Skip to main content

Fatigue Crack Growth under Variable-Amplitude Loading

  • Chapter
Fatigue of Structures and Materials
  • 1260 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schijve, J., Fatigue crack propagation in light alloy sheet material and structures. Advances in Aeronautical Sciences, Vol.3, Pergamon Press (1961) pp.387–408.

    Google Scholar 

  2. Schijve, J., Observations on the prediction of fatigue crack propagation under variable-amplitude loading. Fatigue Crack Growth under Spectrum Loads, ASTM STP 595 (1976) pp.3–23.

    Google Scholar 

  3. Mills, W.J. and Hertzberg, R.W., The effect of sheet thickness on fatigue crack retardation in 2024-T3 aluminum alloy. Eng. Fracture Mechanics, Vol.7 (1975) pp.705–711.

    Google Scholar 

  4. Petrak, G.S., Strength level effects on fatigue crack growth and retardation. Eng. Fracture Mechanics, Vol.6 (1974) pp.725–733.

    Google Scholar 

  5. Dahl, W. and Roth, G., On the influence of overloads on fatigue crack propagation in structural steels. Paper Technical University, Aachen (1979).

    Google Scholar 

  6. Ling, M.R. and Schijve, J., Fractographic analysis of crack growth and shear lip development under simple variable-amplitude loading. Fatigue Fract. Engng Mater. Struct., Vol.13 (1990) pp.443–456.

    Google Scholar 

  7. Schijve, J., Four lectures on fatigue crack growth. Eng. Fracture Mechanics, Vol.11 (1979) pp.176–221.

    Google Scholar 

  8. Chermahini, R.G., Shivakumar, K.N. and Newman Jr., J.C., Three dimensional finite-element simulation of fatigue-crack growth and closure. Mechanics of Fatigue Crack Closure (Newman Jr., J.C. and Elber, W., Eds) ASTM STP 982 (1988) pp.398–413.

    Google Scholar 

  9. Grandt, A.F., Three-dimensional measurements of fatigue crack closure. NASA-CR-175366, Washington (1984).

    Google Scholar 

  10. Sunder, R. and Dash, P.K., Measurement of fatigue crack closure through electron microscopy. Int. Journal of Fatigue, Vol.4 (1982) pp.97–105.

    Google Scholar 

  11. McEvily, A.J., Current Aspects of Fatigue. Appendix: Overload Experiments. Fatigue 1977 Conference, Un. of Cambridge (1977).

    Google Scholar 

  12. Schijve, J., Fatigue damage accumulation and incompatible crack front orientation. Eng. Fracture Mechanics, Vol.6 (1974) pp.245–252.

    Google Scholar 

  13. Stubbington, C.A. and Gunn, N.J.F., Effects of fatigue crack front geometry and crystallography on the fracture toughness of an Ti-6Al-4V alloy. Roy. Aero. Est., TR 77158, Farnborough (1977).

    Google Scholar 

  14. Ryan, N.E., The influence of stress intensity history on fatigue-crack growth. Aero. Research Lab., Melbourne, Report ARL/Met. 92 (1973).

    Google Scholar 

  15. Schijve, J., Effect of load sequences on crack propagation under random and program loading. Eng. Fracture Mechanics, Vol.5 (1973) pp.269–280.

    Google Scholar 

  16. Saff, C.R. and Holloway, D.R., Evaluation of crack growth gages for service life tracking. Fracture Mechanics (Roberts, R., Ed.), ASTM STP 743 (1981) pp.623–640.

    Google Scholar 

  17. Schijve, J., Fundamental and practical aspects of crack growth under corrosion fatigue conditions. Proc. of the Institution of Mechanical Engineers, Vol.191 (1977) pp.107–114.

    Google Scholar 

  18. Unpublished results, National Aerospace Laboratory NLR, Amsterdam.

    Google Scholar 

  19. Wanhill, R.J.H., The influence of starter notches on flight simulation fatigue crack growth. Nat. Aerospace Lab. NLR, Amsterdam, Report MP 95127 (1995).

    Google Scholar 

  20. Broek, D., Elementary engineering fracture mechanics (4th ed.). Martinus Nijhoff Publishers, The Hague (1985).

    Google Scholar 

  21. Schijve, J., Vlutters, A.M., Ichsan, S.P. and Provo Kluit, J.C., Crack growth in aluminium alloy sheet material under flight-simulation loading. Int. Journal of Fatigue, Vol.7 (1985) pp.127–136.

    Google Scholar 

  22. Schijve, J., The significance of flight simulation fatigue tests. Durability and damage tolerance in aircraft design. (A. Salvetti and G. Cavallini, Eds.), EMAS, Warley (1985) pp.71–170.

    Google Scholar 

  23. Willenborg, J., Engle, R.M. and Wood, H.A., A crack growth retardation model using an effective stress concept. AFFDL-TR71-1, Air Force Flight Dynamic Laboratory, Wright-Patterson Air Force Base (1971).

    Google Scholar 

  24. Wheeler, O.E., Spectrum loading and crack growth. J. of Basic Eng. Vol.94 (1972) pp.181–186.

    Google Scholar 

  25. Baudin, G. and Robert, M., Crack growth life time prediction under aeronautical type loading. Proc. 5th European Conf. on Fracture, Lisbon (1984) pp.779–792.

    Google Scholar 

  26. de Koning, A.U., A simple crack closure model for prediction of fatigue crack growth rates under variable-amplitude loading. Fracture Mechanics (Roberts, R., Ed.), ASTM STP 743, (1981) pp.63–85.

    Google Scholar 

  27. Padmadinata, U.H., Investigation of crack-closure prediction models for fatigue in aluminum sheet under flight-simulation loading. Doctor Thesis, Delft Un. of Tech. (1990).

    Google Scholar 

  28. Aliaga, D., Davy, A. and Schaff, H., A simple crack closure model for predicting fatigue crack growth under flight simulation loading. Durability and Damage Tolerance in Aircraft Design (A. Salvetti and G. Cavallini, Eds.). EMAS, Warley (1985) pp.605–630.

    Google Scholar 

  29. Padmadinata, U.H. and Schijve, J., Prediction of fatigue crack growth under flight-simulation loading with the modified CORPUS model. Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance (Harris, C.E., Ed.). NASA Conf. Publ. 3274, (1994) pp.547–562.

    Google Scholar 

  30. Ichsan S. Putra, Fatigue crack growth predictions of surface cracks under constant-amplitude and variable-amplitude loading. Doctor thesis, Delft Un. of Tech. (1994).

    Google Scholar 

  31. Newman Jr., J.C. and Armen, H., Elastic-plastic analysis of a propagating crack under cyclic loading. AIAA Journal, Vol. 13 (1975) pp. 1017–1023.

    Google Scholar 

  32. Ohji, K., Ogura, K. and Ohkubo, Y., Cyclic analysis of a propagating crack and its correlation with fatigue crack growth. Eng. Fracture Mechanics, Vol. 7 (1975) pp. 457–463.

    Google Scholar 

  33. Dugdale, D.S., Yielding of steel sheets containing slits. J.Mech.Phys.Solids, Vol. 8 (1960) pp. 100–104.

    Google Scholar 

  34. Führing, H. and Seeger, T., Structural memory of cracked components under irregular loading. Fracture Mechanics (Smith, C.W., Ed.), ASTM STP 677 (1979) pp. 1144–167.

    Google Scholar 

  35. Führing, H. and Seeger, T., Dugdale crack closure analysis of fatigue cracks under constant amplitude loading. Eng. Fracture Mechanics, Vol. 11 (1979) pp. 99–122.

    Google Scholar 

  36. Dill, H.D. and Saff, C.R., Spectrum crack growth prediction method based on crack surface displacement and contact analysis. Fatigue crack growth under spectrum loads, ASTM STP 595 (1976) pp. 306–319.

    Google Scholar 

  37. Dill, H.D., Saff, C.R. and Potter, J.M., Effects of fighter attack spectrum and crack growth. Effects of load spectrum variables on fatigue crack initiation and propagation (Bryan, D.F. and Potter, J.M., Eds.), ASTM STP 714 (1980) pp. 205–217.

    Google Scholar 

  38. Newman Jr., J.C., A crack-closure model for predicting fatigue crack growth under aircraft spectrum loading. Methods and models for predicting fatigue crack growth under random loading (Chang, J.B. and Hudson, C.M., Eds.), ASTM STP 748 (1981) pp. 53–84.

    Google Scholar 

  39. Dougherty, D.J., de Koning, A.U. and Hillberry, B.M., Modelling high crack growth rates under variable amplitude loading. Advances in fatigue lifetime predictive techniques, ASTM STP 1122 (1992) pp. 214–233.

    Google Scholar 

  40. Wang, G.S. and Blom, A.F., A strip model for fatigue crack growth predictions under general load conditions. Eng. Fract. Mech, Vol. 40 (1991) pp. 507–533.

    Google Scholar 

  41. de Koning, A.U. and Liefting, G., Analysis of crack opening behavior by application of a discretized strip yield model. Mechanics of fatigue crack closure (Newman Jr., J.C. and Elber, W., Eds.), ASTM STP 982 (1988) pp. 437–458.

    Google Scholar 

  42. de Koning, A.U. and Dougherty, D.J., Prediction of low and high crack growth rates under constant and variable amplitude loading. Fatigue crack growth under variable amplitude loading (Petit, J. et al., eds.). Elsevier (1989) pp. 208–217.

    Google Scholar 

  43. Siegl, J., Schijve, J. and Padmadinata, U.H., Fractographic observations and predictions on fatigue crack growth in an aluminium alloy under mini TWIST flight-simulation loading. Int. J. Fatigue, Vol. 13 (1991) pp. 139–147.

    Article  Google Scholar 

  44. Schijve, J., Fundamental aspects of predictions on fatigue crack growth under variable-amplitude loading. Theoretical Concepts and Numerical Analysis of Fatigue (Blom, A.F. and Beevers, C.J., Eds.). EMAS (1992) PP. 111–130.

    Google Scholar 

  45. Schijve, J., Fatigue crack growth under variable-amplitude loading. Fatigue and Fracture, American Society for Materials, Handbook Vol. 19, ASM (1996) pp. 10–133.

    Google Scholar 

General references

  1. Skorupa, M., Load interaction effects during fatigue crack growth under variable-amplitude loading. A literature review. Part I: Empirical trends. Part II: Qualitative interpretation. Fatigue and Fracture of Engineering Materials and Structure, Vol. 21 (1999) pp. 987–1006, Vol. 22 (1999) pp. 905–926.

    Google Scholar 

  2. Newman, Jr., J.C., Phillips, E.P. and Everett, Jr., R.A., Fatigue analyses under constant-and variable-amplitude loading using small-crack theory. NASA/TM-1999-209329 (1999).

    Google Scholar 

  3. Harter, J.A., Comparison of contemporary fatigue crack growth (FCG) prediction tools. Int. Journal of Fatigue, Vol. 21 (1999) pp. S18l–S185.

    Google Scholar 

  4. Newman, J.C., Wu, X.R., Swain, M.H., Zhao, W., Phillips, E.P. and Ding, C.F., Small-crack growth and fatigue life predictions for high-strength aluminium alloys. Part II: crack closure and fatigue analyses. Fatigue and Fracture of Engineering Materials and structures, Vol. 23 (1999) pp. 59–72.

    Google Scholar 

  5. Wu, X.R., Newman, J.C., Zhao, W., Swain,, M.H., Ding, C.F. and Phillips, E.P., Small-crack growth and fatigue life predictions for high-strength aluminium alloys. Part I: Experimental and fracture mechanics analysis. Fatigue and Fracture of Engineering Materials and structures, Vol. 21 (1998) pp. 1289–1306.

    Google Scholar 

  6. Mitchell, M.R. and Landgraf, R.W. (Eds), Advances in fatigue lifetime predictive techniques: 3rd Volume. ASTM STP 1292 (1996).

    Google Scholar 

  7. Newman Jr., J.C. and Elber, W. (Eds) Mechanics of Fatigue Crack Closure, ASTM STP 982 (1988).

    Google Scholar 

  8. Fatigue Crack Growth under Spectrum Loads, ASTM STP 595, 1976. See also [22, 44 and 45].

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Fatigue Crack Growth under Variable-Amplitude Loading. In: Fatigue of Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/0-306-48396-3_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-48396-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7013-0

  • Online ISBN: 978-0-306-48396-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics