jr, Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis., J. Cerebral Blood Flow & Metabolism 23:1263–1281 (2003).

    CAS  Google Scholar 

  48. R. Shulman, F. Hyder, and D. Rothman, Lactate efflux and the neuroenergetic basis of brain function, NMR Biomed 14:389–396 (2001B).

    Article  CAS  PubMed  Google Scholar 

  49. Y. Itoh, T. Esaki, K. Shimoji, et al., Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo, Proc Natl Acad Sci U S A 100:4879–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. A. Bouzier-Sore, P. Voisin, P. Canioni, P. Magistretti, and L. Pellerin, Lactate is a preferential oxidative energy substrate over glucose for neurons in culture., J. Cerebral Blood Flow & Metabolism 23:1298–1306 (2003).

    CAS  Google Scholar 

  51. G._A. Kimmich, J. A. Roussie, and J. Randies, Aspartate aminotransferase isotope exchange reactions: implications for glutamate/glutamine shuttle hypothesis, Am J Physiol Cell Physiol 282:C1404–13 (2002).

    CAS  PubMed  Google Scholar 

  52. J. Edmond, R. Robbins, J. Bergstrom, R. Cole, and J. de Vellis, Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture, J Neurosci Res 18:551–561 (1987).

    Article  CAS  PubMed  Google Scholar 

  53. J. Edmond, Energy metabolism in developing brain cells, Can J Physiol Pharmacol 70:S118–29 (1992).

    CAS  PubMed  Google Scholar 

  54. N. Auestad, R. Korsak, J. Morrow, and J. Edmond, Fatty acid oxidation and ketogenesis by astrocytes in primary culture, J Neurochem 56:1376–1386 (1991).

    CAS  PubMed  Google Scholar 

  55. C. Blázquez, Sánchez, C, G. Velasco, and M. Guzmán, Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes, J Neurochem 71:1597–1606 (1998).

    PubMed  Google Scholar 

  56. N. Brown, J. Hill, V. Esser, et al., Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation: Inter-tissue and inter-species expression of CPT I and CPT II enzymes, Biochem J 327:225–231 (1997).

    CAS  PubMed  Google Scholar 

  57. Y. Owada, T. Yoshimoto, and H. Kondo, Increased expression of the mRNA for brain-and skin-type but not heart-type fatty acid binding proteins following kainic acid systemic administration in the hippocampal glia of adult rats, Brain Res Molec Brain Res 42:156–160 (1996A).

    CAS  Google Scholar 

  58. Y. Owada, T. Yoshimoto, and H. Kondo, Spatio-temporally differential expression of genes for three members of fatty acid binding proteins in developing and mature rat brains, J Chem Neuroanat 12:113–122 (1996B).

    Article  CAS  PubMed  Google Scholar 

  59. N. Bass, E. Raghupathy, D. Rhoads, J. Manning, and R. Ockner, Partial purification of molecular wieght 12,000 fatty acid binding proteins from rat brain and their effect on synaptosomal NA+-dependent amino acid uptake, Biochem 23:6539–6544 (1984).

    CAS  Google Scholar 

  60. E. Bennett, K. Stenvers, P. Lund, and B. Popko, Cloning and characterization of a cDNA encoding a novel fatty acid binding protein from rat brain, J Neurochem 63:1616–1624 (1994).

    CAS  PubMed  Google Scholar 

  61. L. Feng, M. Hatten, and N. Heintz, Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS, Neuron 12:895–908 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. A. Kurtz, A. Zimmer, F. Schnütgen, G. Brüning, F. Spener, and T. Müller, The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development, Development 120:2637–2649 (1994).

    CAS  PubMed  Google Scholar 

  63. L. Feng, and N. Heintz, Differentiating neurons activate transcription of the brain lipid-binding protein gene in radial glia through a novel regulatory element, Development 121:1719–1730 (1995).

    CAS  PubMed  Google Scholar 

  64. R. Godbout, D. Bisgrove, D. Shkolny, and R. Day, 3rd, Correlation of B-FABP and GFAP expression in malignant glioma, Oncogene 16:1955–1962 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. F. Schnütgen, Böchers, T, T. Müller, and F. Spener, Heterologous expression and characterisation of mouse brain fatty acid binding protein, Biol Chem Hoppe-Seyler 377:211–215 (1996).

    PubMed  Google Scholar 

  66. S. Myers-Payne, T. Hubbell, L. Pu, et al., Isolation and characterization of two fatty acid binding proteins from mouse brain, J Neurochem 66:1648–1656 (1996).

    CAS  PubMed  Google Scholar 

  67. G. Balendiran, F. Schnütgen, G. Scapin, et al., Crystal structure and thermodynamic analysis of human brain fatty acid-binding protein, J Biol Chem 275:27045–27054 (2000).

    CAS  PubMed  Google Scholar 

  68. Y. Ge, X. Wang, Z. Chen, N. Landman, E. H. Lo, and J. X. Kang, Gene transfer of the Caenorhabditis elegans n-3 fatty acid desaturase inhibits neuronal apoptosis, J Neurochem 82:1360–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. D._S. Martin, P. E. Lonergan, B. Boland, et al., Apoptotic changes in the aged brain are triggered by interleukin-1 beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid, J Biol Chem 277:34239–46 (2002).

    CAS  PubMed  Google Scholar 

  70. L. Xu, R. Sánchez, A. Sali, and N. Heintz, Ligand specificity of brain lipid-binding protein, J Biol Chem 271:24711–24719 (1996).

    CAS  PubMed  Google Scholar 

  71. D. Rhoads, R. Ockner, N. Peterson, and E. Raghupathy, Modulation of membrane transport by free fatty acids: inhibition of synaptosomal sodium-dependent amino acid uptake, Biochem 22:1965–1970 (1983).

    CAS  Google Scholar 

  72. F. Shimizu, T. Watanabe, H. Shinomiya, Y. Nakamura, and T. Fujiwara, Isolation and expression of a cDNA for human brain fatty acid-binding protein (B-FABP), Biochim Biophys Acta 1354:24–28 (1997).

    CAS  PubMed  Google Scholar 

  73. R. Sharon, M. Goldberg, I. Bar-Josef, R. Betensky, J. Shen, and D. Selkoe, alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins, Proc Natl Acad Sci U S A 98:9110–9115 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. K. Conway, J. Rochet, R. Bieganski, and P. Lansbury, Jr, Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct, Science 294:1346–1349 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. C. Bláquez, C. Sánchez, A. Daza, I. Galve-Roperh, and M. Guzmán, The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme, J Neurochem 72:1759–1768 (1999A).

    Google Scholar 

  76. M. Guzmán, and C. Sánchez, Effects of cannabinoids on energy metabolism, Life Sci 65:657–664 (1999).

    PubMed  Google Scholar 

  77. M. Bixel, and B. Hamprecht, Generation of ketone bodies from leucine by cultured astroglial cells, J Neurochem 65:2450–61 (1995).

    CAS  PubMed  Google Scholar 

  78. B. Costa, and M. Colleoni, Changes in rat brain energetic metabolism after exposure to anandamide or delta9-tetrahydrocannabinol, Eur J Pharmacol 395:1–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase, J Biol Chem 277:3829–3835 (2002).

    CAS  PubMed  Google Scholar 

  80. C. Blázquez, A. Woods, C. de, ML, D. Carling, and M. Guzmán, The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes, Journal of Neurochemistry 73:1674–82 (1999B).

    PubMed  Google Scholar 

  81. M. Navasa, K. Feingold, and C. Grunfeld, Effects of endotoxin and cytokines on hepatic lipid metabolism, Prog Liver Dis 15:147–170 (1997).

    CAS  Google Scholar 

  82. H. Ginsberg, Insulin resistance and cardiovascular disease, J Clin Invest 106:453–458 (2000).

    CAS  PubMed  Google Scholar 

  83. N. Chattopadhyay, D. Singh, O. Heese, et al., Expression of peroxisome proliferator-activated receptors (PPARs) in human astrocytic cells: PPARgamma agonists as inducers of apoptosis, J Neurosci Res 61:67–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. A. Tabernero, A. Medina, L. Sánchez-Abarca, E. Lavado, and J. Medina, The effect of albumin on astrocyte energy metabolism is not brought about through the control of cytosolic Ca2+ concentrations but by free-fatty acid sequestration, Glia 25:1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. J. Sanchez-Prieto, T. Sihra, and D. Nicholls, Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes, J Neurochem 49:58–64 (1987).

    CAS  PubMed  Google Scholar 

  86. S. Gilman, M. Bonner, and T. Pellmar, Peroxide effects on [3H]L-glutamate release by synaptosomes isolated from the cerebral cortex, Neurosci Lett 140:157–160 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. F. Zoccarato, M. Valente, and A. Alexandre, Hydrogen peroxide induces a long-lasting inhibition of the Ca(2+)-dependent glutamate release in cerebrocortical synaptosomes without interfering with cytosolic Ca2+, J Neurochem 64:2552–2558 (1995).

    CAS  PubMed  Google Scholar 

  88. L. Tretter, C. Chinopoulos, and V. Adam-Vizi, Enhanced depolarization-evoked calcium signal and reduced [ATP]/[ADP] ratio are unrelated events induced by oxidative stress in synaptosomes, J Neurochem 69:2529–2537 (1997).

    CAS  PubMed  Google Scholar 

  89. L. Tretter, and V. Adam-Vizi, Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress, J Neurosci 20:8972–8979 (2000).

    CAS  PubMed  Google Scholar 

  90. Y. Chen, W. Ying, V. Simma, et al., Overexpression of Cu,Zn superoxide dismutase attenuates oxidative inhibition of astrocyte glutamate uptake, J Neurochem 75:939–945 (2000).

    CAS  PubMed  Google Scholar 

  91. S. Peuchen, J. Bolaños, S. Heales, A. Almeida, M. Duchen, and J. Clark, Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system, Prog Neurobiol 52:261–281 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. J. Bolaños, S. Heales, J. Land, and J. Clark, Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture, J Neurochem 64:1965–1972 (1995).

    PubMed  Google Scholar 

  93. M. Rice, and I. Russo-Menna, Differential compartmentalization of brain ascorbate and glutathione between neurons and glia, Neurosci 82:1213–1223 (1998).

    CAS  Google Scholar 

  94. S. Raps, J. Lai, L. Hertz, and A. Cooper, Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons, Brain Res 493:398–401 (1989).

    Google Scholar 

  95. R. Dringen, Metabolism and functions of glutathione in brain, Prog Neurobiol 62:649–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. J. Huang, and M. Philbert, Distribution of glutathione and glutathione-related enzyme systems in mitochondria and cytosol of cultured cerebellar astrocytes and granule cells, Brain Res 680:16–22 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. E. Pinteaux, M. Perraut, and G. Tholey, Distribution of mitochondrial manganese superoxide dismutase among rat glial cells in culture, Glia 22:408–414 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. L. Medina, G. Figueredo-Cardenas, and A. Reiner, Differential abundance of superoxide dismutase in interneurons versus projection neurons and in matrix versus striosome neurons in monkey striatum, Brain Research 708:59–70 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. R. Dringen, and B. Hamprecht, Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells, Brain Res 759:67–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. S. Desagher, J. Glowinski, and J. Premont, Astrocytes protect neurons from hydrogen peroxide toxicity, J Neurosci 16:2553–2562 (1996).

    CAS  PubMed  Google Scholar 

  101. E. Blanc, A. Bruce-Keller, and M. Mattson, Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death, J Neurochem 70:958–970 (1998).

    CAS  PubMed  Google Scholar 

  102. Y. Chen, N. Vartiainen, W. Ying, P. Chan, J. Koistinaho, and R. Swanson, Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism, J Neurochem 77:1601–1610 (2001).

    CAS  PubMed  Google Scholar 

  103. X. Wang, and M. Cynader, Astrocytes provide cysteine to neurons by releasing glutathione, J Neurochem 74:1434–1442 (2000).

    CAS  PubMed  Google Scholar 

  104. R. Dringen, and B. Hamprecht, Glutathione restoration as indicator for cellular metabolism of astroglial cells, Develop Neurosci 20:401–407 (1998).

    CAS  Google Scholar 

  105. G. Gaunt, and D. de, C, Subcellular distribution of d-amino acid oxidase and catalase in rat brain, J Neurochem 26:749–759 (1976).

    CAS  PubMed  Google Scholar 

  106. O. McKenna, G. Arnold, and E. Holtzman, Microperoxisome distribution in the central nervous system of the rat, Brain Res 117:181–194 (1976).

    Article  CAS  PubMed  Google Scholar 

  107. T. Brannan, H. Maker, and I. Raes, Regional distribution of catalase in the adult rat brain, J Neurochem 36:307–309 (1981).

    CAS  PubMed  Google Scholar 

  108. T. Brannan, H. Maker, I. Raes, and C. Weiss, Regional distribution of glutathione reductase in the adult rat brain, Brain Res 200:474–477 (1980).

    Article  CAS  PubMed  Google Scholar 

  109. H. Smits, L. Boven, C. Pereira, J. Verhoef, and H. Nottet, Role of macrophage activation in the pathogenesis of Alzheimer’s disease and human immunodeficiency virus type I-associated dementia, Euro J Clin Invest 30:526–535 (2000).

    CAS  Google Scholar 

  110. H. Fox, M. Weed, S. Huitron-Resendiz, et al., Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus-infected monkeys, J Clin Invest 106:37–45 (2000).

    CAS  PubMed  Google Scholar 

  111. M. Kaul, G. Garden, and S. Lipton, Pathways to neuronal injury and apoptosis in HIV-associated dementia, Nature 410:988–994 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. G. Chinetti, S. Griglio, M. Antonucci, et al., Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macropages, J Biol Chem 273:25573–25580 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. P. Delerive, K. De Bosscher, S. Besnard, et al., Peroxisome proliferated-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1, J Biol Chem 274:32048–32054 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. L, Michalik, and W. Wahli, Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions, Curr Opin Biotech 10:564–570 (1999).

    CAS  PubMed  Google Scholar 

  115. N. Marx, G. Sukhova, T. Collins, P. Libby, and J. Plutzky, PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells, Circulation 99:3125–3131 (1999).

    CAS  PubMed  Google Scholar 

  116. I. Rusyn, C. Bradham, L. Cohn, et al., Corn oil rapidly activates nuclear factorkappaB in hepatic Kupffer cells by oxidant-dependent mechanisms, Carcinogenesis 20:2095–2100 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. R. De Caterina, J. Liao, and P. Libby, Fatty acid modulation of endothelial activation, Am J Clin Nutr 71:213S–223S (2000).

    PubMed  Google Scholar 

  118. P. Delerive, C. Furman, E. Teissier, J.-C. Fruchart, P. Duriez, and B. Staels, Oxidized phosopholipids activate PPARalpha in a phospholipase A2-dependent manner, FEBS Letters 471:34–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. P. Libby, P. M. Ridker, and A. Maseri, Inflammation and atherosclerosis, Circulation 105:1135–43 (2002).

    CAS  PubMed  Google Scholar 

  120. D. N. Reeds, B. Mittendorfer, B. W. Patterson, W. G. Powderly, K. E. Yarasheski, and S. Klein, Alterations in lipid kinetics in men with HIV-dyslipidemia, Am J Physiol Endocrinol Metab 285:E490–7 (2003).

    CAS  PubMed  Google Scholar 

  121. M. C. Sugden, K. Bulmer, G. F. Gibbons, B. L. Knight, and M. J. Holness, Peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin, Biochem J 364:361–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. F. Sabri, K. Titanji, A. De Milito, and F. Chiodi, Astrocyte activation and apoptosis: their roles in the neuropathology of HIV infection, Brain Pathol 13:84–94 (2003).

    PubMed  Google Scholar 

  123. Y. Sei, Y. Kustova, Y. Li, H. Morse, 3rd, P. Skolnick, and A. Basile, The encephalopathy associated with murine acquired immunodeficiency syndrome, Ann New York Acad Sci 840:822–834 (1998).

    CAS  Google Scholar 

  124. P. Eriksson, E. Perfilieva, T. Bjök-Eriksson, et al., Neurogenesis in the adult human hippocampus, Nature Med 4:1313–1317 (1998).

    CAS  PubMed  Google Scholar 

  125. J. Frisén, C. Johansson, C. Lothian, and U. Lendahl, Central nervous system stem cells in the embryo and adult, Cell Molec Life Sci 54:935–945 (1998).

    PubMed  Google Scholar 

  126. E. Gould, and P. Tanapat, Stress and hippocampal neurogenesis, Biol Psych 46:1472–1479 (1999).

    CAS  Google Scholar 

  127. J. Parent, and D. Lowenstein, Mossy fiber reorganization in the epileptic hippocampus, Curr Opin Neurol 10:103–109 (1997).

    CAS  PubMed  Google Scholar 

  128. A. Alvarez-Buylla, J. M. Garcia-Verdugo, and A. D. Tramontin, A unified hypothesis on the lineage of neural stem cells, Nat Rev Neurosci 2:287–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. D. Kornack, and P. Rakic, Cell proliferation without neurogenesis in adult primate neocortex, Science 294:2127–2130 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. H. van Praag, A. Schinder, B. Christie, N. Toni, T. Palmer, and F. Gage, Functional neurogenesis in the adult hippocampus, Nature 415:1030–1034 (2002).

    PubMed  Google Scholar 

  131. W. Rzeski, L. Turski, and C. Ikonomidou, Glutamate antagonists limit tumor growth, Proc Natl Acad Sci U S A 98:6372–6377 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. T. Takano, J. Lin, G. Arcuino, Q. Gao, J. Yang, and M. Nedergaard, Glutamate release promotes growth of malignant gliomas, Nat Med 7:1010–1015 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. K. Selmaj, M. Farooq, W. Norton, C. Raine, and C. Brosnan, Proliferation of astrocytes in vitro in response to cytokines: A primary role for tumor necrosis factor, J Immunol 144:129–135 (1990).

    CAS  PubMed  Google Scholar 

  134. D. Giulian, J. Woodward, D. Young, J. Krebs, and L. Lachman, Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization, J Neurosci 8:2485–2490 (1988).

    CAS  PubMed  Google Scholar 

  135. A. Chenn, and C. A. Walsh, Regulation of cerebral cortical size by control of cell cycle exit in neural precursors, Science 297:365–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. M. Groszer, R. Erickson, D. Scripture-Adams, et al., Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo, Science 294:2186–2189 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. L. Cantley, and B. Neel, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway, Proc Natl Acad Sci U S A 96(8):4240–5 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2004). Astrocyte Metabolism and Astrocyte-Neuron Interaction. In: Integration of Metabolism, Energetics, and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/0-306-48529-X_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48529-X_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48471-1

  • Online ISBN: 978-0-306-48529-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics