Skip to main content

Phase-Error Reduction in Large-Eddy Simulation Using a Compact Scheme

  • Conference paper
Book cover Advances in LES of Complex Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 65))

  • 758 Accesses

Abstract

A numerical method for the solution of the incompressible Navier-Stokes equations with staggered variable arrangement is presented. Compact differentiation and interpolation with an (OΔx 6 truncation error is used for discretization of the skew-symmetric form of the advection term. The scheme conserves kinetic energy in the absence of viscosity and the momentum balance is satisfied within acceptable error bounds. Three test cases demonstrate the properties of the scheme, including disturbance growth in Poiseuille flow, direct simulation (DNS) of turbulent channel flow at Re τ=180 and large-eddy simulation (LES) at Re τ=395. The compact scheme yields an accurate prediction of growth rate and phase velocity of the disturbance wave when the wave is resolved within 8 cells. Third- and fourth order moments in DNS of channel flow are in good agreement with results from a spectral code. LES based on the 6th order scheme accurately predicts the mean flow profile whereas explicit finite difference schemes give erroneous results in the wake region. The compact scheme is less sensitive with regard to a Galilean transformation in the stream wise direction than explicit schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, N.: 2000, ‘Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Re θ =1685’. J. Fluid Mech. 420, 47–83.

    Article  MATH  ADS  Google Scholar 

  2. Akselvoll, K. and P. Moin: 1996, ‘An efficient method for temporal integration of the Navier-Stokes equations in confined axisymmetric geometries’. J. Comp, Phys. 125, 454.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Antonopoulos-Domis, M.: 1981, ‘Large-eddysimulation of a passive scalar in isotropic turbulence’. J. Fluid Mech. 104, 55.

    Article  MATH  ADS  Google Scholar 

  4. Cabot, W., J. Jimenez, and J. S. Baggett: 1999, ‘On wakes and near-wall behavior in coarse large-eddy simulation of channel flow with wall models and second-order finite-difference methods’. In: CTR Annual Research Briefs 1999. pp. 343–354.

    Google Scholar 

  5. Germano, M., U. Piomelli, P. Moin, and W. H. Cabot: 1991, ‘A dynamic subgrid-scale eddy viscosity model’. Phys. Fluids A 3, 1760–1765, Erratum: 3128.

    Article  ADS  MATH  Google Scholar 

  6. Ghosal, S.: 1996, ‘An analysis of numerical errors in large-eddy simulation of turbulence’. J. Comp. Phys. 125, 187–206.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Jiménez, J.: 2000,’ Some open computational problems in wall-bounded turbulence’. In: C. Dopazo (ed.): Advances in Turbulence VIII. Gran Capitan s/n, 08034 Barcelona, Spain, pp. 637–646.

    Google Scholar 

  8. Kaltenbach, H.-J., M. Fatica, R. Mittal, T. Lund, and P. Moin: 1999, ‘Study of flow in a planar asymmetric diffuser using large eddy simulation’. J. Fluid Mech. 390, 151–185.

    Article  ADS  MATH  Google Scholar 

  9. Kim, J., P. Moin, and R. Moser: 1987, ‘Turbulence statistics in fully developed channel flow at low Reynolds number’. J. Fluid Mech. 177, 133–166.

    Article  ADS  MATH  Google Scholar 

  10. Kravchenko, A. and P. Moin: 1997, ‘On the effect of numerical errors in large-eddy simulation of turbulent flows’. J. Comp. Phys. 130, 310–322.

    Article  ADS  Google Scholar 

  11. Lele, S. K.: 1992, ‘Compact finite difference schemes with spectral-like resolution’. J. Comp. Phys. 103, 16–42.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Lilly, D. K.: 1992, ‘A proposed modification of the Germano subgrid-scale closure method.’. Phys. Fluids A4 3, 633–635.

    Article  ADS  Google Scholar 

  13. Lund, T.: 1997, ‘On the use of discrete filters for large eddy simulation’. In: CTR Annual Research Briefs 1997. pp. 83–95.

    Google Scholar 

  14. Lund, T. and H.-J. Kaltenbach: 1995, ‘Experiments with explicit filtering for LES using a finite-difference method’. In: CTR Annual Research Briefs 1995. pp. 91–105.

    Google Scholar 

  15. Mansour, N., P. Moin, W. Reynolds, and J. Ferziger: 1979,’ Improved methods for large eddy simulation of turbulence’. In: F. Durst, B. Launder, F. Schmidt, and J. Whitelaw (eds.): Turbulent Shear Flows I. pp. 386–401.

    Google Scholar 

  16. Meri, A., H. Wengle, A. Dejoan, E. Vedy, and R. Schiestel: 1999, ‘Applications of a 4th-order Hermitian scheme for non-equidistant grids to LES and DNS of incompressible fluid flow’. In: E. H. Hirschel (ed.): Numerical flow Simulation I. pp. 382–406.

    Google Scholar 

  17. Morinishi, Y., T. Lund, O. Vasilyev, and P. Moin: 1998, ‘Fully conservative higher order finite difference schemes for incompressible flow’. J. Comp. Phys. 143, 90–124.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Morinishi, Y. and O. V. Vasilyev: 1998, ‘Subgrid scale modeling taking the numerical error in consideration’. In: CTR Annual Research Briefs 1998. pp. 237–253.

    Google Scholar 

  19. Moser, R., J. Kim, and N. Mansour: 1999, ‘Direct numerical simulation of turbulent channel flow up to Re τ=590’. Phys. Fluids 11.

    Google Scholar 

  20. Piomelli, U.: 1993, ‘High Reynolds number calcuations using the dynamic subgrid-scale stress model’. Phys. Fluids A 5, 1484–1490.

    Article  ADS  Google Scholar 

  21. Schiestel, R. & Viazzo, S.: 1995, ‘A Hermitian-Fourier numerical method for solving the incompressible Navier-Stokes equations’. Computers & Fluids 24(6), 739–752.

    Article  MATH  Google Scholar 

  22. Stolz, S.: 2001, Large-eddy simulation of complex shear flows using an approximate deconvolution model, Fortschr.-Ber. VDI Reihe 7, Nr. 403. Düsseldorf: VDI Verlag.

    Google Scholar 

  23. Verstappen, R. and A. Veldman: 1998, ‘Spectro-consistent discretization of Navier-Stokes: a challenge to RANS and LES’. Journal of Engineering Mathematics 34, 163–179.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Kaltenbach, HJ., Driller, D. (2002). Phase-Error Reduction in Large-Eddy Simulation Using a Compact Scheme. In: Friedrich, R., Rodi, W. (eds) Advances in LES of Complex Flows. Fluid Mechanics and Its Applications, vol 65. Springer, Dordrecht. https://doi.org/10.1007/0-306-48383-1_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48383-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0486-5

  • Online ISBN: 978-0-306-48383-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics