Skip to main content

Designing Adaptive Low-dissipative High Order Schemes for Long-time Integrations

  • Chapter
Turbulent Flow Computation

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 66))

  • 610 Accesses

Abstract

A general framework for the design of adaptive low-dissipative high order schmes is presented. It encompasses a rather complete treatment of the numerical approach based on four integrated design criteria: (1) For stability considerations, condition the governing equations before the application of the appropriate numerical scheme whenever it is possible. (2) For consistency, compatible schemes that possess stability properties, including physical and numerical boundary condition treatments, similar to those of the discrete analogue of the continuum are preferred. (3) For the minimization of numerical dissipation contamination, efficient and adaptive numerical dissipation control to further improve nonlinear stability and accuracyshould be used. (4) For practical considerations, the numerical approachshould be efficient and applicable to general geometries, and an efficient and reliable dynamic grid adaptation should be used if necessary. These design criteria are, in general, very useful to a wide spectrum of flow simulations. However, the demand on the overall numerical approach for nonlinear stability and accuracy is much more stringent for long-time integration of complex multiscale viscous shock/shear/turbulence/acoustics interactions and numerical combustion. Robust classical numerical methods for less complex flow physics are not suitable or practical for such applications. The present approach is designed expressly to address such flow problems, especially unsteady flows. The minimization of employing very fine grids to overcome the production of spurious numerical solutions and/or instability due to under-resolved grids is also sought [79, 17]. The incremental studies to illustrate the performance of the approach are summarized. Extensive testing and full implementation of the approach isforthcoming.The results shownso far are very encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alam and N.D. Sandham, DNS of Transition Near the Leading Edge of an Aerofoil. Proc Direct and Large Eddy Simulation 4, B.J. Geurts, ed, to appear Kluwer (2001).

    Google Scholar 

  2. Alpert, P., Implicit Filtering in Conjunction with Explicit Filtering, J. Cornput. Phys. 44, 212–219 (1981).

    Article  MATH  ADS  Google Scholar 

  3. M. Ashworth, D.R. Emerson, N.D. Sandham, Y.F. Yao, and Q. Li, Parallel DNS Using a Compressible Turbulent Channel Flow Benchmark. Proc. ECCOMAS CFD Conference, Swansea, Wales, 4–7 Sept. 2001.

    Google Scholar 

  4. A. Arakawa, Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow. Part I, J. Comput. Phys., 1, pp. 119–143 (1966).

    Article  MATH  ADS  Google Scholar 

  5. G. A. Blaisdell, Numerical Simulation of Compressible Homogeneous Turbulence, PhD Thesis, Stanford University, 1991.

    Google Scholar 

  6. Brown, D.L. and Minion, M.L., Performance of Under-resolved Two-Dimensional Incompressible Flow Simulations, J. Comput. Phys. 122, 165–183 (1995).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Brown, D.L., Margolin, L., Sharp, D. and A. White, A., Predictability of Complex Phenomena, A White Paper, Los Alamos National Laboratory reprint (1997).

    Google Scholar 

  8. M.H. Carpenter, D. Gottlieb, S. Abarbanel S. and W.-S. Don, The Theoretical Accuracy of Runge-Kutta Time Discretizations for Initial Value Problem: A Study of the Boundary Error, SIAM J. Sci. Comput. 16, 1241–1252 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. M.H. Carpenter, J. Nordstrom and D. Gottlieb, A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy, ICASE Report 98-12, 1998.

    Google Scholar 

  10. M.H. Carpenter, D. Gottlieb and S. Abarbanel, Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes, J. Comput. Phys., 111, 220–236 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. G.N. Coleman, J. Kim, J. and R. Moser, A Numerical Study of Turbulent Supersonic Isothermal-Wall Channel Flow, J. Fluid Mech. 305, pp. 159–183 (1995).

    Article  ADS  MATH  Google Scholar 

  12. V. Daru and C. Tenaud, Evaluation of TVD High Resolution Schemes for Unsteady Viscous Shocked Flows, Computers Fluids, 30 89–113 (2000).

    Article  Google Scholar 

  13. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, No 61, SIAM, 1992.

    Google Scholar 

  14. B. Engquist and B. Sjögreen, High Order Shock Capturing Methods, CFD Reviews, (Hafez & Oshima, Eds.), John Wiley, New York, 210–233 (1995).

    Google Scholar 

  15. M. Farge, Wavelet Transforms and their Applications to Turbulence, Ann. Rev. of Fluid Mech., 24, 395 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. W. J. Feiereisen, W. C. Reynolds, and J. H. Ferziger, Numerical Simulation of a Compressible Homogeneous, Turbulent Shear Flow, Report No. TF-13 (1981), Thermosciences Division, Department of Mechanical Engineering, Stanford University.

    Google Scholar 

  17. P.F. Fischer and J.S. Mullen, Filter-Based Stabilization of Spectral Element Methods, Argonne National Lab. Report, August 4, 1999.

    Google Scholar 

  18. D.V. Gaitone and M.R. Visbal, Further Development of a Navier-Stokes Solution Procedure Based on Higher-Order Formulas, AIAA Paper 99-0557, Reno, NV, 1999.

    Google Scholar 

  19. P. R. Garabedian, Partial Differential Equations, John Wiley & Sons, 1964.

    Google Scholar 

  20. M. Gerritsen and P. Olsson, Designing an Efficient Solution Strategy for Fluid Flows I. J. Comput. Phys., 129, pp. 245–262 (1996).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. J. Glimm and D. Sharp, Prediction and the Quantification of Uncertainty, Los Alamos National Laboratory LAUR-98-3391 (1998).

    Google Scholar 

  22. D. Gottlieb and J.S. Hesthaven, Spectral Methods for Hyperbolic Problems, J. Comput. Applied Math., 128, 83–131 (2001).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. P.M. Gresho, D.K. Gartling, J.R. Torczynski, K.A. Cliffe, K.H. Winters, T.J. Garrett, A. Spence and J.W. Goodrich, Is the Steady Viscous Incompressible Two-Dimensional Flow Over a Backward-facing Step at Re=800 Stable?, Intern. J. Numer. Meth. Fluids 17 501–541 (1993).

    Article  MATH  ADS  Google Scholar 

  24. B. Gustafsson, H.-O. Kreiss and J. Oliger, J., Time Dependent Problems and Difference Methods, John Wiley & Sons, New York (1995).

    MATH  Google Scholar 

  25. A. Harten, On the Symmetric Form of Systems for Conservation Laws with Entropy, J. Comput. Phys. 49, 151–164 (1983).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. R. D. Henderson, Adaptive Spectral Element Methods for Turbulence and Transition, in High-Order Methods for Computational Physics, T. J. Barth and H. Deconinck, editors. Springer 1999.

    Google Scholar 

  27. C.W. Hirt, Heuristic Stability Theory for Finite-Difference Equations, J. Comput. Phys., 2, pp. 339–355 (1968).

    Article  MATH  ADS  Google Scholar 

  28. Huang, P. G., G.N. Coleman, and P. Bradshaw, Compressible Turbulent Channel Flows: DNS Results and Modeling. J. Fluid Mech. 305, 185–218 (1995).

    Article  ADS  MATH  Google Scholar 

  29. M. Johansson, Loss of High Order Spatial Accuracy due to Boundary Error Caused by Runge-Kutta Time Integration, Technical report 2000-013, Dept. Info. Tech., Uppsala University, May 2000.

    Google Scholar 

  30. H.-O. Kreiss and J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24, pp. 199–215 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  31. H.-O. Kreiss, Numerical Methods for Solving Time-Dependent Problems for Partial Differential Equations, Les Presses de ľUniversité de Montréal, 1978.

    Google Scholar 

  32. J. Kim, P. Moin and R.D. Moser, Turbulence Statistics in fully-Developed Channel Flow at Low Reynolds Number. J. Fluid Mech. 177, 133–166 (1987).

    Article  ADS  MATH  Google Scholar 

  33. Lafon, A. and Yee, H.C., Dynamical Approach Study of Spurious Steady-State Numerical Solutions for Nonlinear Differential Equations, Part III: The Effects of Nonlinear Source Terms in Reaction-Convection Equations, Comp.. Fluid Dyn. 6 1–36 (1996).

    Article  Google Scholar 

  34. Lafon, A. and Yee, H.C., Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations, Part IV: Stability vs. Numerical Treatment of Nonlinear Source Terms, Comput. Fluid Dyn. 6 89–123 (1996).

    Article  Google Scholar 

  35. A.A. Lawal, and N.D. Sandham, Direct Simulation of Transonic Flow Over a Bump. Proc Direct and Large Eddy Simulation 4, B.J. Geurts, ed, to appear Kluwer (2001).

    Google Scholar 

  36. LeVeque, R.J. and Yee, H.C., A Study of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms, J. Comput. Phys. 86 187–210 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  37. Lele. S.A., Compact Finite Difference Schemes with Spectral-Like Resolution, J. Comput. Phys., 103, 16–42 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Q. Li, Direct Numerical Simulation of Compressible Turbulent Channel Flow. PhD Thesis, University of Southampton, in preparation (2001).

    Google Scholar 

  39. R. W. MacCormack, Numerical Solution of the Interaction of a Shock Wave with a Laminar Boundary Layer, Proceedings of the 2nd Intern. Conf. on Num. Meths. in Fluid Dynamics, pp. 151–163 (1971).

    Google Scholar 

  40. Y. Maday and A. T. Patera, Spectral element methods for the Navier-Stokes equations, State of the Art Surveys in Computational Mechanics, A. K. Moor, ed., ASME, New York, pp. 71–143 (1989).

    Google Scholar 

  41. S.G. Mallat, A Wavelet Tour of Signal Processing, Second Edition, Academic Press, San Diego (1999).

    MATH  Google Scholar 

  42. S.G. Mallat, Multifrequency channel Decompositions of Images and Wavelet Models, IEEE Trans. Acoust. Speech Signal Process., 37, 2091 (1989).

    Article  Google Scholar 

  43. S.G. Mallat, Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R), Trans. Amer. Math. Soc., 315, 69 (1989).

    MathSciNet  MATH  Google Scholar 

  44. S.G. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Trans. Part. Anal. Mach. Intell., 11, 674 (1989).

    Article  MATH  ADS  Google Scholar 

  45. S.G. Mallat and W. L. Hwang, Singularity Detection and Processing with Wavelets, IEEE Transactions on Information Theory, 38, 617 (1992).

    Article  MathSciNet  Google Scholar 

  46. S.G. Mallat and S. Zhong, Characterization of Signals from Multiscale Edges, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 710–732 (1992).

    Article  Google Scholar 

  47. N. N. Mansour, J. H. Ferziger, and W. C. Reynolds, Large-Eddy Simulation of a Turbulent Mixing Layer, Report TF-11, Thermosciences Division, Stanford University, (1978).

    Google Scholar 

  48. K. Mattsson, Imposing Boundary Conditions with the Injection, the Projection and the Simultaneous Approximation Term Methods, Proceedings of the First International Conference on CFD, July 10–14, 2000, Kyoto.

    Google Scholar 

  49. M.L. Minion, and D.L. Brown, Performance of Under-resolved Two-Dimensional Incompressible Flow Simulations II, J. Comput. Phys. 138, 734–765 (1997).

    Article  MATH  ADS  Google Scholar 

  50. B. Müller and H.C. Yee, Entropy Splitting for High Order Numerical Simulation of Vortex Sound at Low Mach Numbers, Proceedings of the 5th Internal. Conf. on Spectral and High Order Methods, Uppsala, Sweden, June 11–15, 2001.

    Google Scholar 

  51. J. Nordström and M.H. Carpenter, Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations, J. Comput. Phys., 148, 621–645 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. W.L. Oberkampf, K.V. Diegert, K.F. Alvin, and B.M. Rutherford, Variability, Uncertainty and Error in Computational Simulation, ASME Proceedings of the 7th. AIAA/ASME Joint Thermophysics and Heat Transfer Conference, HTD-Vol. 357–2 (1998).

    Google Scholar 

  53. P. Olsson, Summation by Parts, Projections, and Stability. I, Math. Comp. 64 (1995), pp. 1035–1065.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. P. Olsson, Summation by Parts, Projections, and Stability. II, Math. Comp. 64, pp. 1473–1493 (1995).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. P. Olsson, Summation by Parts, Projections, and Stability. III, RIACS Technical Report 95.06 (1995).

    Google Scholar 

  56. P. Olsson and J. Oliger, Energy and Maximum Norm Estimates for Nonlinear Conservation Laws, RIACS Technical Report 94.01, (1994).

    Google Scholar 

  57. V. Perrier, T. Philipovitch, and C. Basdevant, Wavelet Spectra Compared to Fourier Spectra, Publication of ENS, Paris, 1999.

    Google Scholar 

  58. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, 2nd ed., John Wiley & Sons, 1967.

    Google Scholar 

  59. N.D. Sandham and R.J.A. Howard, Direct Simulation of Turbulence Using Massively Parallel Computers. Parallel Computational Fluid Dynamics, Ed. D.R. Emerson et al., Elsevier (1998).

    Google Scholar 

  60. Sandham, N.D. and Yee, H.C., Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence, RIACS Technical Report 00.10, June, 2000, Proceedings of the 1 st Intern. Conf. on CFD, July 10–14, 2000, Kyoto, Japan.

    Google Scholar 

  61. N. D. Sandham, Q. Li and H.C. Yee, Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence, Revised version of RIACS Technical Report 00.10, June 2000, NASA Ames Research Center; Proceedings of the First International Conference on CFD, July 10-14, 2000, Kyoto, Japan.

    Google Scholar 

  62. B. Sjögreen, Numerical Experiments with the Multiresolution Scheme for the Compressible Euler Equations, J. Comput. Phys., 117, 251 (1995).

    Article  MATH  ADS  Google Scholar 

  63. B. Sjögreen and H. C. Yee, Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations, RIACS Report 01.01, NASA Ames research center (Oct 2000).

    Google Scholar 

  64. B. Sjögreen and H. C. Yee, Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows, RIACS Report 01.06, April, 2001, NASA Ames research center; AIAA 2001–2599, Proceedings of the 15th AIAA CFD Conference, June 11–14, 2001, Anaheim, CA.

    Google Scholar 

  65. B. Sjögreen and H.C. Yee, On Entropy Splitting, Linear and Nonlinear Numerical Dissipations and Long-Time Integrations, Proceedings of the 5th Internal. Conf. on Spectral and High Order Methods, Uppsala, Sweden, June 11–15, 2001.

    Google Scholar 

  66. B. Sjögreen and H. C. Yee, Low Dissipative High Order Numerical Simulations of Supersonic Reactive Flows, RIACS Report 01-017, NASA Ames Research Center (May 2001); Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001, Swansea, Wales, UK, September 4–7,2001.

    Google Scholar 

  67. B. Sjögreen, High Order Centered Difference Methods for the Compressible Navier-Stokes Equations, J. Comput. Phys., 117, pp. 67–78 (1995).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  68. Special Section of the AIAA Journal, Credible Computational Fluid Dynamics Simulation, AIAA J. 36, 665–759 (1998).

    Article  Google Scholar 

  69. Strand, B., High-Order Difference Approximations for Hyperbolic Initial Boundary Value Problems, PhD thesis, Uppsala University, Department of Scientific Computing, 1996.

    Google Scholar 

  70. B. Strand, Summation by Parts for Finite Difference Approximations for d/dx, J. Comput. Phys. 110, pp. 47–67 (1994).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  71. G. Strang, Wavelet Transforms versus Fourier Transforms, Bull. Amer. Math. Soc. (N.S.), 28, 288 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  72. G. Strang, Wavelet and Dilation Equations: A Brief Introduction, SIAM Rev., 31, 614 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  73. E. Tadmor, Skew-Self adjoint Form for Systems of Conservation Laws, J. Math. Anal. Appl., 103, pp. 428–442 (1984).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  74. J.R. Torczynski, A Grid Refinement Study of Two-Dimensional Transient Flow Over a Backward-facing Step Using a Spectral-Element Method, FED-Vol. 149, Separated Flows, ASME, J.C. Dutton and L.P. Purtell, Eds. (1993).

    Google Scholar 

  75. T.G. Trucano, Prediction and Uncertainty in Computational Modeling of Complex Phenomena: A Whitepaper, Sandia Report, SAND98-2776 (1998).

    Google Scholar 

  76. [76]R. Vichnevetsky, Numerical Filtering for Partial Differencing Equations, Numerical Applications Memorandum, Rutgers University, NAM 156 (1974).

    Google Scholar 

  77. M. Vinokur and H.C. Yee, Extension of Efficient Low Dissipative High Order Schemes for 3-D Curvilinear Moving Grids, NASA TM 209598, June 2000.

    Google Scholar 

  78. Yee, H.C., Sweby, P.K. and Griffiths, D.F., Dynamical Approach Study of Spurious Steady-State Numerical Solutions for Nonlinear Differential Equations, Part I: The Dynamics of Time Discretizations and Its Implications for Algorithm Development in Computational Fluid Dynamics, NASA TM-102820, April 1990; J. Comput. Phys. 97 249–310 (1991).

    Google Scholar 

  79. H.C. Yee, P.K. Sweby, Dynamics of Numerics Spurious Behaviors in CFD Computations, 7th ISCFD Conference, Sept. 15–19, 1997, Beijing, China, RIACS Technical Report 97.06, June (1997).

    Google Scholar 

  80. H.C. Yee and P.K. Sweby, Some Aspects of Numerical Uncertainties in Time Marching to Steady-State Computations, AIAA-96-2052, 27th AIAA Fluid Dynamics Conference, June 18–20, 1996, New Orleans, LA., AIAA J., 36 712–724 (1998).

    Article  ADS  Google Scholar 

  81. H.C. Yee, J.R. Torczynski, S.A. Morton, M.R. Visbal and P.K. Sweby, On Spurious Behavior of CFD Simulations, AIAA 97-1869, Proceedings of the 13th AIAA Computational Fluid Dynamics Conference, June 29–July 2, 1997, Snowmass, CO.; also International J. Num. Meth. Fluids, 30, 675–711 (1999).

    Google Scholar 

  82. H. C. Yee, N. D. Sandham, and M. J. Djomehri, Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters, J. Comput. Phys., 150 199–238 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. H.C. Yee, M. Vinokur, and M.J. Djomehri, Entropy Splitting and Numerical Dissipation, NASA Technical Memorandum 208793, August, 1999, NASA Ames Research Center; J. Comput. Phys., 162, 33 (2000).

    Google Scholar 

  84. H.C. Yee and B. Sjögreen, Adaptive Numerical-Dissipation/Filter Controls for High Order Numerical Methods, Proceedings of the 3rd International Conference on DNS/LES, Arlington, Texas, August 4–9, 2001.

    Google Scholar 

  85. S.T. Zalesak, High Order “ZIP” Differencing of Convective Terms, J. Comput. Phys., 40 (1981), pp. 497–508.

    Article  MATH  ADS  Google Scholar 

  86. T. A. Zang, On the Rotation and Skew-Symmetric Forms for Incompressible Flow Simulations, Appl. Numer. Math., 7 (1991), pp. 27–40.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yee, H.C., Sjögreen, B. (2004). Designing Adaptive Low-dissipative High Order Schemes for Long-time Integrations. In: Drikakis, D., Geurts, B. (eds) Turbulent Flow Computation. Fluid Mechanics and Its Applications, vol 66. Springer, Dordrecht. https://doi.org/10.1007/0-306-48421-8_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48421-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0523-7

  • Online ISBN: 978-0-306-48421-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics