Skip to main content

Carotenoids as Components of the Light-harvesting Proteins of Eukaryotic Algae

  • Chapter
The Photochemistry of Carotenoids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 8))

Summary

Studies of light harvesting proteins which contain carotenoids as the principal components absorbing light in the spectral region from 450 nm to 550 nm have three principal aims. These may be summarized as: how do these proteins work at the structure/function level; how do they adapt to different environmental conditions and how did they evolve. At the structural level the emphasis has shifted, perhaps prematurely, from studies of pigment composition and basic biochemistry to a consideration of atomic structures and viewing carotenoids in action directly by means of time resolved spectroscopy. The only caroteno-Chl protein from eukaryotic algae for which a high resolution structrue is available is soluble peridinin chlorophyll a-protein (sPCP). PCP is the protein with the highest carotenoid:Chl ratio and has the potential to greatly advance our understanding of photosynthetic energy transfer through site directed mutagenesis and in vitro reconstitution from heterologously expressed protein and purified pigments.

Application of molecular biological techniques has yielded derived amino acid sequences of intrinsic light-harvesting proteins from all major and some minor groups of algae. These sequences can all accommodate the basic structural pattern determined for higher plants, that is, three transmembrane structure helices with key Chl a molecules conserved on the crossed first and third helices. However, the positioning of carotenoid molecules in this class of antenna complexes is still uncertain. Isolation of light-harvesting genes, especially from diatoms, brown algae and dinoflagellates, has also provided molecular tools to integrate basic pigment composition data with the synthesis/degradation of specific mRNAs and their corresponding proteins. Sufficient LHC sequences are now available that evolutionary relationships between the different groups of algae can be delineated and these can be compared with those deduced from 16sRNA and other conserved features. The diatoms and brown algal sequences form a related group but Isochrysis, although containing fucoxanthin, is as distant from the former as is that of dinoflagellates. The origin of the sPCP genes remains obscure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Cab protein:

chlorophyll a/b-binding protein

Chl:

chlorophyll

DGDG:

digalactosyl diglyceride

FCP:

Fucoxanthin-Chlorophyll Protein

HLIP:

High Light Induced Protein

iPCP:

intrinsic Peridinin Chlorophyll a-Protein

LHC:

light-harvesting complex

MFPCP:

Mainform Peridinin

Chlorophyll a:

Protein

PCP:

Peridinin Chlorophyll a-Protein

PCR:

polymerase chain reaction

pI:

isoelectric point

PSI:

Photosystem I

PS II:

Photosystem II

RT-PCR:

reverse transcriptase-polymerase chain reaction

Rubisco:

ribulose 1,5-biscarboxylase

sPCP:

soluble Peridinin Chlorophyll a-Protein

References

  • Akimoto S, Takaichi S, Ogata T, Nishinura Y, Yamazaki I and Mimuro M (1996) Excitation transfer in carotenoid-chlorophyll protein complexes probed by femtosecond fluorescence decays Chem Phys Lett 260: 147–152

    Article  CAS  Google Scholar 

  • Apt KE, Glendennen SK, Powers DA and Grossman AR (1995) The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol Gen Genet 246: 455–464

    Article  CAS  PubMed  Google Scholar 

  • Apt KE, Kroth-Pancic PG and Grossman AR (1996) Stable transformation nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252: 572–579

    CAS  PubMed  Google Scholar 

  • Bhaya D and Grossman AR (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229: 400–404

    Article  CAS  PubMed  Google Scholar 

  • Bhaya D and Grossman AR (1993) Characterization of gene clusters encoding the chlorophyll proteins in the diatom Phaeodactylum tricornutum. Nucl Acids Res. 21: 4458–4466

    CAS  PubMed  Google Scholar 

  • Boczar BA and Prezelin BB (1986) Light and MgCl2-dependendent characteristics of four chlorophyll-protein complexes isolated from the marine dinoflagellate, Glenodinium sp. Biochim Biophys Acta 850: 300–309

    CAS  Google Scholar 

  • Boczar BA, Prezelin BB, Markwell J and Thornber JP (1980) A chlorophyll c-containing pigment-protein complex from the marine dinoflagellate, Glenodinium sp. FEBS Lett 120: 243–247

    Article  CAS  Google Scholar 

  • Büchel C and Garab G (1997) Organisation of the pigment molecules in the chlorophyll a/c light-harvesting complex of Pleurochloris meirengis (Xanthophyceae). Characterisation with circular dichroism and absorbance spectroscopy J Photochem, Photobiol B: Biology 37: 118–124

    Article  Google Scholar 

  • Büchel C and Wilhelm C (1993) Isolation and characterization of a Photosytem I-associated antenna (LHCI) and a Photosystem I-core complex from the chlorophyll c-containing alga Pleurochloris meirengis. J Photochem Photobiol 20: 87–93

    Google Scholar 

  • Carbonera D, Giacometti G and Segre U (1996) Carotenoid interactions in peridinin chlorophyll a proteins from dinoflagellates. Evidence for optical excitons and triplet migration. J Chem Soc Faraday Trans 92: 989–993

    Article  CAS  Google Scholar 

  • Caron L, Douady D, Rousseau B, Quinet-Szely M and Berkaloff C (1995) Light-harvesting complexes from a brown alga. Biochemical and molecular study. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol I, pp 175–178, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Caron L, Douady D, Quinet-Szely M, de Goer S and Berkaloff C (1996) Gene structure of a chlorophyll a/c-binding protein from a brown alga: Presence of an intron and phylogenetic implications. J Mol Evol 43: 270–280

    Article  CAS  PubMed  Google Scholar 

  • Chu Z-X and Anderson JM (1985) Isolation and characterization of a siphonaxanthin-chlorophyll a/b complex from a Codium species (Siphonales). Biochim Biophys Acta 806: 154–160

    CAS  Google Scholar 

  • Durnford DG and Green BR (1994) Characterisation of the light-harvesting proteins of the chromophyte alga, Olisthodiscus luteus (Heterosigma carterae). Biochim Biophys Acta 1184: 118–123

    CAS  Google Scholar 

  • Fawley MW, Morton JS, Steward KD and Mattox KR (1987) Evidence for a common evolutionary origin of light-harvesting fucoxanthin chlorophyll a/c protein complexes of Pavlova gyrans (Prymnesiophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 23: 377–381

    CAS  Google Scholar 

  • Friedman AL and Alberte RS (1984) A diatom light-harvesting pigment protein complex: Purification and characterization. Plant Physiol 76: 483–489

    CAS  Google Scholar 

  • Garrido JL and Zapata M (1998) Detection of new pigments from Emiliana huxleyi (Prymnesiophyceae) by high-performance liquid chromatography, liquid chromatography-mass spectrometry, visible spectroscopy and fast atom bombardment mass spectrometry. J Phycol 34: 70–78

    Article  CAS  Google Scholar 

  • Govind NS, Roman SJ, Iglesias-Prieto R, Trench RK, Triplett EL and Prézelin BB (1990) An analysis of the light-harvesting peridinin-chlorophyll a-binding protein from dinoflagellates by immunoblotting techniques. Proc Roy Soc Lond B 240: 187–195

    CAS  Google Scholar 

  • Haxo FT, Kycia, JH, Somers GF, Bennet A and Siegelman HW (1976) Peridinin-chlorophyll a-binding protein of the dinoflagellate Amphidinium carterae (Plymouth 450). Plant Physiol 57: 297–303

    CAS  Google Scholar 

  • Hiller RG and Breton J (1992) A linear dichroism study of photosynthetic pigment organisation in two fucoxanthin-containing algae. Biochim Biophys Acta 1102: 365–370

    CAS  Google Scholar 

  • Hiller RG, Bardin AM and Nabedryk E (1987) The secondary structure content of pigment-protein complexes of two chromophyte algae. Biochim Biophys Acta 894: 365–369

    CAS  Google Scholar 

  • Hiller RG, Larkum AWD and Wrench PM (1988) Chlorophyll-proteins of the prymnesiophyte Pavlova lutherii (Droop) comb. Nov.: Identification of the major light harvesting complex. Biochim Biophys Acta 932: 223–231

    CAS  Google Scholar 

  • Hiller RG, Anderson JM and Larkum AWD (1991) The chlorophyll-protein complexes of algae. In: Scheer H (ed) The Chlorophylls, pp 529–547. CRC Publications, Boca Raton

    Google Scholar 

  • Hiller RG, Wrench PM and Sharples FP (1995) The light-harvesting chlorophyll a-c-binding protein of Dinoflagellates: A putative polyprotein. FEBS Lett 363: 175–178

    Article  CAS  PubMed  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Diedereichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin chlorophyll-a-protein from Amphidinium carterae. Science 272: 1788–1791

    CAS  PubMed  Google Scholar 

  • Hsu BD and Lee JY (1987) Orientation of pigments and pigment-protein complexes in the diatom Cylindrotheca fusiformis. A linear dichroism study. Biochim. Biophys. Acta. 893, 572–577

    CAS  Google Scholar 

  • Iglesias-Prieto R, Govind NS and Trench RK, (1991) Apoprotein composition and spectroscopic characterisation of the water-soluble peridinin-chlorophyll a-proteins from three symbiotic dinoflagellates. Proc Roy Soc Lond B 246: 275–283

    CAS  Google Scholar 

  • Iglesias-Prieto R, Govind NS and Trench RK, (1993) Isolation of 3 membrane-bound chlorophyll-protein complexes from 4 dinoflagellate species. Philos Trans Roy Soc Lond Ser B 340: 381–392

    CAS  Google Scholar 

  • Jiao S and Fawley MW (1994) A cDNA clone encoding a light-harvesting protein from Mantoniella squamata. Plant Physiol. 104: 797–798

    Article  CAS  PubMed  Google Scholar 

  • Jovine RVM, Triplett EL Nelson NB and Prezelin BB (1992) Quantification of chromophore pigments, apoprotein abundance and isoelectric variants of peridinin-chlorophyll a-protein complexes (PCPs) in the dinoflagellate Heterocapsa pygmaea grown under variable light conditions PlantCell Physiol 33: 733–741

    CAS  Google Scholar 

  • Jovine RVM, Johnsen G and Prezelin BB (1995) Isolation of a membrane bound light-harvesting complexes from the dinoflagellates Heterocapsa pygmaea and Prorocentrum minimum. Photosynth Res 44:127–138

    Article  CAS  Google Scholar 

  • Katoh T, Mimuro M and Takaichi S (1989) Light-harvesting particles isolated from a brown alga Dictyota dichotoma. A supramolecular assembly of fucoxanthin-chlorophyll-protein complexes. Biochim Biophys Acta 976: 233–240

    CAS  Google Scholar 

  • Katoh T, Nagashima U and Mimuro M (1991) Fluorescence properties of the allenic carotenoid fucoxanthin: Implications for energy transfer in photosynthetic systems. Photosynth Res 27: 221–226

    CAS  Google Scholar 

  • Knoetzel J and Rensing L (1990) Characterisation of the photosynthetic apparatus from the marine dinoflagellate Gonyaulax polyedra I. Pigment and polypeptide composition of the pigment-protein complexes. J Plant Physiol 136: 271–279

    CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  PubMed  Google Scholar 

  • Larkum T and Howe CJ (1997) Molecularaspects of light-harvesting processes in algae. In: Callow J.A. (ed) Adv Bot Res, Vol 27, pp 257–330. Academic Press, New York

    Google Scholar 

  • La Roche J, Henery D, Wyman K, Sukenic A and Falkowski P (1994) Cloning and nucleotide sequence of a cDNA encoding a major fucoxanthin chlorophyll a/c-containing protein from the chrysophyte Isochrysis galbana: implications for evolution of the cab gene family. Plant Mol Biol 25: 355–368

    Google Scholar 

  • Le QH, Markovic P, Hastings JW, Jovine RV and Morse D. (1997) Structure and organization of the peridinin-chlorophyll a-binding protein from the dinoflagellate Gonyaulax polyedra. Mol Gen Genet 255: 595–604

    CAS  PubMed  Google Scholar 

  • Lichtle C, Arsalane W, Duval JC and Passequet C (1995) Characterization of the light-harvesting complex of Giraudyopsis stelliferer Dageard (Chrysophyceae) and effects of light stress. J Phycol 31: 380–387

    CAS  Google Scholar 

  • Mimuro M, Katoh T and Kawai H (1990a) Spatial arrangements of pigments and their interaction in the fucoxanthin-chlorophyll a/c protein assembly (FCPA) isolated from the brown alga Dictyota dichotoma. Analysis by means of polarised spectroscopy. Biochim Biophys Acta 1015: 450–456

    CAS  Google Scholar 

  • Mimuro M, Tamai N, Ishimara T and Yamazaki I (1990b) Characteristic fluorescence components of photosynthetic pigment system of a marine dinoflagellate, Protogonyaulax tamarensis, and energy flow among them. Studies by means of steady state and time-resolved fluorescence spectroscopy Biochim Biophys Acta 1016: 280–287

    CAS  Google Scholar 

  • Mimuro M, Nagashima U, Takaichi S, Nishimura Y, Yamazaki I and Katoh T (1992) Molecular structure and optical properties of carotenoids for the in vivo transfer function of the algal photosynthetic pigment system. Biochim Biophys Acta 1098: 271–274

    CAS  Google Scholar 

  • Muchal US and Schwartzbach SD (1992) Characterization of a Euglena gene encoding a polyprotein precursor to the light-harvesting chlorophyll a/b protein of Photosytem II. Plant Mol Biol 18: 287–299

    Google Scholar 

  • Nakayama K and Mimuro M (1994) Chlorophyll forms and excitation energy transfer pathways in light-harvesting chlorophyll a/b protein complexes isolated from the siphonous green alga, Bryopsis maxima. Biochim Biophys Acta 1184: 103–110

    CAS  PubMed  Google Scholar 

  • Nakayama K, Itagaki T and Okada M (1986) Pigment composition of chlorophyll-protein complexes from the green alga, Bryopsis maxima. Plant Cell Physiol 27: 311–317

    CAS  Google Scholar 

  • Nakayama K, Mimuro M, Nishimura Y, Yamazaki I and Okada M (1994) Kinetic analysis of energy transfer in LHCII isolated from the siphonous green alga, Bryopsis maxima with the use of picosecond fluorescence spectroscopy. Biochim Biophys Acta 1188: 117–124

    CAS  Google Scholar 

  • Norris BJ and Miller DJ (1994) Nucleotide sequence of a cDNA clone encoding the precursor of the peridinm-chlorophyll a-binding protein from the dinoflagellate Symbiodinium sp. Plant Mol Biol 24: 673–677

    Article  CAS  PubMed  Google Scholar 

  • Ogata T and Kodama M (1993) Peridinin chlorophyll a-protein of toxic dinoflagellates. In: Smayda T and Shimizu Y (eds.) Toxic Phytoplankton Blooms in the Sea, pp 901–905. Elsevier New York

    Google Scholar 

  • Ogata T, Kodama M, Nomura S, Kobayashi M, Nozawa T, Katoh T and Mimuro M (1994) A novel peridinin-chlorophyll a-binding protein from the marine dinoflagellate Alexandrium cohorticula: Ahighpigment content and spectral forms of peridinin and chlorophyll a. FEBS Lett 356: 367–371

    Article  CAS  PubMed  Google Scholar 

  • Owens TG and Wold ER (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum. PlantPhysiol 80:732–738

    CAS  Google Scholar 

  • Passequet C and Lichtlé C (1995) Molecular study of a light-harvesting apoprotein of Giraudyopsis stelliferer (Chrysophyceae). Plant Mol Biol 29-135–148

    Google Scholar 

  • Prézelin BB (1987) Photosynthetic physiology of dinoflagellates. In: Taylor FJR (ed) The Biology of Dinoflagellates, pp 174–223. Blackwell, Oxford

    Google Scholar 

  • Prézelin BB and Haxo FT (1976) Purification and characterization of peridinin-chlorophyll a-proteins of Glenodinium sp and Gonyaulax polyedra. Planta 130: 251–256

    Google Scholar 

  • Rhiel E and Mórschel E (1993) The atypical chlorophyll a/b/c light-harvesting complex of Mantoniella squamata: molecular cloning and sequence analysis. Mol Gen Genet 240: 403–413

    CAS  PubMed  Google Scholar 

  • Rhiel E, Lage W and Morschel E (1993) The unusual the light-harvesting complex of Mantoniella squamata: supramolecular composition and assembly. Biochim Biophys Acta 1143: 163–172

    CAS  PubMed  Google Scholar 

  • Rowan R, Whitney SM, Fowler A and Yellowlees D (1996) Rubisco in marine symbiotic dinoflagellates: Form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear gene family. Plant Cell 8: 539–553

    Article  CAS  PubMed  Google Scholar 

  • Sharples FP, Wrench PM and Hiller RG (1996) Two distinct forms of the peridinin-chlorophyll a-protein (PCP) from Amphidinium carterae. Biochim Biophys Acta 1276: 117–123.

    PubMed  Google Scholar 

  • Shreve AP, Trautmann TG, Owens TG and Albrecht AC (1991) A femtosecond study of electronic state dynamics of fucoxanthin and implications for photosynthetic carotenoid to chlorophyll energy transfer mechanisms. Chem Phys 154: 171–178

    Article  CAS  Google Scholar 

  • Song PS, Koka P, Prézelin BB and Haxo FT (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-binding protein from marine dinoflagellates. Biochemistry 15: 4422–4427

    Article  CAS  PubMed  Google Scholar 

  • Steck K, Wacker T, Welte W, Sharples FP and Hiller RG (1990) Crystallization and preliminary X-ray analysis of a peridinin-chlorophyll a protein from Amphidinium carterae. FEBS Lett 268: 48–50

    Article  CAS  PubMed  Google Scholar 

  • ten Lohuis MR and Miller DJ (1998a) Light-regulated transcription of genes encoding peridinin chlorophyll a-proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae Hulburt (Dinophyceae). Plant Physiol 117: 189–197

    PubMed  Google Scholar 

  • ten Lohuis MR and Miller DJ (1998b) Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): Expression of GUS in microalgae using heterologous promoter constructs. Plant J (1998) 13: 427–435

    Google Scholar 

  • Thornber JP, Cogdell RJ, Chitnis P, Morishige DT, Peter GF, Gomez SM, Anandan S, Preiss S, Dreyfuss BW, Lee A, Takeuchi T and Kerfield C (1994) Antenna pigment-protein complexes of higher plants and purple bacteria. In: Barber J (ed) Advances in Molecular and Cell Biology, Vol 10, pp 55–118. JAI Press, Greenwich CT

    Google Scholar 

  • Trautmann JK, Shreve AP, Owens TG and Albrecht AC (1990) Femtosecond dynamics of carotenoid-to-chlorophyll energy transfer in thylakoid membrane preparations of Phaeodactylum tricornutum and Nannachloropsis sp. Chem Phys Lett 166: 369–374

    Google Scholar 

  • Triplett EL, Jovine RVM, Govind NS, Roman SJ, Chang SS and Préxzelin BB (1993) Characterization of two full length cDNA sequences encoding for apoproteins peridinin-chlorophyll a-protein (PCP) sequences. Mol Mar Biol Biotech 2: 246–254

    CAS  Google Scholar 

  • Welte C, Nickel R and Wild A (1995) Three dimensional crystallisation of the light-harvesting complex from Mantoniella squamata requires an adequate purification procedure. Biochim Biophys Acta 1231: 265–274

    Google Scholar 

  • Wilhelm C and Lenartz-Weiler I (1987) Energy transfer and pigment composition in three chlorophyll b-containing light-harvesting complexes isolated from Mantoniella squamata (Prasinophyceae), Chlorella fusca (Chlorophyceae) and Sinapsis alba. Photosynth Res 13: 101–107

    Article  CAS  Google Scholar 

  • Wilhelm C, Buchel C and Rousseau B (1988) The molecular organization of chlorophyll-protein complexes in the Xanthophycean alga Pleurochloris meiringensis. Biochim Biophys Acta 934: 220–226

    CAS  Google Scholar 

  • Wilhelm C, Kolt S, Meyer M, Scmitt A, Zuber H, Egeland ES and Liaaen-Jensen S (1997) Refined carotenoid analysis of the major light-harvesting complex of Mantoniella squamata. Photosynthetica 33: 161–171

    Article  CAS  Google Scholar 

  • Wisconsin Package (1994) Program Manual for the Wisconsin Package Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hiller, R.G. (1999). Carotenoids as Components of the Light-harvesting Proteins of Eukaryotic Algae. In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, vol 8. Springer, Dordrecht. https://doi.org/10.1007/0-306-48209-6_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48209-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5942-5

  • Online ISBN: 978-0-306-48209-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics