Skip to main content

Biaxial Mechanical Evaluation of Planar Biological Materials

  • Chapter
Cardiovascular Soft Tissue Mechanics

Abstract

A fundamental goal in constitutive modeling is to predict the mechanical behavior of a material under a generalized loading state. To achieve this goal, rigorous experimentation involving all relevant deformations is necessary to obtain both the form and material constants of a strain-energy density function. For both natural biological tissues and tissue-derived soft biomaterials, there exist many physiological, surgical, and medical device applications where rigorous constitutive models are required. Since biological tissues are generally considered incompressible, planar biaxial testing allows for a two-dimensional stress-state that can be used to characterize fully their mechanical properties. Application of biaxial testing to biological tissues initially developed as an extension of the techniques developed for the investigation of rubber elasticity [43, 57]. However, whereas for rubber-like materials the continuum scale is that of large polymer molecules, it is at the fiber-level (∼l μm) for soft biological tissues. This is underscored by the fact that the fibers that comprise biological tissues exhibit finite nonlinear stress-strain responses and undergo large strains and rotations, which together induce complex mechanical behaviors not easily accounted for in classic constitutive models. Accounting for these behaviors by careful experimental evaluation and formulation of a constitutive model continues to be a challenging area in biomechanics. The focus of this paper is to describe a history of the application of biaxial testing techniques to soft planar tissues, their relation to relevant modern biomechanical constitutive theories, and important future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abeyaratne, C. Chu and R.D. James, Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Philos. Mag. A 73(2) (1996) 457–497.

    Google Scholar 

  2. K.J. Bathe, Finite Elements Proceedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, NJ (1982).

    Google Scholar 

  3. K.L. Billiar and M.S. Sacks, A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J. Biomech. 30(7) (1997) 753–756.

    Article  Google Scholar 

  4. K.L. Billiar and M.S. Sacks, Biaxial mechanical properties of fresh and glutaraldehyde treated porcine aortic valve cusps: Part II — A structurally guided constitutive model. J. Biomech. Engrg. 122(4) (2000) 327–335.

    Google Scholar 

  5. K.L. Billiar and M.S. Sacks, Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp — Part I: Experimental results. J. Biomech. Engrg. 122(1) (2000) 23–30.

    Google Scholar 

  6. M.M. Black, I.C. Howard, X.C. Huang and E.A. Patterson, A three-dimensional analysis of a bioprosthetic heart valve. J. Biomech. 24 (1991) 793–801.

    Article  Google Scholar 

  7. L.J. Brossollet and R.P. Vito, A new approach to mechanical testing and modeling of biological tissues, with application to blood vessels. J. Biomech. Engrg. 118(November) (1996) 433–439.

    Google Scholar 

  8. P.H. Chew, F.C. Yin and S.L. Zeger, Biaxial stress-strain properties of canine pericardium. J. Mol. Cell Cardiol. 18(6) (1986) 567–578.

    Google Scholar 

  9. H.S. Choi and R.P. Vito, Two-dimensional stress-strain relationship for canine pericardium. J. Biomech. Engrg. 112(2) (1990) 153–159.

    Google Scholar 

  10. C. Chu and R.D. James, Biaxial loading experiments on Cu-Al-Ni single crystals. In: K.S. Kim (ed.), Experiments in Smart Materials and Structures, ASME-AMD (1993) pp. 61–69.

    Google Scholar 

  11. J.C. Criscione, J.D. Humphrey, A.D. Douglas and W.C. Hunter, An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48 (2000) 2445–2465.

    MATH  Google Scholar 

  12. L.L. Demer and F.C.P. Yin, Passive biaxial mechanical properties of isolated canine myocardium. J. Physiology 339 (1983) 615–630.

    Google Scholar 

  13. H. Demiray, A note on the elasticity of soft biological tissues. J. Biomech. 5 (1972) 308–311.

    Article  Google Scholar 

  14. J. Downs, H. Halperin, J. Humphrey and F. Yin, An improved video-based computer tracking system for soft biomaterials testing. IEEE Trans. Biomed. Engrg. 37 (1990) 903–907.

    Article  Google Scholar 

  15. D. Flynn, G. Peura, P. Grigg and A. Hoffman, A finite element based method to determine the properties of planar soft tissue. J. Biomech. Engrg. 120 (1998) 202–210.

    Google Scholar 

  16. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. Springer, New York (1993).

    Google Scholar 

  17. M.S. Hamid, H.N. Sabbah and P.D. Stein, Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J. Biomech. 19 (1986) 759–769.

    Article  Google Scholar 

  18. A.H. Hoffman and P. Grigg, A method for measuring strains in soft tissue. J. Biomech. 10 (1984) 795–800.

    Google Scholar 

  19. J. Humphrey, D. Vawter and R. Vito, Quantification of strains in biaxially tested soft tissues. J. Biomech. 20(1) (1987) 59–65.

    Article  Google Scholar 

  20. J.D. Humphrey, R.K. Strumpf and F.C. Yin, Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Engrg. 112(3) (1990) 333–339.

    Google Scholar 

  21. J.D. Humphrey, R.K. Strumpf and F.C. Yin, Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Engrg. 112(3) (1990) 340–346.

    Google Scholar 

  22. J.D. Humphrey, R.K. Strumpf and F.C.P. Yin, A constitutive theory for biomembranes: application to epicardial mechanics. J. Biomech. Engrg. 114 (1992) 461–466.

    Google Scholar 

  23. J.D. Humphrey, D.L. Vawter and R.P. Vito, Mechanical behavior of excised canine visceral pleura. Ann. Biomed. Engrg. 14 (1986) 451–466.

    Google Scholar 

  24. J.D. Humphrey, D.L. Vawter and R.P. Vito, Quantification of strains in biaxially tested soft tissues. J. Biomech. 20 (1987) 59–65.

    Google Scholar 

  25. J.D. Humphrey and F.C. Yin, Biaxial mechanical behavior of excised epicardium (published erratum appears in J. Biomech. Engrg. 111(3) (1989) 227). J. Biomech. Engrg. 110(4) (1988) 349–351.

    Google Scholar 

  26. P. Khalsa, A. Hoffman and P. Grigg, Mechanical states encoded by stretch-sensitive neurons in feline joint capsule. J. Neurophysiology 76(1) (1996) 175–187.

    Google Scholar 

  27. S. Krucinski, I. Vesely, M.A. Dokainish and G. Campbell, Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J. Biomech. 26 (1993) 929–943.

    Article  Google Scholar 

  28. Y. Lanir, A structural theory for the homogeneous biaxial stress-strain relationships in flat collageneous tissues. J. Biomech. 12 (1979) 423–436.

    Article  Google Scholar 

  29. Y. Lanir, Constitutive equations for fibrous connective tissues. J. Biomech. 16 (1983) 1–12.

    Article  Google Scholar 

  30. Y. Lanir and Y.C. Fung, Two-dimensional mechanical properties of rabbit skin. I. Experimental system. J. Biomech. 7(1) (1974) 29–34.

    Article  Google Scholar 

  31. Y. Lanir and Y.C. Fung, Two-dimensional mechanical properties of rabbit skin. II. Experimental results. J. Biomech. 7(2) (1974) 171–182.

    Article  Google Scholar 

  32. Y. Lanir, O. Lichtenstein and O. Imanuel, Optimal design of biaxial tests for structural material characterization of flat tissues. J. Biomech. Engrg. 118 (1996) 41–47.

    Google Scholar 

  33. J.M. Lee, D.W. Courtman and D.R. Boughner, The glutaraldehyde-stablized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material. J. Biomedical Mater. Res. 18 (1984) 61–77.

    Google Scholar 

  34. J.M. Lee, M.C. LeWinter, G. Freeman, R. Shabetai and Y.C. Fung, Biaxial mechanical properties of the pericardium in normal and volume overload dogs. Amer. J. Physiology 249 (1985) H222–H230.

    Google Scholar 

  35. D.H. Lin and F.C. Yin, A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Engrg. 120(4) (1998) 504–517.

    Google Scholar 

  36. K. May-Newman and F.C. Yin, Biaxial mechanical behavior of excised porcine mitral valve leaflets. Amer. J. Physiology 269(4 Pt 2) (1995) H1319–H1327.

    Google Scholar 

  37. K. May-Newman and F.C. Yin, A constitutive law for mitral valve tissue. J. Biomech. Engrg. 120(1) (1998) 38–47.

    Google Scholar 

  38. P.M.F. Nielsen, P.J. Hunter and B.H. Smaill, Biaxial testing of membrane biomaterials: Testing equipment and procedures. J. Biomech. Engrg. 113 (1991) 295–300.

    Google Scholar 

  39. V.P. Novak, F.C. Yin and J.D. Humphrey, Regional mechanical properties of passive myocardium. J. Biomech. 27(4) (1994) 403–412.

    Article  Google Scholar 

  40. J. Orberg, E. Baer and A. Hiltner, Organization of collagen fibers in the intestine. Connective Tissue Res. 11 (1983) 285–297.

    Google Scholar 

  41. J.W. Orberg, L. Klein and A. Hiltner, Scanning electron microscopy of collagen fibers in intestine. Connective Tissue Res. 9 (1982) 187–193.

    Article  Google Scholar 

  42. R.S. Rivlin, Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. Roy. Soc. London Ser. A 241 (1948) 379–397.

    Article  MathSciNet  MATH  Google Scholar 

  43. R.S. Rivlin and D.W. Saunders, Large elastic deformations of isotropic materials, VII. Experiments on the deformation of rubber. Philos. Trans. Roy. Soc. London Ser. A 243 (1951) 251–288.

    Google Scholar 

  44. M.S. Sacks, A method for planar biaxial testing that includes in-plane shear. J. Biomech. Engrg. 121 (1999) 551–555.

    Google Scholar 

  45. M.S. Sacks, A structural constitutive model for chemically treated planar connective tissues under biaxial loading. Comput. Mech. 26(3) (2000) 243–249.

    Article  MATH  Google Scholar 

  46. M.S. Sacks and C.J. Chuong, Biaxial mechanical properties of passive right ventricular free wall myocardium. J. Biomech. Engrg. 115 (May 1993) 202–205.

    Google Scholar 

  47. M.S. Sacks and C.J. Chuong, A constitutive relation for passive right-ventricular free wall myocardium. J. Biomech. 26(11) (1993) 1341–1345.

    Article  Google Scholar 

  48. M.S. Sacks and C.J. Chuong, Orthotropic mechanical properties of chemically treated bovine pericardium. Ann. Biomed. Engrg. 26(5) (1998) 892–902.

    Google Scholar 

  49. M.S. Sacks and D.C. Gloeckner, Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J. Biomedical Mater. Res. 46 (1999) 1–10.

    Google Scholar 

  50. M.S. Sacks, D.B. Smith and E.D. Hiester, A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Engrg. 25(4) (1997) 678–689.

    Google Scholar 

  51. M.S. Sacks, D.B. Smith and E.D. Hiester, The aortic valve microstructure: Effects of transvalvular pressure. J. Biomedical Mater. Res. 41 (1998) 131–141.

    Google Scholar 

  52. F. Schoen and R. Levy, Tissue heart valves: Current challenges and future research perspectives. J. Biomedical Mater. Res. 47 (1999) 439–465.

    Google Scholar 

  53. A. Shacklock, Biaxial testing of cardiac tissue. In: M.S. University of Auckland, Auckland, New Zealand (1987).

    Google Scholar 

  54. R.K. Strumpf, L. Demer and F.C.P. Yin, Quantification of passive biaxial myocardial stressstrain properties. Circulation 68 (1983) 372.

    Google Scholar 

  55. R.K. Strumpf, J.D. Humphrey and F.C. Yin, Biaxial mechanical properties of passive and tetanized canine diaphragm. Amer. J. Physiology 265(2 Pt 2) (1993) H469–H475.

    Google Scholar 

  56. P. Tong and Y.C. Fung, The stress-strain relationship for the skin. J. Biomech. 9(10) (1976) 649–657.

    Article  Google Scholar 

  57. L.R.G. Treloar, The Physics of Rubber Elasticity. Oxford Univ. Press, London (1975).

    Google Scholar 

  58. R.P. Vito, The mechanical properties of soft tissues-I. A mechanical system for biaxial testing. J. Biomech. 13 (1980) 947–950.

    Google Scholar 

  59. S.D. Waldman and J.M. Lee, Boundary conditions during biaxial testing of planar connective tissues: Part 1: Dynamic behavior. J. Biomech. (2000) submitted.

    Google Scholar 

  60. S.D. Waldman, M.S. Sacks and J.M. Lee, Imposed state of deformation determines local collagen fibre orientation but not apparent mechanical properties. Biomed. Sci. Instrum. 35 (1999) 51–56.

    Google Scholar 

  61. A.S. Wineman, Large axisymmetric inflation of a nonlinear viscoelastic membrane by laterial pressure. Trans. Soc. Rheology 20(2) (1976) 203–225.

    Article  MathSciNet  MATH  Google Scholar 

  62. W.H. Yang and C.H. Lu, General deformations of neo-hookean membranes. J. Appl. Mech. (1973 March) 1–12.

    Google Scholar 

  63. F.C. Yin, R.K. Strumpf, P.H. Chew and S.L. Zeger, Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20(6) (1987) 577–589.

    Article  Google Scholar 

  64. F.C. Yin, W.R. Tompkins, K.L. Peterson and M. Intaglietta, A video-dimension analyzer. IEEE Trans. Biomed. Engrg. 19(5) (1972) 376–381.

    Article  Google Scholar 

  65. F.C.P. Yin, P.H. Chew and S.L. Zeger, An approach to quantification of biaxial tissue stressstrain data. J. Biomech. 19 (1986) 27–37.

    Article  Google Scholar 

  66. P. Zioupos and J.C. Barbenel, Mechanics of native bovine pericardium: I. The multiangular behavior of strength and stiffness of the tissue. Biomaterials 15 (1994) 366–373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sacks, M.S. (2001). Biaxial Mechanical Evaluation of Planar Biological Materials. In: Cowin, S.C., Humphrey, J.D. (eds) Cardiovascular Soft Tissue Mechanics. Springer, Dordrecht. https://doi.org/10.1007/0-306-48389-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48389-0_7

  • Received:

  • Revised:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0220-5

  • Online ISBN: 978-0-306-48389-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics