Skip to main content

Load Spectra

  • Chapter
  • 1246 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Private information H.M.C.M. van Maarschalkerwaart, Dutch Railways.

    Google Scholar 

  2. Schijve, J., The analysis of random load-time histories with relation to fatigue tests and life calculations. Fatigue of Aircraft Structures, Pergamon Press (1963) pp. 115–149.

    Google Scholar 

  3. Haibach, E., Fischer, R., Schütz, W. and Hück, M., A standard random load sequence of Gaussian type recommended for general application in fatigue testing: its mathematical background and digital generation. Fatigue Testing and Design, Vol. 2, Soc. of Environmental Engineers, London (1976) pp.29.1–29.21.

    Google Scholar 

  4. Schütz, W., Standardized stress-time histories: An overview. Development of Fatigue Load Spectra, ASTM STP 1006 (1989) pp.3–16.

    Google Scholar 

  5. Matsuishi, M. and Endo, T., Fatigue of metals subjected to varying stress — Fatigue lives under random loading (in Japanese). Preliminary Proc. of the Kyushu District Meeting, Japan Soc. of Mech. Engineers (1968) pp.37–40.

    Google Scholar 

  6. Burns, A., Fatigue loadings in flight: Loads in the tailplane and fin of a Varsity. A.R.C. Tech. Report C.P. 256. London (1956).

    Google Scholar 

  7. Dowling, N.E., Mechanical behavior of materials. Engineering methods for deformation, fracture, and fatigue. Prentice-Hall (1993).

    Google Scholar 

  8. Hillbery, B.M., Fatigue life of 2024-T3 aluminum alloy under narrow-and broad-band random loading. ASTM STP 462 (1970) pp. 167–183.

    Google Scholar 

  9. Rice, S.O., Mathematical analysis of random noise. Bell System Tech. Journal, Vols. 23 and 24 (1944 and 1945).

    Google Scholar 

  10. Buxbaum, O., Random load analysis as a link between operational stress measurement and fatigue life assessment. ASTM STP 671 (1979) pp.5–20.

    Google Scholar 

  11. Griese, F.W., Schöne, G., Schütz, W. and Hück, M., Crack growth in torsion loaded axles of rolling machines during production (in German). Stahl und Eisen, Vol.99 (1979), pp.193–198.

    Google Scholar 

  12. Weiss, M.P., Simulation and monitoring of loads in crane beams. ASTM STP 671 (1979) pp.208–221.

    Google Scholar 

  13. Yamada, K. and Miki, C., Recent research on fatigue of bridge structures in Japan. J. Construct. Steel Research, Vol.13 (1989) pp.211–222.

    Google Scholar 

  14. Schijve, J., Jacobs, F.A. and Tromp, P.J., Fatigue crack growth in aluminium alloy sheet material under flight-simulation loading. Effect of design stress level and loading frequency. Nat. Aerospace Lab. NLR, TR 72018, Amsterdam (1972).

    Google Scholar 

  15. de Jonge, J.B., Schütz, D., Lowak, H. and Schijve, J., A standardized load sequence for flight simulation tests on transport aircraft wing structures. Nat. Aerospace Laboratory NLR, Amsterdam, TR-73029 (1973). Also: LBF, Bericht FB-106, Darmstadt (1973).

    Google Scholar 

Some general references

  1. Murakami, Y., Mineki. K., Wakamatsu, T. and Morita, T., Data acquisition by a small portable strain histogram recorder (Mini-Rainflow Corder) and application to fatigue design of car wheels. Fatigue Design 1998, Vol.II, ESIS publication 23, Elsevier, 1999, pp.373–383.

    Google Scholar 

  2. Heuler, P. and Schütz, W., Standardized load-time histories — Status and trends. Low cycle fatigue and elasto-plastic behaviour of materials (K-T. Rie and P.D. Portella, eds.), Elsevier (1998), pp.729–734.

    Google Scholar 

  3. Rice, C.R. (Ed.), SAE Fatigue Design Handbook. 3rd ed. AE-22, Society of Automotive Engineers, Warrendale (1997).

    Google Scholar 

  4. Schütz, W., The significance of service load data for fatigue life analysis. ICAF Doc. No. 1975 (1992).

    Google Scholar 

  5. Murakami, Y. (ed.), The Rainflow Method in Fatigue. The Tatsuo Endo Memorial Volume. Butterworth Heinemann (1992).

    Google Scholar 

  6. Standard practices for cycle counting in fatigue analysis. ASTM Standard E 1049-90 (1990).

    Google Scholar 

  7. Buxbaum, O., Fatigue strength in service (in German). Verlag Stahleisen mbH, Düsseldorf (1986).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Load Spectra. In: Fatigue of Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/0-306-48396-3_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48396-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7013-0

  • Online ISBN: 978-0-306-48396-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics