Skip to main content
  • 603 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sato, H. and Fehler, M.C. (1998) Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer-Verlag, New York.

    Google Scholar 

  2. Adomian, G. (1983) Stochastic Systems, Academic Press, New York.

    Google Scholar 

  3. Benaroya, H. and Rehak, M. (1987) The Neumann series/Born approximation applied to parametrically excited stochastic systems, Probabilistic Engineering Mechanics 2(2), 74–81.

    Article  Google Scholar 

  4. Chernov, L.A. (1962) Wave Propagation in a Random Medium, Dover, New York.

    Google Scholar 

  5. Karal, F.C. and Keller, J.B. (1964) Elastic, electromagnetic and other waves in a random medium, Journal of Mathematical Physics 5(4), 537–549.

    Article  MathSciNet  Google Scholar 

  6. Chu, L., Askar A., and Cakmak A.S. (1981) Earthquake waves in a random medium, International Journal of Numerical and Analytical Methods in Geomechanics 5, 79–96.

    Google Scholar 

  7. Hryniewicz, Z. (1991) Mean response to distributed dynamic loads across the random layer for anti-plane shear motion, Acta Mechanica 90, 81–89.

    Article  MATH  Google Scholar 

  8. Kotulski, Z. (1990) Elastic waves in randomly stratified medium. Analytical results, Acta Mechanica 83, 61–75.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kohler, W., Papanikolau, G., and White, B. (1991) Reflection of waves generated by a point source over a randomly layered medium, Wave Motion 13, 53–87.

    Article  MathSciNet  Google Scholar 

  10. Sobczyk, K. (1976) Elastic wave propagation in a discrete random medium, Acta Mechanica 25, 13–28.

    Article  MathSciNet  MATH  Google Scholar 

  11. Varadan, V.K., Ma, Y., and Varadan, V.V. (1985) Multiple scattering theory of elastic wave propagation in discrete random media, Journal of the Acoustical Society of America, 77, 375–389.

    Article  Google Scholar 

  12. Liu, K.C. (1991) Wave scattering in discrete random media by the discontinuous stochastic field method, I. Basic method and general theory, Journal of Sound and Vibration, 147, 301–311.

    Google Scholar 

  13. Sobczyk, K. (1985) Stochastic Wave Propagation, Elsevier, Amsterdam.

    Google Scholar 

  14. Shinozuka, M. (1972) Digital simulation of random processes and its application, Journal of Sound and Vibration, 25, 111–128.

    Article  Google Scholar 

  15. Vanmarke, E., Shinozuka, M., Nakagiri, S., Schueller, G.I. and Grigoriu, M. (1986) Random fields and stochastic finite elements, Structural Safety, 3, 143–166.

    Google Scholar 

  16. Liu, W.K., Belytschko, T. and Mani, A. (1986) Random field finite elements, International Journal of Numerical Methods in Engineering, 23, 1831–1845.

    MathSciNet  Google Scholar 

  17. Burczynski, T. (1985) The boundary element method for stochastic potential problems, Applied Mathematical Modelling, 9, 189–194.

    MathSciNet  MATH  Google Scholar 

  18. Manolis, G.D. and Shaw, R.P. (1992) Wave motion in a random hydroacoustic medium using boundary integral/element methods, Engineering Analysis with Boundary Elements, 9, 61–70.

    Article  Google Scholar 

  19. Askar, A. and Cakmak, A.S., (1988) Seismic waves in random media, Probabilistic Engineering Mechanics, 3(3), 124–129.

    Article  Google Scholar 

  20. Jensen, H. and Iwan, W. D. (1992) Response of systems with uncertain parameters to stochastic excitation, Journal of Engineering Mechanics of ASCE 118(5), 1012–1025.

    Google Scholar 

  21. Sun, T.C. (1979) A finite element method for random differential equations with random coefficients, SIAM Journal of Numerical Analysis, 16(6), 1019–1035.

    Article  MATH  Google Scholar 

  22. Jensen, H. and Iwan, W.D. (1991) Response variability in structural dynamics, Earthquake Engineering and Structural Dynamics, 20, 949–959.

    Google Scholar 

  23. Lawrence, M.A. (1987) Basis random variable in finite element analysis, International Journal of Numerical Methods in Engineering, 24, 1849–1863.

    MathSciNet  MATH  Google Scholar 

  24. Spanos, P.D. and Ghanem, R. (1989) Stochastic finite element expansion for random media, Journal of Engineering Mechanics of ASCE, 115(5), 1035–1053.

    Google Scholar 

  25. Belyaev, A.K. and Ziegler, F. (1998) Uniaxial waves in randomly heterogeneous elastic media, Probabilistic Engineering Mechanics 13, 27–38.

    Article  Google Scholar 

  26. Burczynski, T. (1993) Stochastic boundary element methods: Computational methodology and applications, Chapter 12 in P. Spanos and W. Wu (eds.), Probabilistic Structural Mechanics, an IUTAM Symposium, Springer-Verlag, Berlin.

    Google Scholar 

  27. Manolis, G.D. (1994) The ground as a random medium, Chapter 15 in G.D. Manolis and T.G. Davies (eds.), Boundary Element Techniques in Gemechanics, Elsevier Applied Science, London, pp. 497–533.

    Google Scholar 

  28. Manolis, G.D., Davies, T.G. and Beskos, D.E. (1994) Overview of boundary element techniques in geomechanics, Chapter 1 in G.D. Manolis and T.G. Davies (eds.), Boundary Element Techniques in Gemechanics, Elsevier Applied Science, London, pp. 1–35.

    Google Scholar 

  29. Karakostas, C.Z. and Manolis, G.D. (2000) Dynamic response of unlined tunnels in soil with random properties, Engineering Structures 18(2), 1013–1027.

    Google Scholar 

  30. Manolis, G.D. and Pavlou, S. (1999) Fundamental solutions for SH waves in a continuum with large randomness, Engineering Analysis with Boundary Elements 23, 721–736.

    Article  Google Scholar 

  31. Vanmarke, E.H. (1977) Random vibration approach to soil dynamics, in The Use of Probability in Earthquake Engineering, ASCE Publication, New York, 143–176.

    Google Scholar 

  32. Gazetas, G., Debchaudhury, A. and Gasparini, D.A. (1982) Stochastic estimation of the nonlinear response of dams to strong earthquakes, Soil Dynamics and Earthquake Engineering 1(1).

    Google Scholar 

  33. Luco, J.E. and Wong, H.L. (1986) Response of a rigid foundation to a spatially random ground motion, Earthquake Engineering and Structural Dynamics 14, 891–908.

    Google Scholar 

  34. Pais, A.L. and Kausel, E. (1990) Stochastic response of rigid foundations, Earthquake Engineering and Structural Dynamics 19, 611–622.

    Google Scholar 

  35. Hao, H. (1991) Response of multiply supported rigid plate to spatially correlated seismic excitations Earthquake Engineering and Structural Dynamics 20, 821–838.

    Google Scholar 

  36. Harichandran, R.S. and Vanmarke, E.H. (1986) Stochastic variation of earthquake ground motion in space and time, Journal of Engineering Mechanics of ASCE 112(2), 154–174.

    Google Scholar 

  37. Madhav, M.R. and Ramakrishna, K.S. (1988) Probabilistic prediction of pile group capacity, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 5–8.

    Google Scholar 

  38. Stickler, D.C. (1991) Scattering from a soft slightly rough surface, Wave Motion 13, 211–221.

    Article  MATH  Google Scholar 

  39. Ogura, H., Takahashi, N. and Kuwahara, M. (1991) Scattering of waves from a random cylindrical surface, Wave Motion 14, 273–295.

    Article  Google Scholar 

  40. Nakagiri, S. and Hisada, T. A. (1980) Note on stochastic finite element method (Part1) — Variation of stress and strain caused by shape fluctuation, Seisan-Kenkyu Institute of Industrial Sciences of University of Tokyo 32(2), 39–42.

    Google Scholar 

  41. Tang, W.H., Halim, I. and Gilbert, R.B. (1988) Reliability of geotechnical systems considering geological anomaly, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 136–139.

    Google Scholar 

  42. Asaoka, A and Athanassiou-Grivas, D. (1982) Spatial variability of the undrained strength of clays, Journal of Geotechnical Engineering Division of ASCE 108(GT5), 743–755.

    Google Scholar 

  43. Baecher, G. (1981) Optimal estimators for soil properties, Journal of Geotechnical Engineering Division of ASCE 107(5), 649–653.

    Google Scholar 

  44. Wu, T., Potter, J. and Kjekstad, O. (1986) Probabilistic analysis of offshore site exploration, Journal of Geotechnical Engineering Division of ASCE 112(11), 981–1000.

    Google Scholar 

  45. Tang, W. and Quek, S.T. (1986) Statistical model of boulder size and fraction, Journal of Geotechnical Engineering Division of ASCE 112(1), 79–90.

    Google Scholar 

  46. Tang, W.H. (1988) Updating anomaly statistics-multiple anomaly pieces, Journal of Engineering Mechanics of ASCE 114(6), 1091–1096.

    Google Scholar 

  47. Tang, W.H., Sidi, I., and Gilbert, R.B. (1989) Average property in a random two-state medium, Journal of Engineering Mechanics of ASCE 115(1), 131–144.

    Google Scholar 

  48. Benaroya, H. (1988) Markov chains and soil constitutive modelling, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 49–52.

    Google Scholar 

  49. Ronold, K.O. (1990) Probabilistic foundation stability analysis, International Journal of Numerical and Analytical Methods in Geomechanics 14, 279–296.

    Google Scholar 

  50. Quek, S.T., Phoon, K.K. and Chow, Y.K. (1991) Pile group settlement: a probabilistic approach, International Journal of Numerical and Analytical Methods in Geomechanics 15, 817–832.

    Google Scholar 

  51. Drumm, E.C., Bennett, R.M. and Oakley, G.J. (1990) Probabilistic response of laterally loaded piers by three-point approximation, International Journal of Numerical and Analytical Methods in Geomechanics 14, 499–507.

    Google Scholar 

  52. Rosenblueth, E. (1975) Point estimates for probability moments, Proceedings of National Academy of Sciences (USA) 72(10), 3812–3814.

    MathSciNet  MATH  Google Scholar 

  53. Baecher, G.B. and Ingra, T.S. (1981) Stochastic FEM in settlement prediction, Journal of Geotechnical Engineering Division of ASCE 107(GT4), 449–463.

    Google Scholar 

  54. Nakagiri, S. and Hisada, T. (1983) A note on stochastic finite element method (Part 6) — An application in problems of uncertain elastic foundation, Seisan-Kenkyu Institute of Industrial Sciences of University of Tokyo 35(1), 20–23.

    Google Scholar 

  55. Lin, J.S. (1990) Regional seismic slope failure probability matrices, Earthquake Engineering and Structural Dynamics 19, 911–923.

    Google Scholar 

  56. Lahlaf, A.M. and Marciano, E. (1988) Probabilistic slope stability-Case study, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 128–131.

    Google Scholar 

  57. Resheidat, M.R. (1988) Probabilistic model for stability of slopes, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 132–135.

    Google Scholar 

  58. Yucemen, M.S. and Al-Homoud, A.S. (1988) A probabilistic 3-D short-term stability model, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 140–143.

    Google Scholar 

  59. Ishii, K. (1987) Stochastic finite element method for slope stability analysis, Structural Safety 4, 111–129.

    Google Scholar 

  60. Wong, F.S. (1985) Slope reliability and response surface method, Journal of Geotechnical Engineering Division of ASCE 111(GT1), 32–53.

    Google Scholar 

  61. Koppula, S.D. (1988) Pore pressure development: Probability analysis, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 57–60.

    Google Scholar 

  62. Kavazanjian, E. and Wang, J.N. (1988) Frequency domain site response with pore pressure, in P.D. Spanos (ed.), Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 1–4.

    Google Scholar 

  63. Hoshiya, M. and Ishii, K. (1983) Evaluation of kinematic interaction of soilfoundation systems by a stochastic model, Soil Dynamics and Earthquake Engineering 2(3), 128–134.

    Google Scholar 

  64. Hoshiya, M. and Ishii, K. (1984) Deconvolution method between kinematic interaction and dynamic interaction of soil-foundation systems based on observed data, Soil Dynamics and Earthquake Engineering 3(3), 157–164.

    Google Scholar 

  65. Harren, S.V. and Fossum, A.F. (1991) Probabilistic analysis of impulsively loaded deep-buried structures, International Journal for Numerical and Analytical Methods in Geomechanics 15, 513–526.

    Article  Google Scholar 

  66. Righetti, G. and Harrop-Williams, K. (1988) Finite element analysis of random soil media, Journal of Geotechnical Engineering Division of ASCE 114(GT1), 59–75.

    Google Scholar 

  67. Izutani, Y. and Katagiri, F. (1992) Empirical Green’s function corrected for source effect, Earthquake Engineering and Structural Dynamics 21, 341–349.

    Google Scholar 

  68. Faravelli, L., Kiremidjian, A.S. and Suzuki, S. (1988) A stochastic seismological model in earthquake engineering, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 241–244.

    Google Scholar 

  69. Anagnos, T. and Kiremidjian, A.S. (1984) Stochastic time-predictable model for earthquake occurrences, Bulletin of the Seismological Society of America 74, 2593–2611.

    Google Scholar 

  70. Nishenko, S. and Singh S.K. (1987) Conditional probabilities for the recurrence of large and great earthquakes along the Mexican subduction zone, Bulletin of the Seismological Society of America 77, 2094–2114.

    Google Scholar 

  71. Suzuki, S. and Kiremidjian, A.S. (1991) A random slip rate model for earthquake occurrences with Bayesian parameters, Bulletin of the Seismological Society of America 81(3), 781–795.

    Google Scholar 

  72. Hoshiya, M. Naruyama, M. and Kurita, H. (1988) Autoregressive model of spatially propagating earthquake ground motion, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 257–260.

    Google Scholar 

  73. Spanos, P.D. (1983) ARMA algorithms for ocean wave modelling, Journal of Energy Resources Technology of ASME 105, 300–309.

    Google Scholar 

  74. Samaras, E., Shinozuka, M. and Tsurui A. (1985) ARMA representation of random processes, Journal of Engineering Mechanics of ASCE, 111(3), 449–461.

    Google Scholar 

  75. Mignolet, M.P. and Spanos, P.D. (1987) Recursive simulation of stationary multivariate processes — Part I., Journal of Applied Mechanics of ASME 109, 674–680.

    MathSciNet  Google Scholar 

  76. Kozin, F. (1988) Autoregressive moving average models of earthquake records, Probabilistic Engineering Mechanics 3(2), 58–63.

    Article  Google Scholar 

  77. Cakmak, A.S., Sherif, R.I. and Ellis, G. (1985) Modelling earthquake ground motions in California using parametric time series methods, Soil Dynamics and Earthquake Engineering 4(3), 124–131.

    Google Scholar 

  78. Polhemus, N.W. and Cakmak, A.S. (1981) Simulation of earthquake ground motions using autoregressive moving average (ARMA) models, Earthquake Engineering and Structural Dynamics 9, 343–354.

    Google Scholar 

  79. Turkstra, C.J., Tallin, A.G., Brahimi, M. and Kim, H.J. (1988) Application of ARMA models for seismic damage prediction, in P.D. Spanos (ed.) Probabilistic Methods in Civil Engineering, ASCE Publication, New York, pp. 277–280.

    Google Scholar 

  80. Dong, W., Shah, H.C., Bao, A. and Mortgat, C.P. (1984) Utilization of geophysical information in Bayesian seismic hazard model, Soil Dynamics and Earthquake Engineering 3(2), 103–111.

    Google Scholar 

  81. Boissonnade, A.C., Dong, W.M., Liu, S.C. and Shah, H.C. (1984) Use of pattern recognition and Bayesian classification for earthquake intensity and damage estimation, Soil Dynamics and Earthquake Engineering 3(3), 145–149.

    Google Scholar 

  82. Spanos, P.D. (1983) Digital synthesis of response design spectrum compatible earthquake records for dynamic analyses, The Shock and Vibration Digest 15(3), 21–27.

    Google Scholar 

  83. Spanos, P.D. and Vargas-Loli, L.M. (1985) A statistical approach to generation of design spectrum compatible earthquake time histories, Soil Dynamics and Earthquake Engineering 4(1), 2–8.

    Google Scholar 

  84. Amini, A and Trifunac, M.D. (1984) Statistical extension of response spectrum superposition. Soil Dynamics and Earthquake Engineering 4(2), 54–63.

    Google Scholar 

  85. Barucha-Reid A.T. (1972) Random Integral Equations, Academic Press, New York.

    Google Scholar 

  86. Hinch, E.J. (1991) Perturbation Methods, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  87. Nigam, N.C. (1983) Introduction to Random Vibrations, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  88. Caughey, T.K. (1963) Derivation and application of the Fokker-Planck equation in discrete non-linear dynamic systems subjected to white random noise, Journal of the Acoustical Society of America 35(11), 1683–1692.

    MathSciNet  Google Scholar 

  89. Manolis, G.D. and Beskos, D.E. (1988) Boundary Element Methods in Elastodynamics, Chapman and Hall, London.

    Google Scholar 

  90. Abramowitz, M. and Stegun, I.R. (1972) Handbook of Mathematical Functions, Dover, New York.

    Google Scholar 

  91. Baron, M.L. and Matthews, A.T. (1961) Diffraction of a pressure wave by a cylindrical cavity in an elastic medium, Journal Applied Mechanics, 28, 347–354.

    MathSciNet  Google Scholar 

  92. Kausel, E. and Manolis, G.D. (2000) Wave Motion Problems in Earthquake Engineering, WIT Press, Southampton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Manolis, G., Karakostas, C. (2003). BEM Analysis of SSI Problems in Random Media. In: Hall, W.S., Oliveto, G. (eds) Boundary Element Methods for Soil-Structure Interaction. Springer, Dordrecht. https://doi.org/10.1007/0-306-48387-4_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48387-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1300-3

  • Online ISBN: 978-0-306-48387-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics