Skip to main content

How Can We Make LES to Fulfill Its Promise?

  • Conference paper
Advances in LES of Complex Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 65))

Abstract

We review three important issues in LES which need to be addressed in order to systematically advance LES towards flows of realistic complexity. First, we consider rigorous modeling consequences arising from the analytic – and algebraic structure of the LES modeling problem. In this context, we develop a new generalized similarity model and apply this to a spatially developing mixing layer. Second, we estimate the commutation error arising in LES for flows in complex geometries which involvenon-uniform filter-widths, and propose direct similarity modeling of these contributions. Third, we consider the numerical contamination of a ‘Smagorinsky fluid’ in order to illustrate the role of spatial discretization errors in LES. Suitable ratios between filter-width Δ and grid-spacing h are identified. Some guidelines for developing LES are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vreman A.W., Geurts B.J., Kuerten J.G.M.: 1994 ‘Realizability conditions for the turbulent stress tensor in large eddy simulation’ J.Fluid Mech. 278, 351

    Article  ADS  MATH  Google Scholar 

  2. Germano, M.: 1992 ‘Turbulence: the filtering approach’ J. Fluid Mech. 238, 325

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Geurts B.J.: 1999 ‘Balancing errors in LES’ Proceedings Direct and Large-Eddy simulation III: Cambridge. Eds: Sandham N.D., Yoke P.R., Kleiser L., Kluwer Academic Publishers, 1–12

    Google Scholar 

  4. Geurts, B.J.: 1997 ‘Inverse modeling for large-eddy simulation’ Phys. of Fluids 9, 3585

    Article  ADS  Google Scholar 

  5. Domarakzki, J.A., Saiki, E.M.: 1997 ‘A subgrid-scale model based on the estimation of unresolved scales of turbulence’ Phys. of Fluids 9, 1

    Article  Google Scholar 

  6. Stolz, S., Adams, N.A.: 1999’ An approximate deconvolution procedure for large-eddy simulation’, Phys. Fluids ]11, 1699

    Article  ADS  MATH  Google Scholar 

  7. Bardina, J., Ferziger, J.H., Reynolds, W.C.: 1983 ‘Improved turbulence models based on large eddy simulations of homogeneous incompressible turbulence’ Stanford University, Report TF-19

    Google Scholar 

  8. de Bruin, I.C.C., Geurts, B.J., Kuerten, J.G.M.: 1999 ‘Direct numerical simulation of the spatially developing turbulent mixing layer’ Proceedings TSFP1, September 1999, Eds: Banerjee S., Eaton J.K. Begell House Inc: 615

    Google Scholar 

  9. Ghosal, S.: 1999 ‘Mathematical and physical constraints on large-eddy simulation of turbulence’ AIAA J. 37, 425

    Article  ADS  Google Scholar 

  10. Geurts B.J., Vreman A.W., Kuerten J.G.M.: 1994. ‘Comparison of DNS and LES of transitional and turbulent compressible flow: flat plate and mixing layer’ Proceedings 74th Fluid Dynamics Panel and Symposium on Application of DNS and LES to transition and turbulence, Crete, AGARD Conf. Proceedings 551, 51

    Google Scholar 

  11. Geurts B.J., Vreman A.W., Kuerten J.G.M., Van Buuren R.: 1997 ‘Non-commuting filters and dynamic modeling for LES of turbulent compressible flow in 3D shear layers’ Proceedings Direct and Large-Eddy simulation II: Grenoble. Eds: Voke P.R., Kleiser L., Chollet J.P., Kluwer Academic Publishers, 47

    Google Scholar 

  12. Germano, M.: 2001 ‘On the physical effects of variable filtering lengths and times in LES’, Proceedings EUROMECH-412 (This volume), Kluwer Academic Publishers

    Google Scholar 

  13. Ghosal, S.: 1996 ‘An analysis of numerical errors in large-eddy simulations of turbulence’ J. Comp. Phys. 125, 187

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Vreman A.W., Geurts B.J., Kuerten J.G.M.: 1996 ‘Comparison of numerical schemes in Large Eddy Simulation of the temporal mixing layer’ Int. J. Num. Meth. in Fluids 22, 297

    Article  MATH  ADS  Google Scholar 

  15. Geurts, B.J., Fröhlich, J.: 2001 ‘Numerical effects contaminating LES; a mixed story’, Modern simulation strategies for turbulent flow: Ed: B.J. Geurts, Edwards Publishing, 309

    Google Scholar 

  16. Schumann, U.: 1977, ‘Realizability of Reynolds-stress turbulence models’ Phys. of Fluids 20, 721

    Article  MATH  ADS  Google Scholar 

  17. Germano, M., Piomelli U., Moin P., Cabot W.H.: 1991 ‘A dynamic subgrid-scale eddy viscosity model’ Phys. of Fluids 3, 1760

    Article  ADS  MATH  Google Scholar 

  18. Lilly, D.K.: 1992 ‘A proposed modification of the Germano subgrid-scale closure method’, Phys. of Fluids A 4, 633

    Article  ADS  Google Scholar 

  19. Vasilyev, O.V., Lund, T.S., Moin, P.: 1998 ‘A general class of commutative filters for LES in complex geometries’ J. Comp. Physics 146, 82

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Kuerten J.G.M., Geurts B.J.: 1999 ‘Dynamic inverse modeling in LES of the temporal mixing layer’ Proceedings Second AFOSR Conference on DNS and LES, 359

    Google Scholar 

  21. Geurts, B.J., Sarkar, S.: 2000 ‘Rapid and slow contributions to the turbulent stress tensor and their inverse modeling in a turbulent mixing layer’ Proceedings European Turbulence Conference 8, Barcelona

    Google Scholar 

  22. Van der Ven, H.: 1995 ‘A family of large eddy simulation filters with nonuniform filter widths’ Phys. of Fluids 7, 1171

    Article  MATH  ADS  Google Scholar 

  23. Vreman A.W., Geurts B.J., Kuerten J.G.M.: 1997 ‘Large-eddy simulation of the turbulent mixing layer’ J. Fluid Mech. 339, 357

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Geurts, B.J. (2002). How Can We Make LES to Fulfill Its Promise?. In: Friedrich, R., Rodi, W. (eds) Advances in LES of Complex Flows. Fluid Mechanics and Its Applications, vol 65. Springer, Dordrecht. https://doi.org/10.1007/0-306-48383-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48383-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0486-5

  • Online ISBN: 978-0-306-48383-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics