Skip to main content

DNS and LES of Turbulent Backward-Facing Step Flow Using 2ND-and 4TH-Order Discretization

  • Conference paper
Book cover Advances in LES of Complex Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 65))

Abstract

Results are presented from a Direct Numerical Simulation (DNS) and Large-Eddy Simulations (LES) of turbulent flow over a backward-facing step (Re h =3300) with a fully developed channel flow (Rc τ=180) utilized asatime-dependent inflow condition. Numerical solutions using a fourth-order compact (Hermitian) scheme, which was formulated directly for anon-equidistant and staggered grid in [1] are compared with numerical solutions using the classical second-order central scheme. There sults from LES (using the dynamic subgrid scale model) are evaluated against a corresponding DNS reference data set (fourth-order solution).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Meri, H. Wengle, A. Dejoan, Védy E., and R. Schiestel. Application of a 4th-order hermitian scheme fornon-equidistant grids to les and dns of incompressible fluid flow. In E.H. Hirschel, editor, Numerical Flow Simulation I. Verlag Vieweg, 1998.

    Google Scholar 

  2. A.G. Kravchenko and P. Moin. On the effectsof numerical errors in large-eddy simulations of turbulent flows. Tech. Rep. CTR-160, Center for Turbulent Research, Stanford University, 1996.

    Google Scholar 

  3. R.S. Hirsh. Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. J. of Comp. Physics, 19:90–109, 1975.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. E. Krause, E.H. Hirschel, and W. Kordulla. Fourth-order “mehrstellen”-integration for threedimensional turbulent boundary layers. Proceedings of IAA Computational Fluid Dynamics Conference, Palm Springs, Calif., pages 92–102, 1973.

    Google Scholar 

  5. Y. Adam. A hermitian finite difference method for the solution of parabolic equations. Comp. and Maths, with Appls., 1:393–406, 1975.

    Article  MATH  Google Scholar 

  6. W. Goedheer and J. Potters. A compact finite difference scheme on a non-equidistant mesh. J. Comp. Physics, 61:269–279, 1985.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. S.K. Lele. Compact difference schemes with spectral-like resolution. J. Comp. Physics, 103:16–42, 1992.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. M. Carpenter, D. Gottlieb, and S. Abarbanel. The stability of numerical boundary treatments for compact high-order finite-difference schemes. J. Comp. Physics, 108:272–295, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. Sabau and P. Raad. Comparisons of compact and classical finite difference solutions of stiff problems on nonuniform grids. Computers and Fluids, 28:361–384, 1999.

    Article  MATH  Google Scholar 

  10. L. Gamet, F. Ducros, F. Nicoud, and T. Poinsot. Compact finite difference schemes on non-uniform meshes, application to direct numerical simulations of compressible flows. Int. J. Numer. Meth. Fluids, 29:159–191, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Rubin and P. Khosla. Polynomial interpolation methods for viscous flow calculation. J. Comp. Phys., 24:217–244, 1977.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech., 177:133–166, 1987.

    Article  ADS  MATH  Google Scholar 

  13. M.M. Rai and P. Moin. Direct simulations of turbulent flow using finite-difference schemes. J. Comp. Phys., 96:15–53, 1991.

    Article  MATH  ADS  Google Scholar 

  14. M. Manhart. Zonal direct numerical simulation of plane channel flow. Notes on Numerical Fluid Mechanics, Vieweg-Verlag, 64, 1998.

    Google Scholar 

  15. H. Le, P. Moin, and J. Kim. Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech., 330:349–374, 1997.

    Article  ADS  MATH  Google Scholar 

  16. K. Akselvoll and P. Moin. Large eddy simulation of a backward facing step flow. In W. Rodi and F. Martelli, editors, Proceedings of Engineering Turbulence Modelling and Experiments 2, pages 303–313. Elsevier Science Publishers, 1993.

    Google Scholar 

  17. C.W. Hirt, B.D. Nichols, and N.C. Romero. Sola — a numerical solution algorithm for transient fluid flows. In Los Alamos Sci. Lab. Report LA 5852, Los Alamos, 1975.

    Google Scholar 

  18. U. Schumann. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys., 18:376–404, 1975.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. M. Germano, U. Piomelli, P. Moin, and W.H. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3(7):1760–1765, July 1991.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Meri, A., Wengle, H. (2002). DNS and LES of Turbulent Backward-Facing Step Flow Using 2ND-and 4TH-Order Discretization. In: Friedrich, R., Rodi, W. (eds) Advances in LES of Complex Flows. Fluid Mechanics and Its Applications, vol 65. Springer, Dordrecht. https://doi.org/10.1007/0-306-48383-1_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48383-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0486-5

  • Online ISBN: 978-0-306-48383-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics