Skip to main content

Modeling Heart Development

  • Chapter
Cardiovascular Soft Tissue Mechanics

Abstract

Mechanics plays a major role in heart development. This paper reviews some of the mechanical aspects involved in theoretical modeling of the embryonic heart as it transforms from a single tube into a four-chambered pump. In particular, large deformations and significant alterations in structure lead to highly nonlinear boundary value problems. First, the biological background for the problem is discussed. Next, a modified elasticity theory is presented that includes active contraction and growth, and the theory is incorporated into a finite element analysis. Finally, models for the heart are presented to illustrate the developmental processes of growth, remodeling, and morphogenesis. Combining such models with appropriate experiments should shed light on the complex mechanisms involved in cardiac development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.A. Taber, Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48 (1995) 487–545.

    Article  Google Scholar 

  2. L.A. Taber, Mechanical aspects of cardiac development. Progress in Biophysics and Molecular Biology 69 (1998) 255.

    Article  Google Scholar 

  3. J. Sadoshima, L. Jahn, T. Takahashi, T.J. Kulik and S. Izumo, Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. J. Biological Chem. 267 (1992) 10551–10560.

    Google Scholar 

  4. J.H. Omens and Y.C. Fung, Residual strain in rat left ventricle. Circulation Research 66 (1990) 37–45.

    Google Scholar 

  5. J.H. Omens, H.A. Rockman and J.W. Covell, Passive ventricular mechanics in tight-skin mice. Amer. J. Physiology 266 (1994) H1169–H1176.

    Google Scholar 

  6. E.K. Rodriguez, J.H. Omens, L.K. Waldman and A.D. McCulloch, Effect of residual stress on transmural sarcomere length distributions in rat left ventricle. Amer. J. Physiology 264 (1993) H1048–H1056.

    Google Scholar 

  7. L.A. Taber, N. Hu, T. Pexieder, E.B. Clark and B.B. Keller, Residual strain in the ventricle of the stage 16–24 chick embryo. Circulation Research 72 (1993) 455–462.

    Google Scholar 

  8. J.B. Caulfield and T.K. Borg, The Collagen network of the heart. Laboratory Investigation 40 (1979) 364–372.

    Google Scholar 

  9. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, Berlin (1993).

    Google Scholar 

  10. A.L. Romanoff, The Avian Embryo: Structural and Functional Development. Macmillan, New York (1960).

    Google Scholar 

  11. J.M. Icardo and F.J. Manasek, Cardiogenesis: Development mechanisms and embryology. In: H.A. Fozzard (ed.), The Heart and Cardiovascular System, 2nd edn. Raven Press (1992) pp. 1563–1586.

    Google Scholar 

  12. W.J. Larsen, Human Embryology. Churchill, Livingston (1993).

    Google Scholar 

  13. V. Hamburger and H.L. Hamilton, A series of normal stages in the development of the chick embryo. J. Morphology 88 (1951) 49–92.

    Article  Google Scholar 

  14. E.B. Clark, Growth, Morphogenesis and function: The dynamics of cardiac development. In: J.H. Moller, W. Neal and J. Lock (eds), Fetal, Neonatal, and Infant Heart Disease. Appleton-Century-Crofts (1989) pp. 3–23.

    Google Scholar 

  15. B.B. Keller, N. Hu and E.B. Clark, Correlation of ventricular area, perimeter, and conotruncal diameter with ventricular mass and function in the chick embryo from stages 12 to 24. Circulation Research 66 (1990) 109–114.

    Google Scholar 

  16. B.B. Keller, N. Hu, P.J. Serrino and E.B. Clark, Ventricular pressure-area loop characteristics in the stages 16–24 chick embryo. Circulation Research 68 (1991) 226–231.

    Google Scholar 

  17. J. Manner, Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process. Anatomical Record 259 (2000) 248–262.

    Google Scholar 

  18. D. Sedmera, T. Pexieder, N. Hu and E.B. Clark, Developmental changes in the myocardial architecture of the chick. Anatomical Record 248 (1997) 421–432.

    Article  Google Scholar 

  19. D. Sedmera, T. Pexieder, M. Vuillemin, R.P. Thompson and R.H. Anderson, Developmental patterning of the myocardium. Anatomical Record 258 (2000) 319–337.

    Article  Google Scholar 

  20. A. Nakamura, R.R. Kulikowski, J.W. Lacktis and F.J. Manasek, Heart looping: A regulated response to deforming forces. In: R. van Praagh and A. Takao (eds), Etiology and Morphogenesis of Congenital Heart Disease. Futura Publishing (1980) pp. 81–98.

    Google Scholar 

  21. F.J. Manasek, R.R. Kulikowski, A. Nakamura, Q. Nguyenphuc and J.W. Lacktis, Early heart development: A new model of cardiac morphogenesis. In: R. Zak (ed.), Growth of the Heart in Health and Disease. Raven Press (1984) pp. 105–130.

    Google Scholar 

  22. N. Itasaki, H. Nakamura, H. Sumida and M. Yasuda, Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart. Anatomy and Embryology 183 (1991) 29–39.

    Article  Google Scholar 

  23. I. Shiraishi, T. Takamatsu, T. Minamikawa and S. Fujita, 3-D observation of actin filaments during cardiac myofibrinogenesis in chick embryo using a confocal laser scanning microscope. Anatomy and Embryology 185 (1992) 401–408.

    Article  Google Scholar 

  24. D.D. Streeter, Gross morphology and fiber geometry of the heart. In: R.M. Berne, N. Sperelakis and S. R. Geiger (eds), Handbook of Physiology, Section 2: The Cardiovascular System, Vol. I: The Heart. Amer. Physiolog. Soc. (1979) pp. 61–112.

    Google Scholar 

  25. E.K. Rodriguez, A. Hoger and A.D. McCulloch, Stress-dependent finite growth in soft elastic tissues. J. Biomechanics 27 (1994) 455–467.

    Google Scholar 

  26. G.M. Odell, G. Oster, P. Alberch and B. Burnside, The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Developmental Biology 85 (1981) 446–462.

    Article  Google Scholar 

  27. G.F. Oster, J.D. Murray and A.K. Harris, Mechanical aspects of mesenchymal morphogenesis. J. Embryology Exper. Morphology 78 (1983) 83–125.

    Google Scholar 

  28. L.A. Taber and C.E. Miller, Overview: Biomechanics of cardiac development. In: E.B. Clark, R.R. Markwald and A. Takao (eds), Developmental Mechanisms of Heart Disease. Futura (1995) pp. 387–419.

    Google Scholar 

  29. R.R. Burton, Heart growth and size in homeotherms. In: R.J. Goss (ed.), Regulation of Organ and Tissue Growth. Academic Press, New York (1972) pp. 101–125.

    Google Scholar 

  30. W. Grossman, Cardiac hypertrophy: Useful adaptation or pathologic process? Amer. J. Medicine 69 (1980) 576–584.

    Google Scholar 

  31. L.A. Taber, B.B. Keller and E.B. Clark, Cardiac mechanics in the stage-16 chick embryo. J. Biomechanical Engrg. 114 (1992) 427–434.

    Google Scholar 

  32. I.E. Lin and L.A. Taber, Mechanical effects of looping in the embryonic chick heart. J. Biomechanics 27 (1994) 311–321.

    Google Scholar 

  33. M. Yang, L.A. Taber and E.B. Clark, A nonlinear poroelastic model for the trabecular embryonic heart. J. Biomechanical Engrg. 116 (1994) 213–223.

    Google Scholar 

  34. C.E. Miller, M.A. Vanni, L.A. Taber and B.B. Keller, Passive stress-strain measurements in the stage-16 and stage-18 embryonic chick heart. J. Biomechanical Engrg. 119 (1997) 445–451.

    Google Scholar 

  35. P.D. Blatz and W.L. Ko, Application of finite elasticity to the deformation of rubbery materials. Trans. Soc. Rheology 6 (1962) 223–251.

    Article  Google Scholar 

  36. E.B. Clark, N. Hu, P. Frommelt, G.K. Vandekieft, J.L. Dummett and R.J. Tomanek, Effect of increased pressure on ventricular growth in stage 21 chick embryos. Amer. J. Physiology 257 (1989) H55–H61.

    Google Scholar 

  37. L.A. Taber, A model for aortic growth based on fluid shear and fiber stresses. J. Biomechanical Engrg. 120 (1998) 348–354.

    Google Scholar 

  38. K.J. Bathe, Finite Element Procedures. Prentice-Hall, Englewood Cliffs, NJ (1996).

    Google Scholar 

  39. R. Srinivasan and R. Perucchio, Finite element analysis of anisotropic nonlinear incompressible elastic solids by a mixed model. Internat. J. Numer. Methods Engrg. 37 (1994) 3075–3092.

    Article  MATH  Google Scholar 

  40. L.A. Taber, Biomechanical growth laws for muscle tissue. J. Theoret. Biology 193 (1998) 201–213.

    Google Scholar 

  41. L.A. Taber and D.W. Eggers, Theoretical study of stress-modulated growth in the aorta. J. Theoret. Biology 180 (1996) 343–357.

    Google Scholar 

  42. A. Rachev, N. Stergiopulos and J.J. Meister, A model for geometric and mechanical adaptation of arteries to sustained hypertension. J. Biomechanical Engrg. 120 (1998) 9–17.

    Google Scholar 

  43. A. Rachev, N. Stergiopulos and J.J. Meister, Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J. Biomechanics 29 (1996) 635–642.

    Google Scholar 

  44. T. Arts, F.W. Prinzen, L.H.E.H. Snoeckx, J.M. Rijcken and R.S. Reneman, Adaptation of cardiac structure by mechanical feedback in the environment of the cell: A model study. Biophys. J. 66 (1994) 953–961.

    Article  Google Scholar 

  45. I.E. Lin and L.A. Taber, A model for stress-induced growth in the developing heart. J. Biomechanical Engrg. 117 (1995) 343–349.

    Google Scholar 

  46. A. Barry, The functional significance of the cardiac jelly in the tubular heart of the chick embryo. Anatomical Record 102 (1948) 289–298.

    Article  Google Scholar 

  47. B.M. Patten, T.C. Kramer and A. Barry, Valvular action in the embryonic chick heart by localized apposition of endocardial masses. Anatomical Record 102 (1948) 299–311.

    Article  Google Scholar 

  48. R. Perucchio, R. Srinivasan, A.C. Gittenberger-de Groot and R.E. Poelmann, Finite element analysis of the early embryonic chick heart during contraction. In: Proc. of the 1995 Bioengineering Conf. (ASME) (1995) pp. 119–120.

    Google Scholar 

  49. N. Baba, Computer-aided three-dimensional reconstruction from serial sectionimages. In: D.P. Hader (ed.), Image Analysis in Biology. CRC Press, Boca Raton, FL (1992) pp. 251–270.

    Google Scholar 

  50. P. Suquet, Elements of homogenization theory for inelastic solid mechanics. In: Homogenization Techniques for Composite Media. Springer, Berlin (1987) pp. 194–278.

    Google Scholar 

  51. S.J. Hollister and N. Kikuchi, A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J. Biomechanics 27 (1994) 433–444.

    Google Scholar 

  52. W. Xie and R. Perucchio, Multiscale finite element modeling of the trabeculated embryonic heart: Numerical evaluation of the constitutive relations for the trabeculated myocardium. Comput. Methods Biomechanics Biomedical Engrg. (2001) (in press).

    Google Scholar 

  53. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C. Cambridge Univ. Press, Cambridge (1992).

    MATH  Google Scholar 

  54. R.P. Harvey, Cardiac looping — An uneasy deal with laterality. Cell & Developmental Biology 9 (1998) 101–108.

    Google Scholar 

  55. L.A. Taber, I.E. Lin and E.B. Clark, Mechanics of cardiac looping. Developmental Dynamics 203 (1995) 42–50.

    Google Scholar 

  56. J.K. Butler, An experimental analysis of cardiac loop formation in the chick. M.S. Thesis, University of Texas (1952).

    Google Scholar 

  57. A. Manning and J.C. McLachlan, Looping of chick embryo hearts in vitro. J. Anatomy 168 (1990) 257–263.

    Google Scholar 

  58. F.J. Manasek and R.G. Monroe, Early cardiac morphogenesis is independent of function. Developmental Biology 27 (1972) 584–588.

    Article  Google Scholar 

  59. M.E. Flynn, A.S. Pikalow, R.S. Kimmelman and R.L. Searls, The mechanism of cervical flexure formation in the chick. Anatomy and Embryology 184 (1991) 411–420.

    Article  Google Scholar 

  60. J. Manner, W. Seidl and G. Steding, Correlation between the embryonic head flexures and cardiac development. Anatomy and Embryology 188 (1993) 269–285.

    Google Scholar 

  61. J.D. Murray, Mathematical Biology, 2nd edn. Springer, Berlin (1993).

    MATH  Google Scholar 

  62. R. Gordon and G.W. Brodland, The cytoskeletal mechanics of brain morphogenesis. Cell state splitters cause primary neural induction. Cell Biophysics 11 (1987) 177–238.

    Google Scholar 

  63. Y.C. Fung, Biodynamics: Circulation, 2nd edn. Springer, Berlin (1997).

    Google Scholar 

  64. L.A. Taber, Pattern formation in a nonlinear membrane model for epithelial morphogenesis. Acta Biotheoretica 48 (2000) 47–63.

    Article  Google Scholar 

  65. I. Shiraishi, T. Takamatsu and S. Fujita, Three-dimensional observation with a confocal scanning laser microscope of fibronectin immunolabeling during cardiac looping in the chick embryo. Anatomy and Embryology 191 (1995) 183–189.

    Article  Google Scholar 

  66. B.M. Patten, The formation of the cardiac loop in the chick. Amer. J. Anatomy 30 (1922) 373–397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Taber, L.A., Perucchio, R. (2001). Modeling Heart Development. In: Cowin, S.C., Humphrey, J.D. (eds) Cardiovascular Soft Tissue Mechanics. Springer, Dordrecht. https://doi.org/10.1007/0-306-48389-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48389-0_6

  • Received:

  • Revised:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0220-5

  • Online ISBN: 978-0-306-48389-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics