Skip to main content

Numerical evidence of breaking of vortex lines in an ideal fluid

  • Conference paper
Tubes, Sheets and Singularities in Fluid Dynamics

Abstract

Emergence of singularity of vorticity at a single point, not related to any symmetry of the initial distribution, has been demonstrated numerically for the first time. Behaviour of the maximum of vorticity near the point of collapse closely follows the dependence (t 0t)−1, where t 0 is the time of collapse. This agrees with the interpretation of collapse in an ideal incompressible fluid as of the process of vortex lines breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, V.I. 1981 Theory of Catastrophe. Znanie, Moscow (in Russian) [English transl.: Theory of Catastrophe 1986, 2nd rev. ed. Springer].

    Google Scholar 

  • Arnold, V.I. 1989 Mathematical Methods of Classical Mechanics. 2nd ed., Springer-Verlag, New York.

    Google Scholar 

  • Beale, J.T., Kato, T. & Majda, A.J. 1984 Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys.94, 61–66.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Boratav, O.N. & Pelz, R.B. 1994 Direct numerical simulation of transition to turbulence from high-symmetry initial condition. Phys. Fluids6, 2757–2784.

    Article  ADS  MATH  Google Scholar 

  • Constantin, P., Feferman, CH. & Majda, A.J. 1996 Geometric constrains on potentially singular solutions for the 3D Euler equations. Commun. Partial Diff. Eqs.21, 559–571.

    MATH  Google Scholar 

  • Crow, S.C. 1970 Stability Theory for a pair of trailing vortices. Amer. Inst. Aeronaut. Astronaut. J.8, 2172–2179.

    Google Scholar 

  • Frisch, U. 1995 Turbulence. The legacy of A.N.Kolmogorov. Cambridge Univ. Press.

    Google Scholar 

  • Grauer, R., Marliani, C., & Germaschewski, K. 1998 Adaptive mesh refinement for singular solutions of the incompressible Euler equations. Phys. Rev. Lett.80, 4177–4180.

    Article  ADS  Google Scholar 

  • Kerr, R.M. 1993 Evidence for a singularity of the 3-dimensional, incompressible Euler equations Phys. Fluids A 5, 1725–1746.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Doklady AN SSSR30, 9–13 (in Russian) [reprinted in 1991 Proc. R. Soc. Lond. A 434, 9–13].

    Google Scholar 

  • Kuznetsov, E.A. & Ruban, V.P. 1998 Hamiltonian dynamics of vortex lines for systems of the hydrodynamic type, JETP Letters67, 1076–1081.

    Article  ADS  Google Scholar 

  • Kuznetsov, E.A. & Ruban, V.P. 2000 Collapse of vortex lines in hydrodynamics. JETP91, 776–785.

    ADS  Google Scholar 

  • L’vov, V.S. 1991 Scale invariant theory of fully developed hydrodynamic turbulence — Hamiltonian approach. Phys. Rep.207, 1–47.

    Google Scholar 

  • Monin, A.S. & Yaglom, A.M. 1992 Statistical hydro-mechanics. 2nd ed., vol.2, Gidrometeoizdat, St.Petersburg (in Russian) [English transl.: 1975 Statistical Fluid Mechanics. Vol. 2, ed. J.Lumley, MIT Press, Cambridge, MA].

    Google Scholar 

  • Pelz, R.B. 1997 Locally self-similar, finite-time collapse in a high-symmetry vortex filament model. Phys. Rev. E, 55, 1617–1626.

    Article  ADS  Google Scholar 

  • Zakharov, V.E. & Kuznetsov, E.A. 1986 Quasiclassical theory of three-dimensional wave collapse. Sov. Phys. JETP64, 773–780.

    Google Scholar 

  • Zheligovsky, V.A., Kuznetsov, E.A. & Podvigina, O.M. 2001 Numerical modeling of collapse in ideal incompressible hydrodynamics. Pis’ma v ZhETF (JET Letters) 74, 402–406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Kuznetsov, E.A., Podvigina, O.M., Zheligovsky, V.A. (2002). Numerical evidence of breaking of vortex lines in an ideal fluid. In: Bajer, K., Moffatt, H.K. (eds) Tubes, Sheets and Singularities in Fluid Dynamics. Fluid Mechanics and Its Applications, vol 71. Springer, Dordrecht. https://doi.org/10.1007/0-306-48420-X_37

Download citation

  • DOI: https://doi.org/10.1007/0-306-48420-X_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0980-8

  • Online ISBN: 978-0-306-48420-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics