Skip to main content

Fatigue Crack Growth. Analysis and Prediction

  • Chapter
Fatigue of Structures and Materials
  • 1257 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Standard test method for measurement of fatigue crack growth rates. ASTM standard E64791 (1991).

    Google Scholar 

  2. Paris, P.C., Gomez, M.P. and Anderson, W.E., A rational analytical theory of fatigue. The Trend of Engineering, Vol. 13 (1961) pp. 9–14.

    Google Scholar 

  3. Schijve, J., Fatigue crack propagation and the stress intensity factor. Faculty of Aerospace Eng., Delft, Memorandum M-191 (1973).

    Google Scholar 

  4. Figge, I.E. and Newman, Jr, J.C., Fatigue-crack-propagation behavior in panels with simulated rivet forces. NASA TN D-4702 (1968).

    Google Scholar 

  5. Schijve, J., Significance of fatigue cracks in micro-range and macro-range. ASTM-STP 415 (1967) pp. 415–459.

    Google Scholar 

  6. Wanhill, R.J.H., Durability analysis using short and long fatigue crack growth data. Aircraft Damage Assessment and Repair. The Institution of Engineering, Australia (1991). Barton, Australia.

    Google Scholar 

  7. Paris, P.C. and Erdogan, F., A critical analysis of crack propagation laws. Trans. ASME, Series D, Vol. 85 (1963) pp. 528–535.

    Google Scholar 

  8. Forman, R.G., Kearney, V.E. and Engle, R.M., Numerical analysis of crack propagation in cyclic-loaded structures. J.Basic Engng., Trans. ASME Vol. D89 (1967) pp. 459–464.

    Google Scholar 

  9. Priddle, E.K., High cycle fatigue crack propagation under random and constant amplitude loadings. Int. J. Pressure Vessels & Piping, Vol. 4 (1976) p. 89.

    Google Scholar 

  10. Klesnis, M and Lukáš, P., The influence of strength and stress history on growth and stabilization of fatigue cracks. Eng. Fracture Mechanics, Vol. 4 (1972) pp. 77–92.

    Google Scholar 

  11. Elber, W., The Significance of Fatigue Crack Closure. Damage Tolerance in Aircraft Structures, ASTM STP 486 (1971), pp. 230–242.

    Google Scholar 

  12. Rice, J.R., The mechanics of crack tip deformation and extension by fatigue. Fatigue Crack Propagation, ASTM STP 415 (1967) pp. 247–309.

    Google Scholar 

  13. Schijve, J., Some formulas for the crack opening stress level. Eng. Fracture Mechanics, Vol. 14 (1981) pp. 461–465.

    Google Scholar 

  14. Linden, H.H.van der, NLR test results as a database to be used in a check of crack propagation prediction models. A Garteur activity. Nat. Aerospace Lab. NLR, TR 79121U, Amsterdam (1979).

    Google Scholar 

  15. Schijve, J., Fatigue crack closure observations and technical significance. Mechanics of Fatigue Crack Closure, Int. Symp., Charleston 1986. ASTM STP 982 (1988) pp. 5–34.

    Google Scholar 

  16. Ewalds, H.L. and Furnee, R.T., Crack Closure Measurements Along the Crack Front in Center Cracked Specimens. Int. Journal of Fracture, Vol. 14 (1978), p. R53.–R55.

    Google Scholar 

  17. Sunder, R. and Dash, P.K., Measurement of Fatigue Crack Closure Through Electron Microscopy. Int. Journal of Fatigue, Vol. 4 (1982) pp.97–105.

    Google Scholar 

  18. Ritchie, R.O., Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding. Materials Science and Engineering, Vol.A103 (1988) pp. 15–28.

    Google Scholar 

  19. Broek, D. and Schijve, J., The influence of the mean stress on the propagation of fatigue cracks in aluminium alloy sheet. Nat. Aerospace Lab. NLR, TR M. 2111, Amsterdam (1963.)

    Google Scholar 

  20. Crooker, T.W., The role of fracture toughness in low-cycle fatigue crack propagation for high-strength alloys. Eng. Fracture Mechanics, Vol. 5 (1973) pp. 35–43.

    Google Scholar 

  21. R.R. Stephens, Stephens, R.I., Veit, A.L. and Albertson, T.P., Fatigue crack growth of Ti-62222 alloy under constant amplitude and mini TWIST flight spectra at 25 °C and 175 °C. Int. Journal of Fatigue, Vol. 19 (1997) pp. 301–308.

    Google Scholar 

  22. Houdijk, P. A., Effect of specimen thickness and specimen geometry on fatigue crack growth in Fe510Nb (in Dutch). Faculty of Chemistry and Materials, Delft Un. of Technology (1993).

    Google Scholar 

  23. Song-Hee Kim and Weon-Pil Tai, Retardation and arrest of fatigue crack growth in AISI 4340 steel by introducing rest periods and overloads. Fatigue and Fracture of Eng. Materials and Structure, Vol.15, (1992) pp.519–530.

    Google Scholar 

  24. Liaw, P.K. Peck, M.G. and Rudd, G.E., Fatigue crack growth behavior of D6AC space shuttle steel. Eng. Fracture Mechanics, Vol.43 (1992) pp.379–400.

    Google Scholar 

  25. Newman, J.C., Jr. and Raju, I.S., Stress-intensity factor equation for crack in three-dimensional finite bodies subjected to tension and bending loads. ASTM STP 791, Vol.I (1983), p.238.

    Google Scholar 

  26. Petrak, G.S., Strength level effects on fatigue crack growth and retardation. Eng. Fracture Mechanics, Vol.6 (1974) pp.725–733.

    Google Scholar 

  27. Schijve, J. and De Rijk, P., The fatigue crack propagation in 2024-T3 Alclad sheet materials from seven different manufacturers. Nat. Aerospace Lab. NLR, TR M. 2162, Amsterdam (1966).

    Google Scholar 

  28. Yoder, G.R., Cooley, L.A. and Crooker, T.W., The effect of load ratio on fatigue crack growth in Ti-8Al-lMo-lV. Eng. Fracture Mechanics, Vol.17 (1983), pp.185–188.

    Google Scholar 

  29. Kage, M, Miller, K.J. and Smith, R.A., Fatigue crack initiation and propagation in a low-carbon steel of two different grain sizes. Fatigue and Fracture of Eng. Materials and Structure, Vol. 15 (1992) pp.763–774.

    Google Scholar 

  30. Wanhill, R.J.H., Low stress intensity fatigue crack growth in 2024-T3 and T351. Eng. Fracture Mechanics, Vol 30 (1988) pp.233–260.

    Google Scholar 

  31. Stubbington, C.A. and Gunn, N.J.F., Effects of fatigue crack front geometry and crystallography on the fracture toughness of an Ti-6Al-4V alloy. Roy. Aero. Est, TR 77158, Farnborough (1977).

    Google Scholar 

  32. Pearson, S., Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks. Eng. Fracture Mechanics, Vol. 7 (1975) pp.235–247.

    Google Scholar 

  33. Schijve, J. and Hoeymakers, A.H.W., Fatigue crack growth in lugs and the stress intensity factor. Fatigue of Eng. Materials and Structures, Vol.1 (1979) pp. 185–201.

    Google Scholar 

  34. Poe, Jr., C.C., Fatigue crack propagation in stiffened panels. ASTM STP 486 (1971) pp.79–97.

    Google Scholar 

  35. Ichsan S. Putra, Fatigue crack growth predictions of surface cracks under constant-amplitude and variable-amplitude loading. Doctor thesis, Delft Un. of Technology (1994).

    Google Scholar 

  36. Lin, X.B. and Smith, R.A., Fatigue shape analysis for corner cracks at fastener holes. Eng. Fracture Mechanics, Vol.59 (1998) pp.73–87.

    Google Scholar 

  37. Broek, D., The practical Use of Fracture Mechanics, Kluwer Academic Publishers (1988).

    Google Scholar 

  38. Fawaz, S.A., Fatigue crack growth in riveted joints. Doctor thesis, Delft Un. of Technology (1997).

    Google Scholar 

General references

  1. Socie, D.F. and Marquis, G.B., Multiaxial fatigue. Society of Automotive Engineer (1999).

    Google Scholar 

  2. Wang, S.-H. and Müller, C., A study on the change of fatigue fracture mode in two titanium alloys. Fatigue and Fracture of Eng. Materials and Structure. Vol.21 (1998) pp.1077–1087.

    Google Scholar 

  3. De Freitas, M. and Francois, D., Analysis of fatigue crack growth in rotary bend specimens and railway axles. Fatigue and Fracture of Eng. Materials and Structure, Vol. 18 (1995) pp.171–178.

    Google Scholar 

  4. Carpinteri, A., Handbook of fatigue crack propagation in metallic structures. Elsevier, Amsterdam (1994).

    Google Scholar 

  5. Anderson, T.L., Fracture Mechanics: Fundamentals and Applications. CRC Press, Inc. (1991).

    Google Scholar 

  6. Reuter, W., Underwood, J.H. and Newman, Jr., J.C. (Eds.), Surface-crack growth: models, experiments, and structures. ASTM STP 1060 (1990).

    Google Scholar 

  7. Brown, M.W. and Miller, K.J. (Eds), Biaxial and Multiaxial Fatigue. EGF Publication 3. Mechanical Engineering Publications (1989).

    Google Scholar 

  8. Newman, Jr., J.C. and Elber, W. (Eds.), Mechanics of Fatigue Crack Closure. ASTM STP 982 (1988).

    Google Scholar 

  9. Miller, K.J. and Brown, M.W. (Eds.), Multiaxial fatigue. ASTM STP 853 (1985).

    Google Scholar 

  10. Pook, L.P., The role of crack growth in metal fatigue. The Metals Society, London (1983).

    Google Scholar 

  11. ESDU Engineering Science Data. Fatigue-Fracture Mechanics Data. Vol.2 (aluminium alloys) and Vol.3 (Titanium alloys and steels) (1981–1999).

    Google Scholar 

  12. Fatigue Crack Propagation, ASTM STP 415 (1967).

    Google Scholar 

  13. Hudson, C.M. and Seward, S.K., A compendium of sources of fracture toughness and fatigue crack growth data for metallic alloys. Parts I, II and III. Int. J. of Fracture, Vol.14 (1978) pp.R151–R184, Vol.20 (1982) pp.R59–R117, Vol.39 (1989) pp.R43–R63.

    Google Scholar 

  14. McClung, R.C., The influence of applied stress, crack length, and stress intensity factor on crack closure. Metallurgical Trans., Vol. 22a (1991), pp. 1559–1571.

    Google Scholar 

  15. Wanhill, R.J.H., Microstructural influences on fatigue and fracture resistance in high strength structural materials. Eng. Fracture Mechanics, Vol. 10 (1978), pp.337–357.

    Google Scholar 

  16. Short crack growth behaviour in various aircraft materials, AGARD Report No. 767 (1990).

    Google Scholar 

  17. Schijve, J., Difference between the growth of small and large fatigue cracks. The relation to threshold K-values. Fatigue Thresholds, Fundamentals and Engineering Applications. EMAS Warley, 1982, pp.881–908.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Fatigue Crack Growth. Analysis and Prediction. In: Fatigue of Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/0-306-48396-3_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48396-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7013-0

  • Online ISBN: 978-0-306-48396-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics