Skip to main content

Simulation of vortex sheet roll-up: chaos, azimuthal waves, ring merger

  • Conference paper
Tubes, Sheets and Singularities in Fluid Dynamics

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 71))

  • 601 Accesses

Abstract

This article reviews some recent simulations of vortex sheet roll-up using the vortex blob method. In planar and axisymmetric flow, the roll-up is initially smooth but irregular small-scale features develop later in time due to the onset of chaos. A numerically generated Poincaré section shows that the vortex sheet flow resembles a chaotic Hamiltonian system with resonance bands and a heteroclinic tangle. The chaos is induced by a self-sustained oscillation in the vortex core rather than external forcing. In three-dimensional flow, an adaptive treecode algorithm is applied to reduce the CPU time from O(N 2) to O(N log N), where N is the number of particles representing the sheet. Results are presented showing the growth of azimuthal waves on a vortex ring and the merger of two vortex rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, C. R. 1985 A vortex method for flows with slight density variations. Comput. Phys.61, 417–444.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech.143, 1–21.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Barnes, J. & Hut, P. 1986 A hierarchical O(N log N) force-calculation algorithm. Nature324, 446–449.

    Article  ADS  Google Scholar 

  • Chorin, A. J. & Bernard, P. S. 1973 Discretization of a vortex sheet, with an example of roll-up, J. Comput. Phys.13, 423–429.

    Article  ADS  Google Scholar 

  • Cottet, G.-H. & Koumoutsakos, P. D. 2000 Vortex Methods: Theory and Practice. Cambridge University Press.

    Google Scholar 

  • Draghicescu, C. & Draghicescu, M. 1995 A fast algorithm for vortex blob interactions, J. Comput. Phys.116, 69–78.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Greengard, L. & Rokhlin, V. 1987 A fast algorithm for particle simulations, J.Comput. Phys.73, 325–348.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag.

    Google Scholar 

  • Kida, S. 1981 Motion of an elliptic vortex in a uniform shear flow. J.Phys. Soc. Jpn.50, 3517–3520.

    Article  ADS  Google Scholar 

  • Kida, S. & Takaoka, M. 1994 Vortex reconnection, Annu. Rev. Fluid Mech.26, 169–189.

    Article  MathSciNet  ADS  Google Scholar 

  • Krasny, R. 1987 Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech.184, 123–155.

    Article  ADS  Google Scholar 

  • Krasny, R. & Nitsche, M. 2001 The onset of chaos in vortex sheet flow. J. Fluid Mech.454, 47–69.

    Article  MathSciNet  ADS  Google Scholar 

  • Lim, T. T. & Nickels, T. B. 1995 Vortex rings. In Fluid Vortices (ed. S. I. Green), pp. 95–153. Kluwer.

    Google Scholar 

  • Lindsay, K. & Krasny, R. 2001 A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J.Comput. Phys.172, 879–907.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Moore, D. W. 1972 Finite amplitude waves on aircraft trailing vortices, Aero. Quart.23, 307–314.

    Google Scholar 

  • Moore, D. W. 1979 The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. Roy. Soc. Land. A 365, 105–119.

    Article  MATH  ADS  Google Scholar 

  • Nitsche, M. & Krasny, R. 1994 A numerical study of vortex ring formation at the edge of a circular tube, J.Fluid Mech.276, 139–161.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.

    Google Scholar 

  • Rom-Kedar, V., Leonard, A. & Wiggins, S. 1990 An analytical study of transport, mixing and chaos in an unsteady vortical flow. J.Fluid Mech.314, 347–394.

    Article  MathSciNet  ADS  Google Scholar 

  • Rosenhead, L. 1930 The spread of vorticity in the wake behind a cylinder, Proc. Roy. Soc. Land.A127, 590–612.

    Article  ADS  Google Scholar 

  • Schatzle, P. R. 1987 An experimental study of fusion of vortex rings, Ph.D. Thesis, California Institute of Technology.

    Google Scholar 

  • Shariff, K. & Leonard, A. 1992 Vortex rings. Ann. Rev. Fluid Mech.24, 235–297.

    Article  MathSciNet  ADS  Google Scholar 

  • Tryggvason, G., Dahm, W. J. A. & Sbeih, K. 1991 Fine structure of vortex sheet rollup by viscous and inviscid simulations, ASME J. Fluid Engin.113, 31–36.

    Article  Google Scholar 

  • Wiggins, S. 1992 Chaotic Transport in Dynamical Systems. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Krasny, R., Lindsay, K., Nitsche, M. (2002). Simulation of vortex sheet roll-up: chaos, azimuthal waves, ring merger. In: Bajer, K., Moffatt, H.K. (eds) Tubes, Sheets and Singularities in Fluid Dynamics. Fluid Mechanics and Its Applications, vol 71. Springer, Dordrecht. https://doi.org/10.1007/0-306-48420-X_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48420-X_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0980-8

  • Online ISBN: 978-0-306-48420-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics