Skip to main content
  • 197 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12.6. References

  1. D. Dwyer, Ed., Glucose metabolism in the brain, International Review of Neurobiology; Series Editors RJ Bradley, RA Harris, and P Jenner 51 (2002).

    Google Scholar 

  2. S. Vannucci, F. Maher, and I. Simpson, Glucose transporter proteins in brain: delivery of glucose to neurons and glia, Glia 21:2–21 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. M. Schwartz, D. Figlewicz, D. Baskin, S. Woods, and D. Porte, Jr, Insulin in the brain: a hormonal regulator of energy balance, Endocrine Reviews 13:387–414 (1992).

    CAS  PubMed  Google Scholar 

  4. P. Freychet, Insulin receptors and insulin actions in the nervous system, Diabetes/Metab Res Rev 16:390–392 (2000).

    CAS  Google Scholar 

  5. C. Park, Cognitive effects of insulin in the central nervous system, Neurosci Biobehav Rev 25:311–323 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. A. Chaudhuri, Y. Kanjwal, P. Mohanty, et al., Insulin-induced vasodilatation of internal carotid artery, Metab Clin Exp 48:1470–1473 (1999).

    CAS  PubMed  Google Scholar 

  7. S. Hasselbalch, G. Knudsen, C. Videbaek, et al., No effect of insulin on glucose blood-brain barrier transport and cerebral metabolism in humans, Diabetes 48:1915–1921 (1999).

    CAS  PubMed  Google Scholar 

  8. J. C. Bruning, D. Gautam, D. J. Burks, et al., Role of brain insulin receptor in control of body weight and reproduction, Science 289:2122–5 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. C. Cheng, R. Reinhardt, W. Lee, G. Joncas, S. Patel, and C. Bondy, Insulin-like growth factor 1 regulates developing brain glucose metabolism, Proc Natl Acad Sci USA 97:10236–10241 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. L. Stryer, Biochemistry, W.H. Freeman and Co, New York (1995).

    Google Scholar 

  11. E. McCabe, Microcompartmentation of energy metabolism at the outer mitochondrial membrane: role in diabetes mellitus and other diseases, J Bioenergetics Biomembranes 26:317–325 (1994).

    CAS  Google Scholar 

  12. G. Beutner, A. Rück, B. Riede, and D. Brdiczka, Complexes between hexokinase, mitochondrial porin and adenylate translocator in brain: regulation of hexokinase, oxidative phosphorylation and permeability transition pore, Biochem Soc Transactions 25:151–157 (1997).

    CAS  Google Scholar 

  13. N. Zamzami, C. Brenner, I. Marzo, S. Susin, and G. Kroemer, Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins, Oncogene 16:2265–2282 (1998).

    CAS  PubMed  Google Scholar 

  14. I. Marzo, C. Brenner, N. Zamzami, et al., The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins, J Exp Med 187:1261–1271 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. V. V. Lemeshko, Model of the outer membrane potential generation by the inner membrane of mitochondria, Biophys J 82:684–92 (2002).

    CAS  PubMed  Google Scholar 

  16. D. Gincel, S. Silberberg, and V. Shoshan-Barmatz, Modulation of the voltage-dependent anion channel (VDAC) by glutamate, J Bioenerg Biomembranes 32:571–583 (2000).

    CAS  Google Scholar 

  17. R. Behal, D. Buxton, J. Robertson, and M. Olson, Regulation of the pyruvate dehydrogenase multienzyme complex, Annu Rev Nutr 13:497–520 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. O. Owen, A. Morgan, H. Kemp, J. Sullivan, M. Herrera, and G. Cahill, Jr, Brain metabolism during fasting, J Clin Invest 46:1589–1595 (1967).

    CAS  PubMed  Google Scholar 

  19. A. Smith, H. Satterthwaite, and L. Sokoloff, Induction of brain D(-)-beta-hydroxybytrate dehydrogenase activity by fasting, Science 163:79–81 (1969).

    CAS  PubMed  Google Scholar 

  20. J. W. Pan, R. A. de Graaf, K. F. Petersen, G. I. Shulman, H. P. Hetherington, and D. L. Rothman, [2,4-13 C2 ]-beta-Hydroxybutyrate metabolism in human brain, J Cereb Blood Flow Metab 22:890–8 (2002).

    CAS  PubMed  Google Scholar 

  21. S. Hasselbalch, G. Knudsen, J. Jakobsen, L. Hageman, S. Holm, and O. Paulson, Brain metabolism during short-term starvation in humans, J Cerebral Blood Flow Metab 14:125–31 (1994).

    CAS  Google Scholar 

  22. S. Hasselbalch, G. Knudsen, J. Jakobsen, L. Hageman, S. Holm, and O. Paulson, Blood-brain barrier permeability of glucose and ketone bodies during short-term starvation in humans, Am J Physiol 268:E1161–6 (1995).

    CAS  PubMed  Google Scholar 

  23. S. Hasselbalch, P. Madsen, L. Hageman, et al., Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia, Am J Physiol 270:E746–51 (1996).

    CAS  PubMed  Google Scholar 

  24. P. Crane, W. Pardridge, L. Braun, and W. Oldendorf, Two-day starvation does not alter the kinetics of blood-brain barrier transport and phosphorylation of glucose in rat brain, J Cerebral Blood Flow Metab 5:40–46 (1985).

    CAS  Google Scholar 

  25. C. Redies, L. Hoffer, C. Biel, et al., Generalized decrease in brain glucose metabolism during fasting in humans studied by PET, Am J Physiol 256:E805–E810 (1989).

    CAS  PubMed  Google Scholar 

  26. G. Blomqvist, M. Alvarsson, V. Grill, et al., Effect of acute hyperketonemia on the cerebral uptake of ketone bodies in nondiabetic subjects and IDDM patients, Am J Physiol Endocrinol Metab 283:E20–8 (2002).

    CAS  PubMed  Google Scholar 

  27. T. Moore, A. Lione, M. Sugden, and D. Regen, Beta-hydroxybutyrate transport in rat brain: development and dietary modulations, Am J Physiol 230:619–630 (1976).

    CAS  PubMed  Google Scholar 

  28. L. Pellerin, G. Pellegri, J.-L. Martin, and P. Magistretti, Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs adult brain, Proc Natl Aca Sci USA 95:3990–3995 (1998).

    CAS  Google Scholar 

  29. J. Tildon, M. McKenna, and J. Stevenson, Jr, Transport of 3-hydroxybutyrate by cultured rat brain astrocytes, Neurochem Res 19:1237–42 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. M. Yudkoff, Y. Daikhin, I. Nissim, R. Grunstein, and I. Nissim, Effects of ketone bodies on astrocyte amino acid metabolism, J Neurochem 69:682–92 (1997).

    CAS  PubMed  Google Scholar 

  31. G. Wilkinson, Clearance approaches in pharmacology, Pharmacol Rev 39: 1–47 (1987).

    CAS  PubMed  Google Scholar 

  32. F. Palmieri, F. Bisaccia, L. Capobianco, et al., Mitochondrial metabolite transporters, Biochim Biophys Acta 1275:127–132 (1996).

    PubMed  Google Scholar 

  33. A. Halestrap, Pyruvate and ketone-body transport across the mitochondrial membrane: Exchange properties, pH-dependence and mechanism of the carrier, Biochem J 172:377–387 (1978).

    CAS  PubMed  Google Scholar 

  34. S. Pande, and R. Parvin, Pyruvate and acetoacetate transport in mitochondria: A reappraisal, J Biol Chem 253:1565–1573 (1978).

    CAS  PubMed  Google Scholar 

  35. W. Zhang, S. Churchill, and P. Churchill, Developmental regulation of D-beta-hydroxybutyrate dehydrogenase in rat liver and brain, FEBS Lett 256:71–74 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. L. Wojtczak, and P. Schönfeld, Effect of fatty acids on energy coupling processes in mitochondria, Biochim Biophys Acta 1183:41–57 (1993).

    CAS  PubMed  Google Scholar 

  37. L. Svensson, S. Kilpeläinen, J. Hiltunen, and S. Alexson, Characterization and isolation of enzymes that hydrolyze short-chain acyl-CoA in rat-liver mitochondria, Eur J Biochem 239:526–31 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. I. Reynolds, and T. Hastings, Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation, J Neurosci 15:3318–3327 (1995).

    CAS  PubMed  Google Scholar 

  39. V. Skulachev, Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Quart Rev Biophys 29:169–202 (1996).

    CAS  Google Scholar 

  40. A. Négre-Salvayre, C. Hirtz, G. Carrera, et al., A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, FASEB J 11:809–815 (1997).

    PubMed  Google Scholar 

  41. A. Stout, H. Raphael, B. Kanterewicz, E. Klann, and I. Reynolds, Glutamate-induced neuron death requires mitochondrial calcium uptake, Nature Neurosci 1:366–373 (1998).

    CAS  PubMed  Google Scholar 

  42. S. Korshunov, O. Korkina, E. Ruuge, V. Skulachev, and A. Starkov, Fatty acids as natural uncouplers preventing generation of O2-and H2O2 by mitochondria in the resting state, FEBS Letts 435:215–218 (1998).

    Article  CAS  Google Scholar 

  43. K. Tieu, C. Perier, C. Caspersen, et al., D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease., Journal of Clinical Investigation 112:892–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. R. Ockner, N. Lysenko, N. Wu, and N. Bass, Hepatocyte growth inhibitors modulate mitochondrial and extramitochondrial fatty acid oxidation [Abstract], Hepatology 24:253A (1996).

    Google Scholar 

  45. M. Olson, S. Dennis, M. DeBuysere, and A. Padma, The regulation of pyruvate dehydrogenase in the isolated perfused rat heart, J Biol Chem 253:7369–7375 (1978).

    CAS  PubMed  Google Scholar 

  46. M. Tisdale, Role of acetoacetyl-CoA synthetase in acetoacetate utilization by tumor cells, Cancer Biochem Biophys 7:101–107 (1984).

    CAS  PubMed  Google Scholar 

  47. P. Garland, E. Newsholme, and P. Randle, Effects of fatty acids and ketone bodies and of alloxan-diabetes and starvation on pyruvate metabolism and on lactate/pyruvate and L-glycerol 3-phosphate/dihydroxy acetone phosphate concentration ratios in rat heart and rat diaphragm muscles, Biochem J 93:665–678 (1964).

    CAS  PubMed  Google Scholar 

  48. J. Batenburg, and M. Olson, Regulation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria, J Biol Chem 251:1364–1370 (1976).

    CAS  PubMed  Google Scholar 

  49. P. J. Randle, Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years, Diabetes Metab Rev 14:263–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. G. Boden, and G. I. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction, Eur J Clin Invest 32Suppl 3:14–23 (2002).

    CAS  PubMed  Google Scholar 

  51. T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase, J Biol Chem 277:3829–3835 (2002).

    CAS  PubMed  Google Scholar 

  52. R. Russell, 3d, G. Cline, P. Guthrie, G. Goodwin, G. Shulman, and H. Taegtmeyer, Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart: A three tracer study of glycolysis, glycogen metabolism, and glucose oxidation, J Clin Invest 100:2892–2899 (1997).

    CAS  PubMed  Google Scholar 

  53. Y. Kashiwaya, M. King, and R. Veech, Substrate signaling by insulin: a ketone bodies ratio mimics insulin action in heart, Am J Cardiol 80:50A–64A (1997).

    CAS  PubMed  Google Scholar 

  54. R. Russell, 3d, and H. Taegtmeyer, Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate, J Clin Invest 87:384–390 (1991).

    CAS  PubMed  Google Scholar 

  55. R. Russell, 3d, and H. Taegtmeyer, Coenzyme A sequestration in rat hearts oxidizing ketone bodies, J Clin Invest 89:968–973 (1992).

    CAS  PubMed  Google Scholar 

  56. Y. Izumi, K. Ishii, H. Katsuki, A. Benz, Zorumski, and CF, beta-Hydroxybutyrate fuels synaptic function during development: Histological and physiological evidence in rat hippocampal slices, J Clin Invest 101:1121–1132 (1998).

    CAS  PubMed  Google Scholar 

  57. Y. Kashiwaya, T. Takeshima, N. Mori, K. Nakashima, K. Clarke, and R. Veech, D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease, Proc Natl Acad Sci USA 97:5440–5444 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Y. Yeh, Biosynthesis of phospholipids and sphingolipids from acetoacetate and glucose in different regions of developing brain in vivo, Journal of Neuroscience Research 11:383–394 (1984).

    Article  CAS  PubMed  Google Scholar 

  59. J. Edmond, Energy metabolism in developing brain cells, Can J Physiol Pharmacol 70:S118–29 (1992).

    CAS  PubMed  Google Scholar 

  60. L. Roeder, S. Poduslo, and J. Tildon, Utilization of ketone bodies and glucose by established neural cell lines, Journal of Neuroscience Research 8:671–682 (1982).

    Article  CAS  PubMed  Google Scholar 

  61. A. Lapidot, and S. Haber, Effect of endogenous beta-hydroxybutyrate on brain glucose metabolism in fetuses of diabetic rabbits, studied by (13)C magnetic resonance spectroscopy, Brain Res Dev Brain Res 135:87–99 (2002).

    CAS  PubMed  Google Scholar 

  62. X. Yang, L. Borg, and U. Eriksson, Metabolic alteration in neural tissue of rat embryos exposed to beta-hydroxybutyrate during organogenesis, Life Sci 62:293–300 (1998).

    CAS  PubMed  Google Scholar 

  63. G. Dhopeshwarkar, Uptake and transport of fatty acids into the breain and the role of the blood-brain barrier system, Adv Lipid Res 11:109–142 (1973).

    CAS  PubMed  Google Scholar 

  64. R. Spector, Fatty acid transport through the blood-brain barrier, J Neurochem 50:639–643 (1988).

    CAS  PubMed  Google Scholar 

  65. P. Robinson, J. Noronha, J. DeGeroge, L. Freed, T. Nariai, and S. Rapoport, A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis, Brain Res Rev 17:187–214 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. J. Miller, J. Gnaedinger, and S. Rapoport, Utlization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways, J Neurochem 49:1507–1514 (1987).

    CAS  PubMed  Google Scholar 

  67. J. Gnaedinger, J. Miller, C. Latker, and S. Rapoport, Cerebral metabolism of plasma [14C]palmitate in awake, adult rat: subcellular localization, Neurochem Res 13:21–29 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. S. Rapoport, In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling, Neurochemical Research 24:1403–15 (1999A).

    Article  CAS  PubMed  Google Scholar 

  69. J. Glatz, J. Luiken, F. van Nieuwenhoven, and G. Van der Vusse, Molecular mechanism of cellular uptake and intracellular translocation of fatty acids, Prostaglandins Leukotrienes and Essential Fatty Acids 57:3–9 (1997).

    CAS  Google Scholar 

  70. A. Kimes, D. Sweeney, E. London, and S. Rapoport, Palmitate incorporation into different brain regions in the awake rat, Brain Res 274:291–301 (1983).

    Article  CAS  PubMed  Google Scholar 

  71. M. Chang, T. Arai, L. Freed, et al., Brain incorporation of [1–11C]arachidonate in normocapnic and hypercapnic monkeys measured with positron emission tomography, Brain Res 755:74–83 (1997B).

    Article  CAS  PubMed  Google Scholar 

  72. I. Goldberg, D. Soprano, M. Wyatt, T. Vanni, T. Kirchgessner, and M. Schotz, Localization of lipoprotein lipase mRNA in selected rat tissues, J Lipid Res 30:1569–1577 (1989).

    CAS  PubMed  Google Scholar 

  73. D. Bessesen, C. Richards, J. Etienne, J. Goers, and R. Eckel, Spinal cord of the rat contains more lipoprotein lipase than other brain regions, J Lipid Res 34:229–238 (1993).

    CAS  PubMed  Google Scholar 

  74. D. Purdon, T. Arai, and S. Rapoport, No evidence for direct incorporation of esterified palmitic acid from plasma into brain lipids of awake adult rat, J Lipid Res 38:526–30 (1997).

    CAS  PubMed  Google Scholar 

  75. D. Bernlohr, M. Simpson, A. Hertzel, and L. Banaszak, Intracellular lipid-binding proteins and their genes, Ann Rev Nutr 17:277–303 (1997).

    CAS  Google Scholar 

  76. T. Fujino, and T. Yamamoto, Cloning and functional expression of a novel long-chain acyl-CoA synthetase expressed in brain, J Biochem 111:197–203 (1992).

    CAS  PubMed  Google Scholar 

  77. T. Arai, S. Wakabayashi, M. Channing, et al., Incorporation of [1-carbon-11]palmitate in monkey brain using PET, J Nuclear Med 36:2261–2267 (1995).

    CAS  Google Scholar 

  78. C. Blázquez, Sánchez, C, G. Velasco, and M. Guzmán, Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes, J Neurochem 71:1597–1606 (1998).

    PubMed  Google Scholar 

  79. N. Brown, J. Hill, V. Esser, et al., Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation: Inter-tissue and inter-species expression of CPT I and CPT II enzymes, Biochem J 327:225–231 (1997).

    CAS  PubMed  Google Scholar 

  80. N. Price, F. van der Leij, V. Jackson, et al., A novel brain-expressed protein related to carnitine palmitoyltransferase I, Genomics 80:433–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. M. Chang, S. Wakabayashi, and J. Bell, The effect of methyl palmoxirate on incorporation of [U-14C]palmitate into rat brain, Neurochem Res 19:1217–1223 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. L. Freed, S. Wakabayashi, J. Bell, and S. Rapoport, Effect of inhibition of beta-oxidation on incorporation of [U-14C]palmitate and [1-14C]arachidonate into brain lipids, Brain Res 645:41–48 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. M. Chang, E. Grange, O. Rabin, and J. Bell, Incorporation of [U-14C]palmitate into rat brain: effect of an inhibitor of beta-oxidation, J Lipid Res 38:295–300 (1997A).

    CAS  PubMed  Google Scholar 

  84. C. Horn, and M. Friedman, Methyl palmoxirate increases eating behavior and brain Fos-like immunoreactivity in rats, Brain Res 781:8–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. M. I. Friedman, R. B. Harris, H. Ji, I. Ramirez, and M. G. Tordoff, Fatty acid oxidation affects food intake by altering hepatic energy status, Am J Physiol 276:R1046–53 (1999).

    CAS  PubMed  Google Scholar 

  86. A. Kahler, M. Zimmermann, and W. Langhans, Suppression of hepatic fatty acid oxidation and food intake in men, Nutrition 15:819–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. N. Kawamura, and Y. Kishimoto, Characterization of water-soluble products of palmitic acid beta-oxidation by a rat brain preparation, J Neurochem 36:1786–1791 (1981).

    CAS  PubMed  Google Scholar 

  88. N. Auestad, R. Korsak, J. Morrow, and J. Edmond, Fatty acid oxidation and ketogenesis by astrocytes in primary culture, J Neurochem 56:1376–1386 (1991).

    CAS  PubMed  Google Scholar 

  89. C. Blázquez, C. Sánchez, A. Daza, I. Galve-Roperh, and M. Guzmán, The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme, J Neurochem 72:1759–1768 (1999A).

    PubMed  Google Scholar 

  90. J. Bourre, and M. Piciotti, Alterations in eighteen-carbon saturated, monounsaturated and plolyunsatruated fatty acid peroxisomal oxidation in mouse brain during development and aging, Biochem Molec Biol Intl 41:461–468 (1997).

    CAS  Google Scholar 

  91. P. Burra, M. Dam, F. Chierichetti, et al., 18F-fluorodeoxyglucose positron emission tomography study of brain metabolism in cirrhosis: effect of liver transplantation, Transplant Proc 31:418–420 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. G. Sarna, M. Bradbury, J. Cremer, J. Lai, and H. Teal, Brain metabolism and specific transport at the blood-brain barrier after portocaval anastomosis in the rat, Brain Res 160:69–83 (1979).

    Article  CAS  PubMed  Google Scholar 

  93. S. Ponchaut, and K. Veitch, Valproate and mitochondria, Biochem Pharmacol 46:199–204 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. T. Cullingford, K. Bhakoo, S. Peuchen, C. Dolphin, R. Patel, and J. Clark, Distribution of mRNAs encoding the peroxisome proliferator-activated receptor alpha, beta, and gamma and the retinoid X receptor alpha, beta, and gamma in rat central nervous system, J Neurochem 70:1366–1375 (1998).

    CAS  PubMed  Google Scholar 

  95. J. Granneman, R. Skoff, and X. Yang, Member of the peroxisome proliferator-activated receptor family of transcription factors is differentially expressed by oligodendrocytes, J Neurosci Res 51:563–573 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. N. Chattopadhyay, D. Singh, O. Heese, et al., Expression of peroxisome proliferator-activated receptors (PPARs) in human astrocytic cells: PPARgamma agonists as inducers of apoptosis, J Neurosci Res 61:67–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. M. C. Sugden, K. Bulmer, G. F. Gibbons, B. L. Knight, and M. J. Holness, Peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin, Biochem J 364:361–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. R. Ockner, Apoptosis and liver diseases: Recent concepts of mechanism and significance, J Gastroenterol Hepatol 16:248–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. S. Mills, D. Foster, and J. McGarry, Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues:Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I, Biochem J 214:83–91 (1983).

    CAS  PubMed  Google Scholar 

  100. L. Drynan, P. Quant, and V. Zammit, Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states, Biochem J 317:791–795 (1996A).

    CAS  PubMed  Google Scholar 

  101. L. Drynan, P. Quant, and V. Zammit, The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat, Biochem J 318:767–770 (1996B).

    CAS  PubMed  Google Scholar 

  102. J. Sleboda, K. Risan, O. Spydevold, and J. Bremer, Short-term regulation of carnitine palmitoyltransferase I in cultured rat hepatocytes: spontaneous inactivation and reactivation by fatty acids, Biochim Biophys Acta 1436:541–549 (1999).

    CAS  PubMed  Google Scholar 

  103. J. McGarry, and N. Brown, Reconstitution of purified, active and malonyl-CoA-sensitive rat liver carnitine palmitoyltransferase I: relationship between membrane environment and malonyl-CoA sensitivity, Biochem J 349:179–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. W. Ong, C. Hu, Y. Soh, T. Lim, P. Pentchev, and S. Patel, Neuronal localization of sterol regulatory element binding protein-1 in the rodent and primate brain: A light and electron microscopic immunocytochemical study, Neurosci 97:143–153 (2000).

    Article  CAS  Google Scholar 

  105. J. Vance, C. De, EP, R. Campenot, and D. Vance, Role of axons in membrane phospholipid synthesis in rat sympathetic neurons, Neurobiol Aging 16:493–498 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. L. Abu-Elheiga, W. R. Brinkley, L. Zhong, S. S. Chirala, G. Woldegiorgis, and S. J. Wakil, The subcellular localization of acetyl-CoA carboxylase 2, Proc Natl Acad Sci U S A 97:1444–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. J. Sakamoto, R. Barr, K. Kavanagh, and G. Lopaschuk, Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart, Am J Physiol Heart Circ Physiol 278:H1196–H1204 (2000).

    CAS  PubMed  Google Scholar 

  108. J. Alexander, A. Snyder, and J. Tonsgard, Omega-oxidation of monocarboxylic acids in rat brain, Neurochem Res 23:227–233 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. J. Bylund, C. Zhang, and D. R. Harder, Identification of a novel cytochrome P450, CYP4X1, with unique localization specific to the brain, Biochem Biophys Res Commun 296:677–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. R. Kaikaus, W. Chan, N. Lysenko, R. Ray, P. Ortiz deMontellano, and N. Bass, Induction of peroxisomal fatty acid beta-oxidation and liver fatty acid binding protein by peroxisome proliferators: Mediation via the cytochrome P-450 4A1 omegahydroxylase pathway, J Biol Chem 268:9592–9603 (1993).

    Google Scholar 

  111. D. Richard, S. Clavel, Q. Huang, D. Sanchis, and D. Ricquier, Uncoupling protein 2 in the brain: distribution and function, Biochem Soc Trans 29:812–817 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. T. Horvath, C. Warden, M. Hajos, A. Lombardi, F. Goglia, and S. Diano, Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers, J Neurosci 19:10417–10427 (1999).

    CAS  PubMed  Google Scholar 

  113. S. Diano, H. Urbanski, B. Horvath, et al., Mitochondrial uncoupling protein 2 (UCP2) in the nonhuman primate brain and pituitary, Endocrinol 141:4226–4238 (2000).

    Article  CAS  Google Scholar 

  114. T. L. Horvath, S. Diano, and C. Barnstable, Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector, Biochem Pharmacol 65:1917–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. O. Boss, P. Muzzin, and J.-P. Glacobino, The uncoupling proteins, a review, European Journal of Endocrinology 139:1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. K. Chavin, S. Yang, H. Lin, et al., Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion, J Biol Chem 26274:5692–5700 (1999).

    Google Scholar 

  117. M. Jaburek, M. Varecha, R. Gimeno, et al., Transport function and regulation of mitochondrial uncoupling proteins 2 and 3, J Biol Chem 274:26003–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. K. Echtay, D. Roussel, J. St-Pierre, et al., Superoxide activates mitochondrial uncoupling proteins, Nature 415:96–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. J. K. Young, Anatomical relationship between specialized astrocytes and leptin-sensitive neurones, J Anat 201:85–90 (2002).

    Article  PubMed  Google Scholar 

  120. D. Yablonskiy, J. Ackerman, and M. Raichle, Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation, Proc Natl Acad Sci USA 97:7603–7608 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. V. B. Hinderling, P. Schrauwen, W. Langhans, and M. S. Westerterp-Plantenga, The effect of etomoxir on 24-h substrate oxidation and satiety in humans, Am J Clin Nutr 76:141–7 (2002).

    CAS  PubMed  Google Scholar 

  122. R. S. Ahima, and J. S. Flier, Leptin, Annu Rev Physiol 62:413–37 (2000).

    CAS  Google Scholar 

  123. A. Z. Zhao, M. M. Shinohara, D. Huang, et al., Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes, J Biol Chem 275:11348–54 (2000).

    CAS  PubMed  Google Scholar 

  124. D. M. Muoio, G. L. Dohm, E. B. Tapscott, and R. A. Coleman, Leptin opposes insulin’s effects on fatty acid partitioning in muscles isolated from obese ob/ob mice, Am J Physiol 276:E913–21 (1999).

    CAS  PubMed  Google Scholar 

  125. L. L. Atkinson, M. A. Fischer, and G. D. Lopaschuk, Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis, J Biol Chem 277:29424–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Y. Minokoshi, Y. Kim, O. Peroni, et al., Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase, Nature 415:339–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. G. Steinberg, A. Bonen, and D. Dyck, Fatty acid oxidation and triacylglycerol hydrolysis are enhanced after chronic leptin treatment in rats, Am J Physiol Endocrinol Metab 282:E593–E600 (2002A).

    CAS  PubMed  Google Scholar 

  128. G. R. Steinberg, J. W. Rush, and D. J. Dyck, AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment, Am J Physiol Endocrinol Metab 284:E648–54 (2003).

    CAS  PubMed  Google Scholar 

  129. G. Hynes, and P. Jones, Leptin and its role in lipid metabolism, Curr Opin Lipidol 12:321–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. S. Yamagishi, D. Edelstein, X. Du, Y. Kaneda, M. Guzman, and M. Brownlee, Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A, J Biol Chem 276:25096–25100 (2001).

    CAS  PubMed  Google Scholar 

  131. R. L. Dobbins, L. S. Szczepaniak, W. Zhang, and J. D. McGarry, Chemical sympathectomy alters regulation of body weight during prolonged ICV leptin infusion, Am J Physiol Endocrinol Metab 284:E778–87 (2003).

    CAS  PubMed  Google Scholar 

  132. D. Spanswick, M. A. Smith, V. E. Groppi, S. D. Logan, and M. L. Ashford, Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels, Nature 390:521–5 (1997).

    CAS  PubMed  Google Scholar 

  133. T. J. Kieffer, R. S. Heller, C. A. Leech, G. G. Holz, and J. F. Habener, Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells, Diabetes 46:1087–93 (1997).

    CAS  PubMed  Google Scholar 

  134. G. Sonnenberg, G. Krakower, R. Hoffmann, D. Maas, M. Hennes, and A. Kissebah, Plasma leptin concentrations during extended fasting and graded glucose infusions: relationships with changes in glucose, insulin, and FFA, J Clin Endocrinol Metab 86:4895–4900 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. J. W. Kolaczynski, M. R. Nyce, R. V. Considine, et al., Acute and chronic effects of insulin on leptin production in humans: Studies in vivo and in vitro, Diabetes 45:699–701 (1996A).

    CAS  PubMed  Google Scholar 

  136. J. W. Kolaczynski, R. V. Considine, J. Ohannesian, et al., Responses of leptin to short-term fasting and refeeding in humans: a link with ketogenesis but not ketones themselves, Diabetes 45:1511–5 (1996B).

    CAS  PubMed  Google Scholar 

  137. G. Boden, X. Chen, J. W. Kolaczynski, and M. Polansky, Effects of prolonged hyperinsulinemia on serum leptin in normal human subjects, J Clin Invest 100:1107–13 (1997).

    CAS  PubMed  Google Scholar 

  138. S. C. Woods, M. W. Schwartz, D. G. Baskin, and R. J. Seeley, Food intake and the regulation of body weight, Annu Rev Psychol 51:255–77 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. D. E. Cummings, and M. W. Schwartz, Genetics and pathophysiology of human obesity, Annu Rev Med 54:453–71 (2003).

    CAS  PubMed  Google Scholar 

  140. G. Boden, X. Chen, M. Mozzoli, and I. Ryan, Effect of fasting on serum leptin in normal human subjects, J Clin Endocrinol Metab 81:3419–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. R. Saladin, P. De Vos, M. Guerre-Millo, et al., Transient increase in obese gene expression after food intake or insulin administration, Nature 377:527–9 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. B. Laferrere, A. Caixas, S. K. Fried, C. Bashore, J. Kim, and F. X. Pi-Sunyer, A pulse of insulin and dexamethasone stimulates serum leptin in fasting human subjects, Eur J Endocrinol 146:839–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. M. Shimabukuro, K. Koyama, G. Chen, et al., Direct antidiabetic effect of leptin through triglyceride depletion of tissues, Proc Natl Acad Sci U S A 94:4637–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. G. R. Steinberg, D. J. Dyck, J. Calles-Escandon, et al., Chronic leptin administration decreases fatty acid uptake and fatty acid transporters in rat skeletal muscle, J Biol Chem 277:8854–60 (2002B).

    Article  CAS  PubMed  Google Scholar 

  145. J. D. McGarry, Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes, Diabetes 51:7–18 (2002).

    CAS  PubMed  Google Scholar 

  146. E. L. Air, M. Z. Strowski, S. C. Benoit, et al., Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity, Nat Med 8:179–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. R. S. Ahima, D. Prabakaran, C. Mantzoros, et al., Role of leptin in the neuroendocrine response to fasting, Nature 382:250–2 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. J. L. Chan, K. Heist, A. M. DePaoli, J. D. Veldhuis, and C. S. Mantzoros, The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men, J Clin Invest 111:1409–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. K. D. Niswender, G. J. Morton, W. H. Stearns, C. J. Rhodes, M. G. Myers, Jr., and M. W. Schwartz, Key enzyme in leptin-induced anorexia, Nature 413:794–5 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. J. Harvey, and M. L. Ashford, Leptin in the CNS: much more than a satiety signal, Neuropharmacology 44:845–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. C. Bjorbaek, S. Uotani, B. da Silva, and J. S. Flier, Divergent signaling capacities of the long and short isoforms of the leptin receptor, J Biol Chem 272:32686–95 (1997).

    CAS  PubMed  Google Scholar 

  152. J. M. Zabolotny, K. K. Bence-Hanulec, A. Stricker-Krongrad, et al., PTP1B regulates leptin signal transduction in vivo, Dev Cell 2:489–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. L. Abu-Elheiga, M. M. Matzuk, K. A. Abo-Hashema, and S. J. Wakil, Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2, Science 291:2613–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. L. Abu-Elheiga, W. Oh, P. Kordari, and S. J. Wakil, Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets., Proc Natl Aca Sci USA 100:10207–10212 (2003).

    CAS  Google Scholar 

  155. S. Obici, Z. Feng, A. Arduini, R. Conti, and L. Rossetti, Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production, Nat Med 9:756–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. V. Di Marzo, S. K. Goparaju, L. Wang, et al., Leptin-regulated endocannabinoids are involved in maintaining food intake, Nature 410:822–5 (2001).

    PubMed  Google Scholar 

  157. D. Cota, G. Marsicano, M. Tschop, et al., The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis, J Clin Invest 112:423–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. M. Kumar, T. Shimokawa, T. Nagy, and M. Lane, Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice, Proc Natl Acad Sci U S A 99:1921–1925 (2002).

    CAS  PubMed  Google Scholar 

  159. J. N. Thupari, L. E. Landree, G. V. Ronnett, and F. P. Kuhajda, C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity, Proc Natl Acad Sci U S A 99:9498–502 (2002).

    CAS  PubMed  Google Scholar 

  160. E. K. Kim, I. Miller, L. E. Landree, et al., Expression of FAS within hypothalamic neurons: a model for decreased food intake after C75 treatment, Am J Physiol Endocrinol Metab 283:E867–79 (2002).

    CAS  PubMed  Google Scholar 

  161. E. Sternberg, Neural-immune interactions in health and disease, J Clin Invest 100:2641–2647 (1997).

    CAS  PubMed  Google Scholar 

  162. N. Rothwell, S. Allan, and S. Toulmond, The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications, J Clin Invest 100:2648–2652 (1997).

    CAS  PubMed  Google Scholar 

  163. J. Licinio, and M.-L. Wong, Pathways and mechanisms for cytokine signaling of the central nervous system, J Clin Invest 100:2941–2947 (1997).

    CAS  PubMed  Google Scholar 

  164. J. Raber, O. Sorg, T. Horn, et al., Inflammatory cytokines: putative regulators of neuronal and neuro-endocrine function, Brain Res Rev 26:320–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. M. Navasa, K. Feingold, and C. Grunfeld, Effects of endotoxin and cytokines on hepatic lipid metabolism, Prog Liver Dis 15:147–170 (1997).

    CAS  Google Scholar 

  166. G. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M. White, and B. Spiegelman, IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance, Science 271:665–8 (1996A).

    CAS  PubMed  Google Scholar 

  167. G. Hotamisligil, R. Johnson, R. Distel, R. Ellis, V. Papaioannou, and B. Spiegelman, Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein, Science 274:1377–1379 (1996B).

    Article  CAS  PubMed  Google Scholar 

  168. C. Grunfeld, C. Dinarello, and K. Feingold, Tumor necrosis factor-alpha, interleukin-1, and interferon alpha stimulate triglyceride synthesis in HepG2 cells, Metabolism 40:894–898 (1991).

    Article  CAS  PubMed  Google Scholar 

  169. E. Vara, J. Arias-Diaz, J. Torres-Melero, C. Garcia, J. Rodriguez, and J. Balibrea, Effect of different sepsis-related cytokines on lipid synthesis by isolated hepatocytes, Hepatology 20:924–931 (1994).

    CAS  PubMed  Google Scholar 

  170. M. Beylot, H. Vidal, G. Mithieux, M. Odeon, and C. Martin, Inhibition of hepatic ketogenesis by tumor necrosis factor-alpha in rats, Am J Physiol 263:E897–E902 (1992).

    CAS  PubMed  Google Scholar 

  171. L. Romero, I. Kakucska, R. Lechan, and S. Reichlin, Interleukin-6 (IL-6) is secreted from the brain after intracerebroventricular injection of IL-1 beta in rats, Am J Physiol 270:R518–R524 (1996).

    CAS  PubMed  Google Scholar 

  172. N. Yu, J. Martin, N. Stella, and P. Magistretti, Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes, Proc Natl Acad Sci USA 90:4042–4046 (1993).

    CAS  PubMed  Google Scholar 

  173. N. Yu, D. Maciejewski-Lenoir, F. Bloom, and P. Magistretti, Tumor necrosis factor-alpha and interleukin-1 alpha enhance glucose utilization by astrocytes: involvement of phospholipase A2, Molec Pharmacol 48:550–558 (1995).

    CAS  Google Scholar 

  174. B. Cheng, S. Christakos, and M. Mattson, Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis, Neuron 12:139–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  175. E. Beattie, D. Stellwagen, W. Morishita, et al., Control of synaptic strength by glial TNFalpha, Science 295:2282–2285 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. H. Ginsberg, Insulin resistance and cardiovascular disease, J Clin Invest 106:453–458 (2000).

    CAS  PubMed  Google Scholar 

  177. P. Cryer, M. Haymond, J. Santiago, and S. Shah, Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events, New England Journal of Medicine 295:573–7 (1976).

    CAS  PubMed  Google Scholar 

  178. M. Hellerstein, N. Benowitz, R. Neese, et al., Effects of cigarette smoking and its cessation on lipid metabolism and energy expenditure in heavy smokers, Journal of Clinical Investigation 93:265–72 (1994).

    CAS  PubMed  Google Scholar 

  179. K. Fattinger, D. Verotta, and N. Benowitz, Pharmacodynamics of acute tolerance to multiple nicotinic effects in humans, J Pharmacol Exp Ther 281:1238–46 (1997).

    CAS  PubMed  Google Scholar 

  180. J. Rincón, A. Krook, D. Galuska, H. Wallberg-Henriksson, and J. Zierath, Altered skeletal muscle glucose transport and blood lipid levels in habitual cigarette smokers, Clin Physiol 19:135–142 (1999).

    PubMed  Google Scholar 

  181. J. Manson, U. Ajani, S. Liu, D. Nathan, and C. Hennekens, A prospective study of cigarette smoking and the incidence of diabetes mellitus among US male physicians, Am J Med 109:538–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. K. Christopherson, and D. Bredt, Nitric oxide in excitable tissues: physiological roles and disease, J Clin Invest 100:2424–2429 (1997).

    CAS  PubMed  Google Scholar 

  183. C. Chao, S. Hu, W. Sheng, D. Bu, M. Bukrinsky, and P. Peterson, Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism, Glia 16:276–284 (1996).

    Article  CAS  PubMed  Google Scholar 

  184. J. Hu, A. Ferreira, and L. Van Eldik, S100beta induces neuronal cell death through nitric oxide release from astrocytes, J Neurochem 69:2294–2301 (1997).

    CAS  PubMed  Google Scholar 

  185. M. Maes, and R. Smith, Fatty acids, cytokines, and major depression, Biol Psych 43:313–314 (1998).

    CAS  Google Scholar 

  186. V. Borutaité, and G. Brown, Rapid reduction of nitric oxide by mitochondria and reversible inhibition of mitochondrial respiration by nitric oxide, Biochem J 315:295–299 (1996).

    PubMed  Google Scholar 

  187. I. Lizasoain, M. Moro, R. Knowles, V. Darley-Usmar, and S. Moncada, Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose, Biochem J 314:877–880 (1996).

    CAS  PubMed  Google Scholar 

  188. J. Li, T. Billiar, R. Talanian, and Y. Kim, Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation, Biochem Biophys Res Commun 240:419–424 (1997).

    CAS  PubMed  Google Scholar 

  189. Y. Kim, R. Talanian, and T. Billiar, Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms, J Biol Chem 272:31138–31148 (1997).

    CAS  PubMed  Google Scholar 

  190. S. Lipton, Y. Choi, Z. Pan, et al., A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds, Nature 364:626–632 (1993).

    CAS  PubMed  Google Scholar 

  191. D. Wink, I. Hanbauer, M. Krishna, et al., Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species, Proc Natl Acad Sci USA 90:9813–9817 (1993).

    CAS  PubMed  Google Scholar 

  192. J. Bolaños, A. Almeida, E. Fernández, et al., Potential mechanisms for nitric oxide-mediated impairment of brain mitochondrial energy metabolism, Biochem Soc Transact 25:944–949 (1997A).

    Google Scholar 

  193. J. Bolaños, A. Almeida, V. Stewart, et al., Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases, J Neurochem 68:2227–2240 (1997B).

    PubMed  Google Scholar 

  194. B. Beltrán, A. Mathur, M. Duchen, J. Erusalimsky, and S. Moncada, The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death, Proc Natl Acad Sci USA 97:14602–14607 (2000).

    PubMed  Google Scholar 

  195. P. García-Nogales, A. Almeida, and J. Bolaños, Peroxynitrite protects neurons against nitric oxide-mediated apoptosis, A key role for glucose-6-phosphate dehydrogenase in neuroprotection., Journal of Biological Chemistry 278:864–874 (2003).

    PubMed  Google Scholar 

  196. K. Schulze-Osthoff, A. Bakker, B. Vanhaesebroeck, R. Beyaert, W. Jacob, and W. Fiers, Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions: Evidence for the involvement of mitochondrial radical generation, J Biol Chem 267:5317–5323 (1992).

    CAS  PubMed  Google Scholar 

  197. L. Obeid, C. Linardic, L. Karolak, and Y. Hannun, Programmed cell death induced by ceramide, Science 259:1769–1771 (1993).

    CAS  PubMed  Google Scholar 

  198. R. Kolesnick, and M. Krönke, Regulation of ceramide production and apoptosis, Annu Rev Physiol 60:643–665 (1998).

    Article  CAS  PubMed  Google Scholar 

  199. M. Burow, C. Weldon, B. Collins-Burow, et al., Cross-talk between phosphatidylinositol 3-kinase and sphingomyelinase pathways as a mechanism for cell survival/death decisions, J Biol Chem 275:9628–9635 (2000).

    Article  CAS  PubMed  Google Scholar 

  200. T. Lin, L. Genestier, M. Pinkoski, et al., Role of acidic sphingomyelinase in Fas/CD95-mediated cell death, J Biol Chem 275:8657–8663 (2000).

    CAS  PubMed  Google Scholar 

  201. P. Akerman, P. Cote, S. Yang, et al., Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy, Am J Physiol 263:G579–G585 (1992).

    CAS  PubMed  Google Scholar 

  202. D. Cressman, L. Greenbaum, R. DeAngelis, et al., Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice, Science 274:1379–1383 (1996).

    Article  CAS  PubMed  Google Scholar 

  203. Y. Yamada, I. Kinillova, J. Reschou, and N. Fausto, Initiation of tumor growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor, PNAS 94:1441–1446 (1997).

    CAS  PubMed  Google Scholar 

  204. A. Beg, and D. Baltimore, An essential role for NK-kappaB in preventing TNF-alpha-induced cell death, Science 274:782–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  205. D. Van Antwerp, S. Martin, T. Kafri, D. Green, and I. Verma, Suppression of TNF-alpha-induced apoptosis by NF-kappaB, Science 274:787–789 (1996).

    PubMed  Google Scholar 

  206. C.-Y. Wang, M. Mayo, and A. Baldwin, Jr, TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB, Science 274:784–787 (1996).

    Article  CAS  PubMed  Google Scholar 

  207. S. Barger, D. Hörsier, K. Furukawa, Y. Goodman, J. Krieglstein, and M. Mattson, Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation, Proc Natl Acad Sci USA 92:9328–9332 (1995).

    CAS  PubMed  Google Scholar 

  208. C. Kaltschmidt, B. Kaltschmidt, and P. Baeuerle, Stimulation of ionotropic glutamate receptors activates transcription factor NF-kappa B in primary neurons, Proc Natl Acad Sci USA 92:9618–9822 (1995).

    CAS  PubMed  Google Scholar 

  209. B. Kaltschmidt, M. Uherek, B. Volk, P. Baeuerle, and C. Kaltschmidt, Transcription factor NF-kappa B is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease, Proc Natl Acad Sci USA 94:2642–2647 (1997).

    Article  CAS  PubMed  Google Scholar 

  210. M. Mattson, Y. Goodman, H. Luo, W. Fu, Furukawa, and K, Activation of NF-kappa B protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration, J Neurosci Res 49:681–697 (1997).

    Article  CAS  PubMed  Google Scholar 

  211. A. Migheli, R. Piva, C. Atzori, D. Troost, and D. Schiffer, c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons in amyotrophic lateral sclerosis, J Neuropathol Exp Neurol 56:1314–1322 (1997).

    CAS  PubMed  Google Scholar 

  212. S. Lipton, Janus faces of NF-kappa B: neurodestruction versus neuroprotection, Nature Med 3:20–22 (1997).

    CAS  PubMed  Google Scholar 

  213. G. Middleton, M. Hamanoue, Y. Enokido, et al., Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons, J Cell Biol 148:325–332 (2000).

    CAS  PubMed  Google Scholar 

  214. P. García-Nogales, A. Almeida, E. Fernández, J. Medina, and J. Bolaños, Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes, J Neurochem 72:1750–8 (1999).

    PubMed  Google Scholar 

  215. J. Tan, T. Town, A. Placzek, A. Kundtz, H. Yu, and M. Mullan, Bcl-X(L) inhibits apoptosis and necrosis produced by Alzheimer’s beta-amyloid1-40 peptide in PC 12 cells, Neuroscience Letters 272:5–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  216. T. Vos, H. Van Goor, L. Tuyt, et al., Expression of inducible nitric oxide synthase in endotoxemic rat hepatocytes is dependent on the cellular glutathione status, Hepatology 29:421–442 (1999).

    CAS  PubMed  Google Scholar 

  217. K. Yamamoto, T. Arakawa, N. Ueda, and S. Yamamoto, Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells, J Biol Chem 270:31315–31320 (1995).

    CAS  PubMed  Google Scholar 

  218. M. Tamatani, Y. Che, H. Matsuzaki, et al., Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons, J Biol Chem 274:8531–8538 (1999).

    Article  CAS  PubMed  Google Scholar 

  219. O. Ozes, L. Mayo, J. Gustin, S. Pfeffer, L. Pfeffer, and D. Donner, NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase, Nature 401:82–85 (1999).

    CAS  PubMed  Google Scholar 

  220. M. Grilli, M. Pizzi, M. Memo, Spano, and P, Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation, Science 274:1383–1385 (1996).

    Article  CAS  PubMed  Google Scholar 

  221. H. Ko, K. Park, H. Kim, et al., Ca2+-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B by NMDA in cortical cell cultures, J Neurochem 71:1390–1395 (1998).

    CAS  PubMed  Google Scholar 

  222. M. Grilli, and M. Memo, Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic nuonal pathway, Cell Death Differen 6:22–27 (1999).

    CAS  Google Scholar 

  223. K. Bales, Y. Du, R. Dodel, G. Yan, E. Hamilton-Byrd, and S. Paul, The NF-kappaB/Rel family of proteins mediates A beta-induced neurotoxicity and glial activation, Molec Brain Res 57:63–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  224. N. Perkins, The Rel/NF-kappa B family: friend and foe, Trends Biochem Sci 25:434–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  225. M. Whitehouse, Uncoupling of oxidative phosphorylation in a connective tissue (cartilage) and liver mitochondria by salicylate analogues: Relationship of structure to activity, Biochem Pharmacol 13:319–336 (1964).

    Article  CAS  PubMed  Google Scholar 

  226. M. Mehlman, R. Tobin, and E. Sporn, Oxidative phosphorylation and respiration by rat liver mitochondria from aspirin-treated rats, Biochem Pharmacol 21:3279–3285 (1972).

    CAS  PubMed  Google Scholar 

  227. R. Haas, W. Parker, Jr., D. Stumpf, and L. Eguren, Salicylate-induced loose coupling: protonmotive force measurements, Biochem Pharmacol 34:900–902 (1985).

    Article  CAS  PubMed  Google Scholar 

  228. S. Somasundaram, H. Hayllar, S. Rafi, J. Wrigglesworth, A. Macpherson, and I. Bjarnason, The biochemical basis of non-steroidal anti-inflammatory drug-induced damage to the gastrointestinal tract: a review and a hypothesis, Scand J Gastroenterol 30:289–299 (1995).

    CAS  PubMed  Google Scholar 

  229. T. Mahmud, S. Rafi, D. Scott, J. Wrigglesworth, and I. Bjarnason, Nonsteroidal antiinflammatory drugs and uncoupling of mitochondrial oxidative phosphorylation, Arthritis Rheum 39:1998–2003 (1996).

    CAS  PubMed  Google Scholar 

  230. C. Sen, and L. Packer, Antioxidant and redox regulation of gene transcription, FASEB J 10:709–720 (1996).

    CAS  PubMed  Google Scholar 

  231. V. Lakshminarayanan, E. Drab-Weiss, and K. Roebuck, H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells, J Biol Chem 273:32670–32678 (1998).

    Article  CAS  PubMed  Google Scholar 

  232. E. Shaulian, and M. Karin. AP-1 as a regulator of cell life and death, Nat Cell Biol 4:E131–6 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2004). Utilization of Oxidizable Substrates in Brain. In: Integration of Metabolism, Energetics, and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/0-306-48529-X_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-48529-X_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48471-1

  • Online ISBN: 978-0-306-48529-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics