Skip to main content

HGF-c-Met Receptor Pathway in Tumor Invasion-metastasis and Potential Cancer Treatment With NK4

  • Chapter
Growth Factors and their Receptors in Cancer Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 2))

Abstract

Hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, has mitogenic, motogenic, anti-apoptotic, and angiogenic activities. In tumor tissues, HGF potently enhances dissociation and invasion of a wide variety of tumor cells, thereby facilitating tumor metastasis. Aberrant expression of the c-Met receptor in cancer tissues, up-regulation of the HGF gene expression in tumor cells and/or host stroma, and mutational activation of c-Met receptor tyrosine kinase are particularly associated with the malignant progression of tumors. Likewise, in a variety of carcinomas (tumors of epithelial origin), HGF functions as a stromal-derived mediator in tumor-stromal interaction which confers malignant behavior in carcinoma cells. Therefore, blockage of HGF-c-Met receptor coupling or c-Met receptor-mediated signals has potential value for treatment of cancer patients. NK4, originally prepared as a competitive antagonist for HGF, is an internal fragment of HGF and it contains N-terminal hairpin and four kringle domains. NK4 binds to but does not activate the c-Met receptor, thereby competitively antagonizing biological activities of HGF. Unexpectedly, NK4 was subsequently shown to be an angiogenesis inhibitor and this angioinhibitory activity is independent of its action as an HGF-antagonist. Importantly, NK4, HGF-antagonist/angiogenesis inhibitor, inhibits tumor invasion, growth, angiogenesis, and metastasis of tumors in laboratory animals. Invasion and subsequent establishment of metastasis are devastating events in patients with cancer, but many past approaches did not address what is perhaps a most important issue in cancer treatment, i.e., invasion and metastasis. The therapeutic strategy of NK4 is based on suppression of intrinsic characteristics of malignant tumors. The possibility that NK4 can be an effective therapeutic for cancer patients warrants ongoing attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vande Woude GF, Jeffers M, Cortner J, Alvord G, Tsarfaty I, Resau J. Met-HGF/SF: tumorigenesis, invasion and metastasis. In Plasminogen-related Growth Factors (Gherardi E, ed), John Wiley & Sons, 1997; pp 119–132.

    Google Scholar 

  2. Jiang WG, Hiscox S, Matsumoto K, Nakamura T. Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Crit Rev Oncol Hematol 1999; 29: 209–248.

    CAS  PubMed  Google Scholar 

  3. Matsumoto K, Nakamura T. Hepatocyte growth factor and Met in tumour invasion-metastasis: from mechanisms to cancer prevention. In “Cancer Metastasis: Molecular & Cellular Mechanisms and Clinical Interventions” (W.E. Jiang, R.E. Mansel, eds) Kluwer Academic Publishers, 2000; pp. 143–193.

    Google Scholar 

  4. Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 1984; 122: 1450–1459.

    CAS  PubMed  Google Scholar 

  5. Russell WE, McGowan JA, Bucher NLR. Partial characterization of hepatocyte growth factor from rat platelets. J Cell Physiol 1984; 119:183–192.

    CAS  PubMed  Google Scholar 

  6. Nakamura T, Nawa K, Ichihara A, Kaise N, Nishino T. Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett 1987; 224: 311–318.

    Article  CAS  PubMed  Google Scholar 

  7. Gohda E, Tsubouchi H, Nakayama H, Hirono S, Sakiyama O, Takahashi K, Miyazaki H, Hashimoto S, Daikuhara Y. Purification and partial characterization of human hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest 1988; 88: 414–419.

    Google Scholar 

  8. Zarnegar R, Michalopoulos GK. Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes. Cancer Res 1989; 49: 3314–3320.

    CAS  PubMed  Google Scholar 

  9. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342: 440–443.

    Article  CAS  PubMed  Google Scholar 

  10. Tashiro K, Hagiya M, Nishizawa T, Seki T, Shimonishi M, Shimizu S, Nakamura T. Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. Proc Natl Acad Sci USA. 1990; 87: 3200–3204.

    CAS  PubMed  Google Scholar 

  11. Stoker M, Perryman M. An epithelial scatter factor released by embryo fibroblasts. J Cell Sci 1985; 77: 209–223.

    CAS  PubMed  Google Scholar 

  12. Gherardi E, Gray J, Stoker M, Perryman M, Furlong R. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interaction and movement. Proc Natl Acad Sci USA 1989; 86: 5844–5848.

    CAS  PubMed  Google Scholar 

  13. Weidner KM, Behrens J, Vanderkerckhove J, Birchmeier W. Scatter factor: molecular characteristics and effects on the invasiveness of epithelial cells. J Cell Biol 1990; 111: 2097–2108.

    Article  CAS  PubMed  Google Scholar 

  14. Weidner KM, Arakaki N, Hartmann G, Vanderkerckhove J, Weingart S, Rieder H, Fonatsch C, Tsubouchi H, Hishida T, Daikuhara Y, Birchmeier W. Evidence for identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 1991; 88: 7001–7005.

    CAS  PubMed  Google Scholar 

  15. Konishi T, Takehara T, Tsuji T, Ohsato K, Matsumoto K, Nakamura T. Scatter factor from human embryonic fibroblasts is probably identical to hepatocyte growth factor. Biochem Biophys Res Commun 1991; 180: 765–773.

    Article  CAS  PubMed  Google Scholar 

  16. Furlong RA, Takehara T, Taylor WG, Nakamura T, Rubin JS. Comparison of biological and immunochemical properties indicates that scatter factor and hepatocyte growth factor are indistinguishable. J Cell Sci 1991; 100: 173–177.

    CAS  PubMed  Google Scholar 

  17. Rubin JS, Chan AML, Bottaro DP, Burges WH, Taylor WG, Aaronson SA. A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc Natl Acad Sci USA 1991; 88: 415–419.

    CAS  PubMed  Google Scholar 

  18. Shima N, Nagao M, Ogaki F, Murakami A, Higashio K. Tumor cytotoxic factor/hepatocyte growth factor from human fibroblasts: cloning of its cDNA, purification and characterization of recombinant protein. Biochem Biophys Res Commun 1991; 180: 1151–1158.

    Article  CAS  PubMed  Google Scholar 

  19. Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991; 67: 901–908.

    Article  CAS  PubMed  Google Scholar 

  20. Bottaro DP, Rubin JS, Faletto DL, Chan AMI, Kmiecik TE, Vande Woude GF, Aaronson SA. Identification of hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802–804.

    CAS  PubMed  Google Scholar 

  21. Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK, Comoglio PM. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 1991; 6:501–504.

    CAS  PubMed  Google Scholar 

  22. Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude GF. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth factor receptors. Proc Natl Acad Sci USA 1987; 84: 6379–6383.

    CAS  PubMed  Google Scholar 

  23. Ponzetto C, Bardelli A, Zhen Z, Maina F, Zonca P, Giordano S, Graziani A, Panayotou G, Comoglio PM. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 1994; 77: 261–271.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu H, Naujoskas MA, Fixman ED, Torossian K, Park M. Tyrosine 1356 in the carboxyl-terminal tail of the HGF/SF receptor is essential for the transduction of signals for cell motility and morphogenesis. J Biol Chem 1994; 269: 29943–29948.

    CAS  PubMed  Google Scholar 

  25. Weidner KM, Sachs M, Riethmacher D, Birchmeier W. Mutation of juxtamembrane tyrosine residue 1001 suppresses loss-of-function mutations of the met receptor in epithelial cells. Proc Natl Acad Sci USA. 1995; 92: 2597–2601.

    CAS  PubMed  Google Scholar 

  26. Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 1996; 384: 173–176.

    Article  CAS  PubMed  Google Scholar 

  27. Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W. Coupling of gab1 to c-met, grb2, and shp2 mediates biological responses. J Cell Biol 2000; 149: 1419–1432.

    Article  CAS  PubMed  Google Scholar 

  28. Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ, Park M. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the Met receptor tyrosine kinase. Mol Cell Biol 2000; 20: 8513–8525.

    Article  CAS  PubMed  Google Scholar 

  29. Kotelevets L, Noe V, Bruyneel E, Myssiakine E, Chastre E, Mareel M, Gespach C: Inhibition by platelet-activating factor of Src-and hepatocyte growth factor-dependent invasiveness of intestinal and kidney epithelial cells. Phosphatidylinositol 3′-kinase is a critical mediator of tumor invasion. J Biol Chem 1998; 273: 14138–14145.

    Article  CAS  PubMed  Google Scholar 

  30. Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, Takai Y. Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 1994; 9: 273–279.

    CAS  PubMed  Google Scholar 

  31. Hartmann G, Weidner KM, Schwarz H, Birchmeier W. The motility signal of scatter factor/hepatocyte growth factor mediated through the receptor tyrosine kinase met requires intracellular action of Ras. J Biol Chem 1994; 269: 21936–21939.

    CAS  PubMed  Google Scholar 

  32. Ridley AJ, Comoglio PM, Hall A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol Cell Biol 1995; 15: 1110–1122.

    CAS  PubMed  Google Scholar 

  33. Khwaja A, Lehmann K, Marte BM, Downward J: Phosphoinositide 3-kinase induces scattering and tubulogenesis in epithelial cells through a novel pathway. J Biol Chem 1998; 273: 18793–18801.

    Article  CAS  PubMed  Google Scholar 

  34. Kodama A, Matozaki T, Fukuhara A, Kikyo M, Ichihashi M, Takai Y. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth Factor/Scatter factor-induced cell scattering. Mol Biol Cell. 2000; 11: 2565–2575.

    CAS  PubMed  Google Scholar 

  35. Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell. 2000; 11: 1709–1725.

    CAS  PubMed  Google Scholar 

  36. Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, Rosen EM, Laterra J. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase and AKT-dependent pathways. Cancer Res 2000; 60: 4277–4283.

    CAS  PubMed  Google Scholar 

  37. Kosai K, Matsumoto K, Nakamura T. Hepatocyte growth factor prevents endotoxin-induced lethal hepatic failure in mice. Hepatology 1999; 30: 151–159.

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 2000; 106: 1511–1519.

    CAS  PubMed  Google Scholar 

  39. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W Sharpe M, Gherardi E, Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995; 373: 699–702.

    Article  CAS  PubMed  Google Scholar 

  40. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, Kitamura N. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 1995; 373: 702–705.

    Article  CAS  PubMed  Google Scholar 

  41. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995; 376: 768–771.

    Article  CAS  PubMed  Google Scholar 

  42. Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 1998; 8: 404–410.

    Article  CAS  PubMed  Google Scholar 

  43. Zarnegar R, Michalopoulos GK. The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol 1995; 129: 1177–1180.

    Article  CAS  PubMed  Google Scholar 

  44. Matsumoto K, Nakamura T. Hepatocyte growth factor as a tissue organizer for organogenesis and regeneration. Biochem Biophys Res Commun 1997; 239: 639–644.

    Article  CAS  PubMed  Google Scholar 

  45. Matsumoto K, Nakamura T. HGF: its organotrophic role and therapeutic potential. In Plasminogen-related Growth Factors (Gherardi E, ed), John Wiley & Sons, 1997; pp 198–214.

    Google Scholar 

  46. Balkovets DF, Lipschutz JH. Hepatocyte growth factor and the kidne: it is just not for the liver. Int Rev Cytol 1999; 186: 225–260.

    Google Scholar 

  47. Matsumoto K, Mizuno S, Nakamura T. Hepatocyte growth factor in renal regeneration, renal disease and potential therapeutics. Curr Opin Nephrol Hypertens. 2000; 9: 395–402.

    Article  CAS  PubMed  Google Scholar 

  48. Bussolino F, DiRenzo MF, Ziche M, Bochietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A, Comoglio PM. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J CellBiol 1992; 119: 629–641.

    CAS  Google Scholar 

  49. Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, Isner JM. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation 1998; 97: 381–390.

    PubMed  Google Scholar 

  50. Morishita R, Nakamura S, Hayashi S, Taniyama Y, Moriguchi A, Nagano T, Taiji M, Noguchi H, Takeshita S, Matsumoto K, Nakamura T, Higaki J, Ogihara T. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 1999; 33: 1379–1384.

    CAS  PubMed  Google Scholar 

  51. Aoki M, Morishita R, Taniyama Y, Kida I, Moriguchi A, Matsumoto K., Nakamura T, Kaneda Y, Higaki J, Ogihara T. Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium; up-regulation of essential transcription factor for angiogenesis, ets. Gene Ther 2000; 7: 417–427.

    Article  CAS  PubMed  Google Scholar 

  52. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998; 153: 333–339.

    CAS  PubMed  Google Scholar 

  53. Daniel JM, Reynolds AB. Tyrosine phosphorylation and cadherin/catenin function. Bioessays 1997; 19: 883–891.

    Article  CAS  PubMed  Google Scholar 

  54. Watabe M, Matsumoto K, Nakamura T, Takeichi M. Cooparative action of hepatocyte growth factor and anti-cadherin antibodies on the scattering of keratinocytes. Cell Str Func 1993; 18: 117–124.

    CAS  Google Scholar 

  55. Shibamoto S, Hayakawa M, Takeuchi K, Hori T, Oku N, Miyazawa K, Kitamura N, Tekeichi M, Ito F. Tyrosine phosphorylation of b-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes Commun 1994; 1: 295–305.

    CAS  PubMed  Google Scholar 

  56. Hiscox S, Jiang WG. Hepatocyte growth factor/scatter factor disrupts epithelial tumour cell-cell adhesion: involvement of β-catenin. Anticancer Res 1999; 19: 509–517.

    CAS  PubMed  Google Scholar 

  57. Davies G, Jiang WG, Mason MD. Cell-cell adhesion molecules and their associated proteins in bladder cancer cells and their role in mitogen induced cell-cell dissociation and invasion. Anticancer Res 1999; 19: 547–552.

    CAS  PubMed  Google Scholar 

  58. Nabeshima K, Shimao Y, Inoue T, Itoh H, Kataoka H, Koono M. Hepatocyte growth factor/scatter factor induces not only scattering but also cohort migration of human colorectal-adenocarcinoma cells. Int J Cancer. 1998; 78: 750–759.

    Article  CAS  PubMed  Google Scholar 

  59. Tannapfel A, Yasui W, Yokozaki H, Wittekind C, Tahara E. Effect of hepatocyte growth factor on the expression of E-and P-cadherin in gastric carcinoma cell lines. Virchows Arch. 1994; 425: 139–144.

    Article  CAS  PubMed  Google Scholar 

  60. Hiscox S, Jiang WG. Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochem Biophys Res Commun. 1999; 261: 406–411.

    Article  CAS  PubMed  Google Scholar 

  61. Crepaldi T, Pollack AL, Prat M, Zborek A, Mostov, K, Comoglio PM. Targeting of the SF/HGF receptor to the basolateral domain of polarized epithelial cells. J Cell Biol 1994; 125: 313–320.

    Article  CAS  PubMed  Google Scholar 

  62. Grisendi S, Arpin M, Crepaldi T. Effect of hepatocyte growth factor on assembly of zonula occludens-1 protein at the plasma membrane. J Cell Physiol. 1998; 176: 465–471.

    Article  CAS  PubMed  Google Scholar 

  63. Jiang WG, Martin TA, Matsumoto K, Nakamura T, Mansel RE. Hepatocyte growth factor/scatter factor decreases the expression of occludin and transendothelial resistance (TER) and increases paracellular permeability in human vascular endothelial cells. J Cell Physiol. 1999; 181: 319–329.

    Article  CAS  PubMed  Google Scholar 

  64. Muto S, Sato Y, Umeki Y, Yoshida K, Yoshioka T, Nishikawa Y, Nakamura T, Mori M, Koyama K, Enomoto K. HGF/SF-induced spreading of MDCK cells correlates with disappearance of barmotin/7H6, a tight junction-associated protein, from the cell membrane. Cell Biol Int. 2000; 24: 439–446.

    Article  CAS  PubMed  Google Scholar 

  65. Matsumoto K, Matsumoto K, Nakamura T, Kramer RH. Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 1994; 269: 31807–31813.

    CAS  PubMed  Google Scholar 

  66. Jiang WG, Hiscox S, Nakamura T, et al. Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin and enhances cell-matrix interactions. Oncology Rep 1996; 3: 819–823.

    CAS  Google Scholar 

  67. Chen HC, Chan PC, Tang MJ, Cheng CH, Chang TJ. Tyrosine phosphorylation of focal adhesion kinase stimulated by hepatocyte growth factor leads to mitogen-activated protein kinase activation. J Biol Chem. 1998; 273: 25777–25782.

    CAS  PubMed  Google Scholar 

  68. Beviglia L, Kramer RH. HGF induces FAK activation and integrin-mediated adhesion in MTLn3 breast carcinoma cells. Int J Cancer. 1999; 83: 640–649.

    Article  CAS  PubMed  Google Scholar 

  69. Lai JF, Kao SC, Jiang ST, Tang MJ, Chan PC, Chen HC. Involvement of focal adhesion kinase in hepatocyte growth factor-induced scatter of Madin-Darby canine kidney cells. J Biol Chem. 2000; 275: 7474–7480.

    CAS  PubMed  Google Scholar 

  70. Jiang WG, Hiscox S, Singharo SK, Puntis MC, Nakamura T, Mansel RE, Hallett MB. Induction of tyrosine phosphorylation and translocation of ezrin by hepatocyte growth factor (HGF/SF). Biochem Biophys Res Commun 1995; 217: 1062–1069.

    Article  CAS  PubMed  Google Scholar 

  71. Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol 1997; 138: 423–434.

    Article  CAS  PubMed  Google Scholar 

  72. Pepper MS, Matsumoto K, Nakamura T, Montesano R. Hepatocyte growth factor increases urokinase-type plasminogen activator (u-PA) and uPA receptor expression in Madin-Darby canine kidney epithelial cells. J Biol Chem 1992; 267: 20493–20496.

    CAS  PubMed  Google Scholar 

  73. Date K, Matsumoto K, Kuba K, Shimura H, Tanaka M, Nakamura T. Inhibition of tumour growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene 1998; 17: 3045–3054.

    Article  CAS  PubMed  Google Scholar 

  74. Li H, Shimura H, Aoki Y, Date K, Matsumoto K, Nakamura T, Tanaka M. Hepatocyte growth factor stimulates the invasion of gallbladder carcinoma cell lines in vitro. Clin Exp Metastasis 1998; 16: 74–82.

    CAS  PubMed  Google Scholar 

  75. Paciucci R, Vila MR, Adell T, Diaz, Tora M, Nakamura T, Real FX. Activation of the urokinase plasminogen activator/urokinase plasminogen activator receptor system and redistribution of E-cadherin are associated with hepatocyte growth factor-induced motility of pancreas tumor cells overexpressing Met. Am J Pathol 1998; 153: 201–212.

    CAS  PubMed  Google Scholar 

  76. Rosenthal EL, Johnson TM, Allen ED, Apel IJ, Punturieri A, Weiss SJ. Role of the plasminogen activator and matrix metalloproteinase system in epidermal growth factor-and scatter factorstimulated invasion of carcinoma cells. Cancer Res 1998; 58: 5221–5230.

    CAS  PubMed  Google Scholar 

  77. Matsumoto-Taniura N, Matsumoto K, Nakamura T. Prostaglandin production in mouse mammary tumour cells confers invasive growth potential by inducing hepatocyte growth factor in stromal fibroblasts. Br J Cancer 1999; 81: 194–202.

    Article  CAS  PubMed  Google Scholar 

  78. Jeffers M, Rong S, Vande Woude GF. Enhanced tumourigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol 1996; 16: 1115–1125.

    CAS  PubMed  Google Scholar 

  79. McCawley LJ, O’Brian P, Hudson LG. Epidermal growth factor(EGF)-and scatter factor/hepatocyte growth factor (SF/HGF)-mediated migration is coincident with induction of matrix metalloproteinase (MMP)-9. J Cell Physiol 1998; 176: 255–265.

    Article  CAS  PubMed  Google Scholar 

  80. Dunsmore SE, Rubin JS, Kovacs SO, Chedid M, Parks WC, Welgus HG. Mechanisms of hepatocyte growth factor-stimulation of keratinocyte metalloproteinase production. J Biol Chem 1996; 271: 24567–24582.

    Google Scholar 

  81. Uchiyama A, Essner R, Doi F, Nguyen T, Ramming KP, Nakamura T, Morton DL, Hoon DS. Interleukin-4 inhibits hepatocyte growth factor-induced invasion and migration of colon carcinomas. J Cell Biochem 1996; 62: 443–453.

    Article  CAS  PubMed  Google Scholar 

  82. Folkman J. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58–61.

    Article  CAS  PubMed  Google Scholar 

  83. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenesis switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  CAS  PubMed  Google Scholar 

  84. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am. J Pathol 1995; 147: 9–19.

    CAS  PubMed  Google Scholar 

  85. Laterra J, Nam M, Rosen EM, Rao JS, Lamszus K, Goldberg ID, Johnston P. Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Lab Invest 1997; 76: 565–577.

    CAS  PubMed  Google Scholar 

  86. Lamszus K, Jin L, Fuchs A, Shi E, Chowdhury S, Yao Y, Polverni PJ, Laterra J, Goldberg ID, Rosen EM. Scatter factor stimulates tumor growth and angiogenesis in human breast cancers in the mammary fat pads of nude mice. Lab Invest 1997; 76: 339–353.

    CAS  PubMed  Google Scholar 

  87. Tolnay E, Kuhnen C, Wiethege T, Konig JE, Voss B, Muller KM. Hepatocyte growth factor/scatter factor and its receptor c-Met are overexpressed and associated with an increased microvessel density in malignant pleural mesothelioma. J Cancer Res Clin Oncol 1998; 124: 291–296.

    Article  CAS  PubMed  Google Scholar 

  88. Moriyama T, Kataoka H, Hamasuna R, Yokogami K, Uehara H, Kawano H, Goya T, Tsubouchi H, Koono M, Wakisaka S. Upregulation of vascular endothelial growth factor induced by hepatocyte growth factor/scatter factor stimulation in human glioma cells. Biochem Biophys Res Commun 1998; 249: 73–77.

    Article  CAS  PubMed  Google Scholar 

  89. Hiscox SE, Jiang WG. Regulation of endothelial CD44 expression and endothelium-tumour cell interactions by hepatocyte growth factor-scatter factor. Biochem Biophys Res Commun 1997; 233: 1–5.

    Article  CAS  PubMed  Google Scholar 

  90. Kawakami-Kimura N, Narita T, Ohmori K, Matsumoto K, Nakamura T, Kannagi R. Involvement of hepatocyte growth factor in increased integrin expression on HepG2 cells triggered by adhesion to endothelial cells. Br J Cancer 1997; 75: 47–53.

    CAS  PubMed  Google Scholar 

  91. Schmidt L, Duh F, Chan F, Kishida T, Glenn G, Choyke P, Scherer SW, Zhuang Z, Lubensky I, Dean M, Allikmets R, Chidambaram A, Bergerheim UR, Feltis JT, Casadevall C, Zamarron A, Bernues M, Richard S, Lips CJM, Walther MM, Tsui L, Geil L, Orcutt ML, Stackhouse T, Lipan J, Slife L, Brauch H, Decker J, Niehans G, Hughson MD, Moch H, Storkel S, Lerman MI, Linehan WM, Zbar B. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet 1997; 16: 68–73.

    Article  CAS  PubMed  Google Scholar 

  92. Schmidt L, Junker K, Weirich G, Glenn G, Choyke P, Lubensky I, Zhuang Z, Jeffers M, Vande Woude GF, Neumann H, Walther M, Linehan WM, Zbar B. Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res 1998; 58: 1719–1722.

    CAS  PubMed  Google Scholar 

  93. Jeffers M, Schmidt L, Nakagawa N, Webb CP, Weirich G, Kishida T, Zbar B, Vande Woude GF. Activating mutations for the Met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 1997; 94: 11445–11450.

    Article  CAS  PubMed  Google Scholar 

  94. Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 1995; 55: 1129–1138.

    PubMed  Google Scholar 

  95. Rong S, Bodescot M, Blair D, Dunn J, Nakamura T, Mizuno K, Park M, Chan A, Aaronson SA, Vande Woude GF. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol Cell Biol 1992; 12: 5152–5158.

    CAS  PubMed  Google Scholar 

  96. Giordano S, Zhen Z, Medico E, Gaudino G, Galimi F, Comoglio PM. Transfer of motogenic and invasive response to scatter factor/hepatocyte growth factor by transfection of human MET protooncogene. Proc Natl Acad Sci USA 1993; 90: 649–653.

    CAS  PubMed  Google Scholar 

  97. Rong S, Segal S, Anver M, Resau JH, Vande Woude GF. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci USA 1994; 91: 4731–4735.

    CAS  PubMed  Google Scholar 

  98. Jeffers M, Rong, S, Anver M, Vande Woude GF. Autocrine hepatocyte growth factor/scatter factor-Met signaling induces transformation and the invasive/metastastic phenotype in C127 cells. Oncogene 1996; 13: 853–856.

    CAS  PubMed  Google Scholar 

  99. Kanda H, Tajima H, Lee G, Nomura K, Ohtake K, Matsumoto K, Nakamura T, Kitagawa T. Hepatocyte growth factor transforms immortalized mouse liver epithelial cells. Oncogene 1993; 8: 3047–3053.

    CAS  PubMed  Google Scholar 

  100. Johnson M, Koukoulis G, Kochhar K, Kubo C, Nakamura T, Iyer A. Selective tumorigenesis in non-parenchymal liver epithelial cell lines by hepatocyte growth factor transfection. Cancer Lett 1995; 96: 37–48.

    Article  CAS  PubMed  Google Scholar 

  101. Takayama H, LaRocchelle WJ, Sharp R, Otsuka T, Kriebel P, Anver M, Aaronson SA, Merlino G. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci USA 1997; 94: 701–706.

    Article  CAS  PubMed  Google Scholar 

  102. Sakata H, Takayama H, Sharp R, Rubin JS, Merlino G, LaRochelle WJ. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ 1996; 7: 1513–1523.

    CAS  PubMed  Google Scholar 

  103. Otsuka T, Takayama H, Sharp R, Celli G, LaRochelle WJ, Bottaro DP, Ellmore N, Vieira W, Owens JW, Anver M, Merlino G. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 1998; 58: 5157–5167.

    CAS  PubMed  Google Scholar 

  104. Shiota G, Wang TC, Nakamura T, Schmidt EV. Hepatocyte growth factor in transgenic mice: effects on hepatocyte growth, liver regeneration and gene expression. Hepatology 1994; 19: 962–972.

    Article  CAS  PubMed  Google Scholar 

  105. Kunisada T, Yamazaki H, Hirobe T, Kamei S, Omoteno M, Tagaya H, Hemmi H, Koshimizu U, Nakamura T, Hayashi S. Keratinocyte expression of transgenic hepatocyte growth factor affects melanocyte development, leading to dermal melanocytosis. Mech Dev 2000; 94: 67–78.

    Article  CAS  PubMed  Google Scholar 

  106. Garcia-Ocana A, Takane KK, Syed MA, Philbrick WM, Vasavada RC, Stewart AF. Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhanced islet mass, and induces mild hypoglycemia. J Biol Chem 2000; 275: 1226–1232.

    Article  CAS  PubMed  Google Scholar 

  107. Santoni-Rugiu E, Preisegger KH, Kiss A, Audolfsson T, Shiota G, Schmidt EV, Thorgeirsson SS. Inhibition of neoplastic development in the liver by hepatocyte growth factor in a transgenic mouse model. Proc Natl Acad Sci USA 1996; 93: 9577–9582.

    Article  CAS  PubMed  Google Scholar 

  108. Shiota G, Kawasaki H, Nakamura T, Schmidt EV. Characterization of double transgenic mice expressing hepatocyte growth factor and transforming growth factor-α. Res Commun Mol Pathol Pharmacol 1995; 90: 17–24.

    CAS  PubMed  Google Scholar 

  109. Shiota G, Rhoads DB, Wang TC, Nakamura T, Schmidt EV. Hepatocyte growth factor inhibits growth of hepatocellular carcinoma cells. Proc Natl Acad Sci USA 1992; 89: 373–377.

    CAS  PubMed  Google Scholar 

  110. Tajima H, Matsumoto K, Nakamura T. Hepatocyte growth factor has potent antiproliferative activity in various tumor cell lines. FEBS Lett 1991; 291: 229–232.

    Article  CAS  PubMed  Google Scholar 

  111. Borset M, Lien E, Espevik T, Helseth E, Waage A, Sundan A. Concomitant expression of hepatocyte growth factor/scatter factor and the receptor c-MET in human myeloma cell lines. J Biol Chem 1996; 271: 24655–24661.

    CAS  PubMed  Google Scholar 

  112. Borset M, Hjorth-Hansen H, Seidel C, Sundan A, Waage A. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 1996; 88: 3998–4004.

    CAS  PubMed  Google Scholar 

  113. Ferracini R, Di Renzo MF, Scotlandi K, Baldini N, Olivero M, Lollini P, Cremona O, Campanacci M, Comoglio PM. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene. 1995; 10: 739–749.

    CAS  PubMed  Google Scholar 

  114. Moriyama T, Kataoka H, Tsubouchi H, Koono M. Concomitant expression of hepatocyte growth factor (HGF), HGF activator and c-met genes in human glioma cells in vitro. FEBS Lett. 1995; 372: 78–82.

    Article  CAS  PubMed  Google Scholar 

  115. Shiota G, Kawasaki H, Nakamura T. Coexpression of hepatocyte growth factor and its receptor (c-met oncogene) in HGL4 glioblastoma cells. Oncology 1996; 53: 511–516.

    CAS  PubMed  Google Scholar 

  116. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, Resau JH, Vande Woude GF. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 1997; 57: 5391–5398.

    CAS  PubMed  Google Scholar 

  117. Abounader R, Ranganathan S, Lal B, Fielding K, Book A, Dietz H, Burger P, Laterra J. Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J Natl Cancer Inst. 1999; 91: 1548–1556.

    Article  CAS  PubMed  Google Scholar 

  118. Itakura Y, Yamamoto T, Matsumoto K, Nakamura T. Autocrine stimulation of motility in SBC-5 human lung carcinoma cells by a two-kringle variant of HGF. Cancer Lett 1994; 83: 235–243.

    Article  CAS  PubMed  Google Scholar 

  119. Tamatani T, Hattori K, Iyer A, Tamatani K, Oyasu R. Hepatocyte growth factor is an invasion/migration factor of rat urothelial carcinoma cells in vitro. Carcinogenesis. 1999; 20: 957–962.

    Article  CAS  PubMed  Google Scholar 

  120. Lai GH, Radaeva S, Nakamura T, Sirica AE. Unique epithelial cell production of hepatocyte growth factor/scatter factor by putative precancerous intestinal metaplasias and associated “intestinal-type” biliary cancer chemically induced in rat liver. Hepatology. 2000; 31: 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  121. Rahimi N, Tremblay E, McAdam L, Park M, Schwall R, Elliott B. Identification of a hepatocyte growth factor autocrine loop in a murine mammary carcinoma. Cell Growth Differ 1996; 7: 263–270.

    CAS  PubMed  Google Scholar 

  122. Sakakura T. New aspects of stroma-parenchyma relations in mammary gland differentiation. Int Rev Cytol 1991; 125: 165–202.

    CAS  PubMed  Google Scholar 

  123. Van den Hoff A. Stromal involvement in malignant growth. Adv Cancer Res 1988; 50: 159–196.

    Google Scholar 

  124. Wernert N. The multiple roles of tumour stroma. Virchows Arch 1997; 430: 433–443.

    Article  CAS  PubMed  Google Scholar 

  125. Sokoloff MH, Chung LW. Targeting angiogenic pathways involving tumor-stromal interaction to treat advanced human prostate cancer. Cancer Metastasis Rev 1999; 17: 307–315.

    CAS  Google Scholar 

  126. Schor SL, Schor AM, Winn B, Rushton G. The use of three dimensional gels for study of tumour cell invasion in vitro. Int J Cancer 1982; 29: 57–62.

    CAS  PubMed  Google Scholar 

  127. Picard O, Rolland Y, Poupon MF. Fibroblast-dependent tumorigenicity of cells in nude mice: implication for implantation of metastases. Cancer Res 1986; 46: 3290–3294.

    CAS  PubMed  Google Scholar 

  128. Grey AM, Schor AM, Rushton G, Elias I, Schor SL. Purification of the migration stimulating factor produced by fetal and breast cancer patient fibroblasts. Proc Natl Acad Sci USA 1989; 86: 2438–2442.

    CAS  PubMed  Google Scholar 

  129. Camps JL, Chang S, Hsu TC, Freeman MR, Hong S, Zhau HE, von Eschenbach AC, Chung LWK. Fibroblast-mediated acceleration of human epithelial tumour growth in vivo. Proc Natl Acad Sci USA 1990; 85: 75–79.

    Google Scholar 

  130. Shimura H, Date K, Matsumoto K, Nakamura T, Tanaka M. The induction of invasive growth in a gallbladder cancer cell line by hepatocyte growth factor in vitro. Jpn J Cancer Res 1995; 86: 662–669.

    CAS  PubMed  Google Scholar 

  131. Matsumoto K, Date K, Shimura H, Nakamura T. Acquisition of invasive phenotype in gallbladder cancer cells via mutual interaction of stromal fibroblasts and cancer cells as mediated by hepatocyte growth factor. Jpn J Cancer Res 1996; 87: 702–710.

    CAS  PubMed  Google Scholar 

  132. Matsumoto K, Date K, Ohmichi H, Nakamura T. HGF in lung morphogenesis and tumor invasion: roles as a mediator in epithelial-mesenchymal and tumor-stromal interactions. Cancer Chemother Pharmacol 1996; 38: S42–S47.

    Article  CAS  PubMed  Google Scholar 

  133. Iwazawa T, Shiozaki H, Doki Y, Inoue M, Tamura S, Matsui S, Monden T, Matsumoto K, Nakamura T, Monden M. Primary human fibroblasts induce diverse tumor invasiveness: involvement of HGF as an important paracrine factor. Jpn J Cancer Res 1996; 87: 1134–1142.

    CAS  PubMed  Google Scholar 

  134. Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res. 1997; 57: 3305–3313.

    CAS  PubMed  Google Scholar 

  135. Hasina R, Matsumoto K, Matsumoto-Taniura N, Kato I, Sakuda M, Nakamura T. Autocrine and paracrine motility factors and their involvement in invasiveness in a human oral carcinoma cell line. Br. J Cancer 1999; 80: 1708–1717.

    Article  CAS  PubMed  Google Scholar 

  136. Nishimura K, Kitamura M, Takada S, Nonomura N, Tsujimura A, Matsumiya K, Miki T, Matsumoto K., Okuyama A. Regulation of invasive potential of human prostate cancer cell lines by hepatocyte growth factor. Int J Urol 1998; 5: 276–281.

    CAS  PubMed  Google Scholar 

  137. Nakashiro K, Okamoto M, Hayashi Y, Oyasu R. Hepatocyte growth factor secreted by prostate-derived stromal cells stimulates growth of androgen-independent human prostatic carcinoma cells. Am J Pathol 2000; 157: 795–803.

    CAS  PubMed  Google Scholar 

  138. Seslar SP, Nakamura T, Byers SW. Regulation of fibroblast hepatocyte growth factor/scatter factor expression by human breast carcinoma cell lines and peptide growth factors. Cancer Res 1993; 53: 1233–1238.

    CAS  PubMed  Google Scholar 

  139. Rosen EM, Joseph A, Jin L, Rockwell S, Elias JA, Knesel J, Wines J, McClellan J, Kluger MJ, Goldberg ID, Zitnik R. Regulation of scatter factor production via soluble inducing factor. J Cell Biol 1994; 127: 225–234.

    CAS  PubMed  Google Scholar 

  140. Chan AML, Rubin JS, Bottaro DP, Hirschfield DW, Chedid M, Aaronson SA. Identification of a competitive HGF antagonist encoded by an alternative transcript. Science 1991; 254: 1382–1385.

    CAS  PubMed  Google Scholar 

  141. Cioce V, Csaky KG, Chan AML, Bottaro DP, Taylor WG, Jensen R, Aaronson SA, Rubin JS. Hepatocyte growth factor (HGF)/NK1 is a naturally occurring HGF/scatter factor variant with partial agonist/antagonist activity. J Biol Chem 1996; 271: 13110–13115.

    CAS  PubMed  Google Scholar 

  142. Lokker NA, Godowski PJ. Generation and characterization of a competitive antagonist of human hepatocyte growth factor, HGF/NK1. J Biol Chem 1993; 268: 17145–17150.

    CAS  PubMed  Google Scholar 

  143. Hartmann G, Naldini L, Weidner KM, Sachs M, Vigna E, Comoglio PM, Birchmeier W. A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis. Proc Natl Acad Sci USA 1992; 89: 11574–11578.

    CAS  PubMed  Google Scholar 

  144. Silvagno F, Follenzi A, Arese M, Prat M, Giraudo E, Gaudino G, Camussi G, Comoglio PM, Bussolino F. In vivo activation of met tyrosine kinase by heterodimeric hepatocyte growth factor molecule promotes angiogenesis. Arterioscler Thromb Vasc Biol 1995; 15: 1857–1865.

    CAS  PubMed  Google Scholar 

  145. Date K, Matsumoto K, Shimura H, Tanaka M, Nakamura T. HGF/NK4 is a specific antagonist for pleiotropic actions of hepatocyte growth factor. FEBS Lett 1997; 420: 1–6.

    Article  CAS  PubMed  Google Scholar 

  146. Matsumoto K, Kataoka H, Date K, Nakamura T. Cooperative interaction between α-and β-chains of hepatocyte growth factor on c-Met receptor confers ligand-induced receptor tyrosine phosphorylation and multiple biological responses. J Biol Chem 1998; 273: 22913–22920.

    CAS  PubMed  Google Scholar 

  147. Hiscox S, Parr C, Nakamura T, Matsumoto K, Mansel RE, Jiang WG. Inhibition of HGF/SF-induced breast cancer cell motility and invasion by the HGF/SF variant, NK4. Breast Cancer Res Treat 2000; 1627: 1–10.

    Google Scholar 

  148. Parr C, Hiscox S, Nakamura T, Matsumoto K, Jiang WG. NK4, a new HGF/SF variant, is an antagonist to the influence of HGF/SF on the motility and invasion of colon cancer cells. Int. J. Cancer 2000; 85: 563–570.

    Article  CAS  PubMed  Google Scholar 

  149. Kuba K, Matsumoto K, Date K, Shimura H, Tanaka M, Nakamura T. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 2000, 60: 6737–6743.

    CAS  PubMed  Google Scholar 

  150. Kuba K, Matsumoto K, Ohnishi K, Shiratsuchi T, Tanaka M, Nakamura T. Kringle 1–4 of hepatocyte growth factor inhibits proliferation and migration of human microvascular endothelial cells. Biochem Biophys Res Commun 2000, 279: 846–852.

    Article  CAS  PubMed  Google Scholar 

  151. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Google Scholar 

  152. Cao Y, Chen A, An SSA, Ji RW, Davidson D, Llinas M. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem. 1997; 272: 22924–22928.

    CAS  PubMed  Google Scholar 

  153. Lee TH, Rhim T, Kim SS. Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells. J Biol Chem 1998; 273: 28805–28812.

    CAS  PubMed  Google Scholar 

  154. Moser TL, Stack MS, Asplin I, Enghild JJ, Hojrup P, Everitt L, Hubchak S, Schnaper HW, Pizzo SV. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA. 1999; 96: 2811–2816.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Matsumoto, K., Nakamura, T. (2001). HGF-c-Met Receptor Pathway in Tumor Invasion-metastasis and Potential Cancer Treatment With NK4. In: Snyder, C.R., Jiang, W.G., Matsumoto, K., Nakamura, T. (eds) Growth Factors and their Receptors in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-48399-8_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-48399-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7141-0

  • Online ISBN: 978-0-306-48399-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics