Skip to main content

Towards Large Eddy Simulation of Complex Flows

  • Conference paper
Book cover Advances in LES of Complex Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 65))

Abstract

This paper aims at presenting a recent update on LES focusing on complex flows. The general principles will be discussed based on incompressible flows, but, when necessary, extensions will be made to both compressible and reacting flows. A few examples will be presented as to facilitate the discussion and to high light both the advance of LES and the pacing items still to be addressed. As a background for the discussiona few practical problems relevant to the industries’ needs will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Launder, B.E. & Spalding, D.B.: Mathematical Models of Turbulence, Academic Press, London, (1972).

    MATH  Google Scholar 

  2. Ferziger, J.H.: Higher Level Simulations of Turbulent Flow, in Computational Methods for Turbulent, Transonic, and Viscous Flows, J.-A. Essers (ed), Hemisphere, (1983).

    Google Scholar 

  3. Ferziger, J.H. & Leslie, D.C., Large Eddy Simulation — A Predictive Approach to Turbulent Flow Computation, AIAA paper 79–1441, (1979).

    Google Scholar 

  4. Boris, J.P., On Large Eddy Simulations Using Subgrid Turbulence Models, in Wither Turbulence? Turbulence at the Crossroads, Lumly J.L. (ed), Lecture Notes in Physics, 357, Springer Verlag, Berlin, 344, 1992.

    Chapter  Google Scholar 

  5. Ghosal, S. & Moin, P.: The Basic Equations for the Large Eddy Simulation of Turbulent Flows in Complex Geometry, J. Comp. Phys., 118, (1995), 24.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Sagaut, P.: Large Eddy Simulation for Incompressible Flows, Springer Verlag, Heidelberg, 2001.

    MATH  Google Scholar 

  7. Leonard, A.: Energy Cascade in Large Eddy Simulation of Turbulent Fluid Flows, Adv. in Geophys., 18, (1974), 237.

    Article  ADS  Google Scholar 

  8. Gurtin, M.E.: An Introduction to Continuum Mechanics, Academic Press, Orlando, (1981).

    MATH  Google Scholar 

  9. Fureby, C. & Tabor, G.: Mathematical and Physical Constraints on Large Eddy Simulations, J. Theoretical Fluid Dyn., 9, (1997), 85.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Speziale, C.G.: Galilean Invariance of Sub Grid Scale Stress Models in Large Eddy Simulations of Turbulence, J. Fluid Mech., 156, (1985), 55.

    Article  MATH  ADS  Google Scholar 

  11. Smith, G.F.: On Isotropic Functions of Symmetric Tensors, Skew Symmetric Tensors and Vectors, Int. J. Engng. Sci, 9, (1971), 899.

    Article  MATH  Google Scholar 

  12. Vreman, B., Geurts, B. & Kuerten, H.: Realizability Conditions for the Turbulent Stress Tensor in Large Eddy Simulation, J. Fluid Mech., 278, (1994), 351.

    Article  ADS  MATH  Google Scholar 

  13. Borue, V. & Orszag, S.A.: Local Energy Flux and Subgrid-Scale Statistics in Three Dimensional Turbulence, J. Fluid Mech., 366, (1998), 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Smagorinsky, J.S.: General Circulation Experiments with Primitive Equations”, Mon. Weather Rev., 91, (1963), 99.

    Article  ADS  Google Scholar 

  15. Schumann, U.: Subgrid Scale Model for Finite Difference Simulation of Turbulent Flows in Plane Channels and Annuli, J. Comp. Phys., 18, (1975), 376.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Menon, S. & Kim, W.-W.: High Reynolds Number Flow Simulations Using the Localised Dynamic Sub Grid Scale Model, AIAA paper No. 96-0425 (1996).

    Google Scholar 

  17. Metais, O. & Lesieur, M.: Spectral Large Eddy Simulation of Isotropic and Stably Stratified Turbulence, J. Fluid Mech., 239, (1992), 157.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Yoshizawa, A. & Horiuti, K.: A Statistically-Derived Subgrid Scale Kinetic Energy Model for Large Eddy Simulation of Turblent Flows, J. Phys. Soc. Japan, 54, (1985), 2834.

    Article  ADS  Google Scholar 

  19. Sagaut, P.: Numerical Simulations of Separated Flows with Subgrid Models, Rech.Aéro, 1, (1996), 51.

    Google Scholar 

  20. Voke, P.: Subgrid-scale Modeling at Low Mesh Reynolds Number, J. Theoretical Fluid Dyn., 8, (1996), 131.

    Article  MATH  ADS  Google Scholar 

  21. Germano, M., Piomelli, U., Moin, P. & Cabot, W.H.: A Dynamic Sub Grid Scale Eddy Viscosity Model, Phys. Fluids A, 3, (1994), 1760.

    Article  ADS  Google Scholar 

  22. Meneveau, C., Lund, T.S. & Cabot W.H.: A Lagrangian Dynamic Subgrid-scale Model of Turbulence, J. Fluid Mech., 319, (1996), 353.

    Article  ADS  MATH  Google Scholar 

  23. Carati, D., Wray, A. & Cabot, W.: Ensemble Averaged Dynamic Modeling, Proceedings of the Summer Program — Center of Turbulence Research, (1996), 237.

    Google Scholar 

  24. Deardorff, J.W.: The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospherical Turbulence, ASME, J. Fluids Engng. Trans., 95, (1973), 429.

    Article  Google Scholar 

  25. Fureby, C., Tabor, G., Weller, H.G. & Gosman, A.D.: On Differential Sub Grid Scale Stress Models in Large Eddy Simulations”, Phys. Fluids, 9, (1997), 3578.

    Article  MathSciNet  ADS  Google Scholar 

  26. Rodi, W.: A New Algebraic Relation for Calculating the Reynolds Stresses, ZAMM, 56, (1976), 219.

    Article  MATH  Google Scholar 

  27. Bardina, J., Ferziger, J.H. & Reynolds, W.C.: Improved Subgrid Scale Models for Large Eddy Simulations, AIAA Paper No. 80-1357, (1980).

    Google Scholar 

  28. Liu, S., Meneveau, C. & Katz, J.: On the Properties of Similarity Subgrid-scale Models as Deduced from Measurements in a Turbulent Jet, J. Fluid. Mech., 275, (1994), 83.

    Article  ADS  Google Scholar 

  29. Lund, T.S. & Novikov, E.A.: Parameterization of Subgrid-scale Stress by the Velocity Gradient Tensor, Annual Res. Briefs. — Center for Turbulence Research, (1994), 185.

    Google Scholar 

  30. Scotti, A., Meneveau, C. & Lilly, D.K.: Generalized Smagorinsky Model for Anisotropic Grids, Phys. Fluids A, 5, (1993), 2306.

    Article  ADS  MATH  Google Scholar 

  31. Moin, P. & Kim, J.: Numerical Investigation of Turbulent Channel Flow, J. Fluid Mech., 118, (1982), 341.

    Article  ADS  MATH  Google Scholar 

  32. Sullivan, P.P., McWilliams, J.C. & Moeng, C.H.: A Subgrid Scale Model for Large Eddy Simulation of Planetary Boundary-Layer Flows, Bound. Layer Meth., 71, (1994), 247.

    Article  ADS  Google Scholar 

  33. Carati, D. & Cabot, W.: Anisotropic Eddy Viscosity Models, Proceedings of the Summer Program — Center of Turbulence Research, (1996), 249.

    Google Scholar 

  34. LeVeque, R.J.: Numerical Methods for Conservation Laws, Birkhüser Verlag, Berlin (1992).

    Google Scholar 

  35. Boris, J.P., Grinstein, F.F., Oran, E.S. & Kolbe, R.L.: New Insights into Large Eddy Simulation, Fluid Dyn. Res., 10, (1992), 199.

    Article  ADS  Google Scholar 

  36. Fureby, C. & Grinstein, F.F.: Large Eddy Simulations of High Reynolds number Free and Wall Bounded Flows, Submitted to J. Comp. Phys., (2001)

    Google Scholar 

  37. Tsuboi, K., Tamura, T. & Kuwahara, K.: Numerical Study of Vortex Induced Vibration of a Circular Cylinder in High Reynolds Number Flow, AIAA Paper 89-1824, (1989).

    Google Scholar 

  38. Fureby, C. & Grinstein, F.F.: Monotonically Integrated Large Eddy Simulation of Free Shear Flows, AIAA.J., 37, (1999), 544.

    Article  ADS  Google Scholar 

  39. Okong’o, N., Knight, D.D., & Zhou, G.: Large Eddy Simulations Using an Unstructured Grid Compressible Navier-Stokes Algorithm, Int. J. Comp. Fluid Dynamics, 13, (2000), 303.

    Google Scholar 

  40. Karamanos, G.-S. & Karniadakis, G.E.: A Spectral Vanishing Viscosity Method for Large-Eddy Simulations, J. Comp. Phys., 163, (2000), 22.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Fureby, C., Tabor, G., Weller, H.G. & Gosman, A.D.: A Comparative Study of Sub Grid Scale Models in Homogeneous Isotropic Turbulence, Phys. Fluids, 9, (1996), 1416.

    Article  MathSciNet  ADS  Google Scholar 

  42. Olsson, M. & Fuchs, L.: Large Eddy Simulation of the Proximal Region of a Spatially Developing Circular Jet, Phys. Fluids., 8, (1996), 2125.

    Article  ADS  Google Scholar 

  43. Grinstein, F.F., Hussain, F. & Boris, J.P.: Dynamics and Topology of Coherent Structures in a Plane Wake, in Advances in Turbulence 3, Johansson A.V. & Alfredsson P.H. (eds), Springer, Heidelberg, (1991), 34.

    Google Scholar 

  44. Rodi, W., Ferziger, J.H., Breuer, M. & Pourquiré, M.: Status of Large Eddy Simulation: Results of a Workshop, ASME, J. Fluids. Engng. Trans., 119, (1997), 248.

    Article  Google Scholar 

  45. Cohen, J. & Wygnanski I.: The Evolution of Instabilities in the axisymmetric Jet. Part 1. The Linear Growth of Disturbances Near the Nozzle., J. Fluid Mech., 176, (1987), 191.

    Article  ADS  Google Scholar 

  46. Crow, S.C. & Champagne, F.H.: Orderly Structure in Jet Turbulence, J. Fluid Mech., 48, (1971), 547.

    Article  ADS  Google Scholar 

  47. Grinstein, F.F.: Coherent Structure Dynamics and Transition to Turbulence in Rectangular Jet Systems, AIAA paper 99-3506, (1999).

    Google Scholar 

  48. Martinuzzi, R. & Tropea, C.: The Flow Around a Surface-Mounted Prismatic Obstacle placed in a Fully Developed Channel Flow, J. Fluid Engng., 115, (1993), 85.

    Article  Google Scholar 

  49. Krajnovic, S., Müller, D. & Davidsson L.: Comparison of Two One-Equation Subgrid Models in Recirculating Flows, Direct and Large Eddy Simulation III, Eds: Voke, P., Sandham, N.D. & Kleiser, L., 63, (1999).

    Google Scholar 

  50. Breuer, M.: Large Eddy Simulation of the Subcritical Flow Past a Circular Cylinder: Numerical and Modeling Aspects, Int. J. Numer. Meth. Fluids, 28, (1998), 1281.

    Article  MATH  Google Scholar 

  51. Lesieur, M & Metais, O.: New Trends in Large Eddy Simulations of Turbulence, Ann. Review Fluid Mech., 28, (1996), 45.

    Article  MathSciNet  ADS  Google Scholar 

  52. Fureby, C.: Large Eddy Simulation of Combustion Instabilities in a Jet-Engine Afterburner Model, Comb. Sci. & Tech., 161, (2000), 213.

    Article  Google Scholar 

  53. Menon, S.: Subgrid Combustion Modeling for Large-Eddy Simulations of Single and Two-Phase Flows, Proc. of EUROMECH Colloquium 412 on LES of Complex Transitional and Turbulent Flows, Kluwer Press.

    Google Scholar 

  54. Volmers, H., Kreplin, H.P. Meier, H.U. & Kühn, A.: Measured Mean Velocity Field Around a 1∶6 Prolate Spheroid at Various Cross Sections, DFVLR IB 221-85/A 08, Göttingen, Germany, (1985).

    Google Scholar 

  55. Chesnakas, C.J. & Simpson, R.L.: Measurements of Turbulence Structure in the Vicinity of a 3D Separation, J. Fluids Eng., 118, (1996), 268.

    Article  Google Scholar 

  56. Hedin, P.-O., Alin, N., Berglund, M. & Fureby, C.: Large Eddy Simulation of the Flow Around an Inclined Prolate Spheroid, AIAA Paper 01-1035, (2001).

    Google Scholar 

  57. Rossiter, J.E.: Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Supersonic and Transonic Speeds. Reports and Memoranda No. 3438, (1964).

    Google Scholar 

  58. Heller, H.H. & Bliss, D.B.: The Physical Mechanism of Flow-Induced Pressure Fluctuations in Cavities and Concepts for Their Suppression, AIAA paper 75-491, (1975).

    Google Scholar 

  59. Lillberg, E. & Fureby, C.: Large Eddy Simualtion of Supersonic Cavity Flow, AIAA paper 00-2411, (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Fureby, C. (2002). Towards Large Eddy Simulation of Complex Flows. In: Friedrich, R., Rodi, W. (eds) Advances in LES of Complex Flows. Fluid Mechanics and Its Applications, vol 65. Springer, Dordrecht. https://doi.org/10.1007/0-306-48383-1_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-48383-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0486-5

  • Online ISBN: 978-0-306-48383-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics