Skip to main content

Carotenoids and Carotenogenesis in Anoxygenic Photosynthetic Bacteria

  • Chapter
The Photochemistry of Carotenoids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 8))

Summary

More than 50 genera including about 130 species of anoxygenic photosynthetic bacteria have been described. These bacteria produce around 100 different carotenoids. In this chapter, the carotenoid compositions of all the photosynthetic bacteria so far described are summarized. All of the carotenogenesis genes from Rhodobacter, and some of them from other bacteria have been cloned, and the characteristics of their products have been investigated. Schmidt (1978) proposed four main pathways for carotenogenesis. In this chapter, five main pathways within anaerobic photosynthetic bacteria are now suggested based on these new findings: the spirilloxanthin pathway (normal spirilloxanthin, unusual spirilloxanthin, spheroidene, and carotenal pathways). the okenone pathway (okenone, and R.g.-keto carotenoid pathways), the isorenieratene pathway (isorenieratene, and chlorobactene pathways), the γ- and β-carotene pathway, and the diapocarotene pathway. In addition, carotenoid glucosides and carotenoid glucoside fatty acid esters have also been found in some species.

The Rhodospirillaceae and Chromatiaceae have the spirilloxanthin or the okenone pathway depending on the genus or species. All of the Ectothiorhodospiraceae have the spirilloxanthin pathway. The isorenieratene, the and γ- and β-carotene, and the diapocarotene pathways are found specifically in the Chlorobiaceae, Chloroflexaceae, and Heliobacteriaceae, respectively. Aerobic photosynthetic bacteria mostly have the spirilloxanthin pathway, further most of these species have unusual carotenoids including ‘non-photosynthetic’ carotenoids, such as carotenoid sulfates and carotenoic acids, which have no photosynthetic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BChl:

bacteriochlorophyll

Erb-type:

erythrobacter-type

G:

glucoside

G-FA:

glucoside ester

LH:

light-harvesting

PS:

photosystem

RC:

reaction center

References

  • Albrecht M, Ruther A and Sandmann G (1997) Purification and biochemical characterization of a hydroxyneurosporene desatura seinvolved in the biosynthetic pathway of the carotenoid spheroidene in Rhodobacter sphaeroides. J Bacteriol 179: 7462–7467

    CAS  PubMed  Google Scholar 

  • Armstrong GA (1995) Genetic analysis and regulation of carotenoid biosynthesis: Structure and function of the crt genes and gene products. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1135–1157. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51: 629–659

    Article  CAS  PubMed  Google Scholar 

  • Armstrong GA, Alberti M, Leach F and Hearst JE (1989) Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 216: 254–268

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE, Madigan MT and Bauer CD (eds) (1995) Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Breitenbach J, Misawa N, Kajiwara S and Sandmann G (1996) Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiol Lett 140: 241–246

    CAS  PubMed  Google Scholar 

  • Britton G, Singh RK, Goodwin TW and Ben-Aziz A (1975) The carotenoids of Rhodomicrobium vannielii (Rhodospirillaceae) and the effect ofdiphenylamine on the carotenoid composition. Phytochemistry 14: 2427–2433

    CAS  Google Scholar 

  • Caumette P, Baulaigue R and Matheron R (1988) Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from mediterranean salinas. Syst Appl Microbiol 10: 284–292

    Google Scholar 

  • Caumette P, Baulaigue R and Matheron R (1991) Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155: 170–176

    Article  Google Scholar 

  • Caumette P, Imhoff JF, Süling J and Matheron R (1997) Chromatium glycolicum sp. nov., a moderately halophilic purple sulfur bacterium that uses glycolate as substrate. Arch Microbiol 167: 11–18

    Article  CAS  PubMed  Google Scholar 

  • Davies BH (1970) A novel sequence for phytoene dehydro-genation in Rhodospirillum rubrum. Biochem J 116: 93–99

    CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246: 429–457

    Article  CAS  PubMed  Google Scholar 

  • Dilling W, Liesack W and Pfennig N (1995) Rhabdochromatium marinum gen. nom. rev., sp. nov., a purple sulfur bacterium from a salt marsh microbial mat. Arch Microbiol 164: 125–131

    Article  CAS  Google Scholar 

  • Drews G (1981) Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium. Arch Microbiol 130: 325–327

    Article  CAS  Google Scholar 

  • Eichler B and Pfennig N (1986) Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Arch Microbiol 146: 295–300

    Article  CAS  Google Scholar 

  • Eichler B and Pfennig N (1988) A new purple sulfur bacterium from stratified freshwater lakes, Amoebobacter purpureus sp. nov. Arch Microbiol 149: 395–400

    Article  CAS  Google Scholar 

  • Eimhjellen KE, Steensland H and Traetteberg J (1967) A Thiococcus sp. nov. gen., its pigments and internal membrane system. Arch Mikrobiol 59: 82–92

    Article  CAS  PubMed  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK and Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: Cofactors and protein-cofactor interactions. Structure 2: 925–936

    Article  CAS  PubMed  Google Scholar 

  • Francis GW and Liaaen-Jensen S (1970) Bacterial carotenoids: XXXIII. Carotenoids of Thiorhodaceae: 9. The structures of the carotenoids of the rhodopinal series. Acta Chem Scand 24: 2705–2712

    CAS  PubMed  Google Scholar 

  • Frank HA, Chadwick BW, Taremi S, Kolaczkowski S and Bowman MK (1986) Singlet and triplet absorption spectra of carotenoids bound in the reaction centers of Rhodopseudomonas sphaeroides R26. FEBS Lett 203: 157–163

    Article  CAS  Google Scholar 

  • Fujii R, Chen CH, Mizoguchi T and Koyama Y (1998) 1H NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric β-carotene, canthaxanthin, β-apo-8′-carotenal and spheroidene. Spectrochim Acta A54: 727–743

    Google Scholar 

  • Gardiner AT (1992) Peripheral antenna complexes from Rhodopseudomonas acidophila: Structure, function and genetic manipulation. Ph. D. Thesis, University of Glasgow

    Google Scholar 

  • Gardiner AT, Cogdell RJ and Takaichi S (1993) The effect of growth conditions on the light-harvesting apparatus in Rhodopseudomonas acidophila. Photosynth Res 38: 159–167

    Article  CAS  Google Scholar 

  • Goodwin TW (1956) The carotenoids of photosynthetic bacteria: II. The carotenoids of a number of non-sulphur purple photosynthetic bacteria (Athiorhodaceae). Arch Mikrobiol 24: 313–322

    CAS  PubMed  Google Scholar 

  • Guyoneaud R, Matheron R, Liesack W, Imhoff JF and Caumette P (1997) Thiorhodococcus minus, gen. nov., sp. nov., a new purple sulfur bacterium isolated from coastal lagoon sediments. Arch Microbiol 168: 16–23

    Article  CAS  PubMed  Google Scholar 

  • Guyoneaud R, Süling J, Petri R, Matheron R, Caumette P, Pfennig N and Imhoff JF (1998) Taxonomic rearrangements of the genera Thiocapsa and Amoebobacter on the basis of 16S rDNA sequence analyses and description of Thiolamprovum gen. nov. Int J Syst Bacteriol 48: 957–964

    CAS  PubMed  Google Scholar 

  • Halfen LN, Pierson BK and Francis GW (1972) Carotenoids of a gliding organism containing bacteriochlorophylls. Arch Mikrobiol 82: 240–246

    Article  CAS  Google Scholar 

  • Hanada S, Kawase Y, Hiraishi A, Takaichi S, Matsuura K, Shimada K. and Nagashima KVP (1997) Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring. Int J Syst Bacteriol 47: 408–413

    CAS  PubMed  Google Scholar 

  • Harashima K and Nakada H (1983) Carotenoids and ubiquinone in aerobically grown cells of an aerobic photosynthetic bacterium, Erythrobacter species OCh 114. Agric Biol Chem 47: 1057–1063

    CAS  Google Scholar 

  • Harashima K, Nakagawa M and Murata N (1982) Photochemical activities of bacteriochlorophyll in aerobically grown cells of aerobic heterotrophs, Erythrobacter species (OCh 114) and Erythrobacter longus (OCh 101). Plant Cell Physiol 23: 185–193

    CAS  Google Scholar 

  • Hiraishi A and Ueda Y (1994) Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44: 665–673

    Google Scholar 

  • Hiraishi A and Ueda Y (1995) Isolation and characterization of Rhodovulum sirictum sp. nov. and some other purple nonsulfur bacteria from colored blooms in tidal and seawater pools. Int J Syst Bacteriol 45: 319–326

    CAS  PubMed  Google Scholar 

  • Hiraishi A, Hoshino Y and Satoh T (1991) Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the ‘Rhodocyclus gelatinosus-like’ group. Arch Microbiol 155: 330–336

    Article  Google Scholar 

  • Hiraishi A, Muramatsu K and Urata K (1995a) Characterization of new denitrifying Rhodobacter strains isolated from photosynthetic sludge for wastewater treatment. J Ferment Bioeng 79: 39–44

    CAS  Google Scholar 

  • Hiraishi A, Urata K and Satoh T (1995b) A new genus of marine budding phototrophic bacteria, Rhodobium gen. nov., which includes Rhodobium orientis sp. nov. and Rhodobium marinum comb. nov. Int J Syst Bacteriol 45: 226–234

    CAS  PubMed  Google Scholar 

  • Hiraishi A, Nagashima KVP, Matsuura K, Shimada K, Takaichi S, Wakao N and Katayama Y (1998) Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: Its transfer to the genus Acidiphilium as Acidiphilium acidophium comb. nov. Int J Syst Bacteriol 48: 1389–1398

    CAS  PubMed  Google Scholar 

  • Hundle BS, O’Brien DA, Alberti M, Beyer P and Hearst JE (1992) Functional expression of zeaxanthin glucosyl transferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc Natl Acad Sci USA 89: 9321–9325

    CAS  PubMed  Google Scholar 

  • Igarashi N, Shimada K, Matuura K and Nagashima KVP (1999) Photosynthetic gene cluster in purple bacterium, Rubrivivax gelatinosus. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol IV, pp 2889–2892. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Imhoff JF (1983) Rhodopseudomonas marina sp. nov., a new marine phototrophic purple bacterium. Syst Appl Microbiol 4: 512–521

    Google Scholar 

  • Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (ed) Anoxygenic Photosynthetic Bacteria, pp 1–15. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Imhoff JF and Süling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: A reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165: 106–113

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Petri R and Süling J (1998a) Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria; Description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb, nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48: 793–798

    PubMed  Google Scholar 

  • Imhoff J F, Silling J and Petri R (1998b) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium. Int J Syst Bacteriol 48: 1129–1143

    PubMed  Google Scholar 

  • IUPAC Commission on Nomenclature of Organic Chemistry and the IUPAC-IUB Commission on Biochemical Nomen-clature (1975) Nomenclature of carotenoids. Pure Appl Chem 41: 407–431

    Google Scholar 

  • Kawasaki H, Hoshino Y, Kuraishi H and Yamasato K (1992) Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 38: 541–551

    CAS  Google Scholar 

  • Keppen OI and Gorlenko VM (1975) A new species of purple budding bacteria containing bacteriochlorophyll b. Mikrobiologiya 44: 258–264

    CAS  Google Scholar 

  • Kleinig H, Schmitt R, Meister W, Englert G and Thommen H (1979) New C30-carotenoic acid glucosyl esters from Pseudomonas rhodos. Z Naturforsch 34c: 181–185

    CAS  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K. and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–B850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  CAS  PubMed  Google Scholar 

  • Komori M, Ghosh R, Takaichi S, Hu Y, Mizoguchi T, Koyama Y and Kuki M (1998) A null lesion in the rhodopin 3,4-desaturase of Rhodospirillum rubrum unmasks a cryptic branch of the carotenoid biosynthetic pathway. Biochemistry 37: 8987–8994

    Article  CAS  PubMed  Google Scholar 

  • Kompantseva EI (1985) New halophilic purple bacteria, Rhodobacter euryhalinus sp. nov. Mikrobiologiya 54: 974–982

    CAS  Google Scholar 

  • Kompantseva EI and Gorlenko VM (1984) A new species of moderately halophilic purple bacterium, Rhodospirillum mediosalinum sp. nov. Mikrobiologiya 53: 954–961

    CAS  Google Scholar 

  • Kull D and Pfander H (1995) Appendix: List of new carotenoids. In: Britton G, Liaaen-Jensen S and Pfander H (eds) Carotenoids, Vol 1A: Isolation and Analysis, pp 295–317. Birkhäuser, Basel

    Google Scholar 

  • Lang H P, Cogdell RJ, Takaichi S and Hunter CN (1995) Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides. J Bacteriol 177: 2064–2073

    CAS  PubMed  Google Scholar 

  • Liaaen-Jensen S (1965) Bacterial carotenoids: XVIII. Arylcarotenes from Phaeobium. Acta Chem Scand 19: 1025–1030

    Google Scholar 

  • Lorquin J, Molouba F and Dreyfus BL (1997) Identification of the carotenoid pigment canthaxanthin form photosynthetic Bradyrhizobium strains. Appl Environ Microbiol 63: 1151–1154

    CAS  Google Scholar 

  • Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 36: 222–227

    CAS  Google Scholar 

  • Madigan MT and Ormerod JG (1995) Taxonomy, physiology and ecology of heliobacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 17–30. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Malhotra HC, Britton G and Goodwin TW (1970) A novel series of 1,2-dihydro carotenoids. Int J Vit Res 40: 315–322

    CAS  Google Scholar 

  • Matsumura H, Takeyama H, Kusakabe E, Burgess JG and Matsunaga T (1997) Cloning, sequencing and expressing the carotenoid biosynthesis genes, lycopene cyclase and phytoene desaturase, from the aerobic photosynthetic bacterium Erythrobacter longus sp. strain OCh 101 in Escherichia coli. Gene 189: 169–174

    Article  CAS  PubMed  Google Scholar 

  • Matuura K and Shimada K (1993) Electrochromic spectral band shift of carotenoids in the photosynthetic membranes of Rhodospirillum molischianum and Rhodospirillum photometricum. Biochim Biophys Acta 1140: 293–296

    Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K and Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172: 6704–6712

    CAS  PubMed  Google Scholar 

  • Misawa N, Kajiwara S, Kondo K, Yokoyama A, Satomi Y, Saito T, Miki W and Ohtani T (1995) Canthaxanthin biosynthesis by the conversion of methylene to keto groups in a hydrocarbon β-carotene by a single gene. Biochem Biophys Res Commun 209: 867–876

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Hayashi H, Shimada K, Takaichi S and Tasumi M (1992) In vivo states and functions of carotenoids in an aerobic photosynthetic bacterium, Erythrobacter longus. Photosynth Res 31: 21–30

    Article  CAS  Google Scholar 

  • Ouchane S, Picaud M, Vernotte C, Reiss-Husson F and Astier C (1997a) Pleiotropic effects of puf interposon mutagenesis on carotenoid biosynthesis in Rubrivivax gelatinosus. J Biol Chem 272: 1670–1676

    CAS  PubMed  Google Scholar 

  • Ouchane S, Picaud M, Vernotte C and Astier C (1997b) Photooxidative stress stimulates illegitimate recombination and mutability in carotenoid-less mutants of Rubrivivax gelatinosus. EMBO J 16: 4777–4787

    Article  CAS  PubMed  Google Scholar 

  • Overmann J and Pfennig N (1989) Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152: 401–406

    Article  CAS  Google Scholar 

  • Overmann J, Fischer U and Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 157:329–335

    Article  CAS  Google Scholar 

  • Pfennig N and Trüper HG (1989) Anoxygenic phototrophic bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JG (eds) Bergy’s Manual of Systematic Bacteriology, Vol 3, pp 1635–1709. Wiliams and Wilkins, Baltimore

    Google Scholar 

  • Pfennig N, Markham MC and Liaaen-Jensen S (1968) Carotenoids of Thiorhodaceae: 8. Isolation and characterization of a Thiothece, Lamprocystis and Thiodictyon strain and their carotenoid pigments. Arch Mikrobiol 62: 178–191

    Article  CAS  PubMed  Google Scholar 

  • Pfennig N, Lünsdorf H, Süling J and Imhoff JF (1997) Rhodospira trueperi gen. nov., spec. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168: 39–45

    Article  CAS  PubMed  Google Scholar 

  • Pierson BK and Castenholz (1995) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 31–47. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pierson BK, Giovannoni SJ and Castenholz RW (1984) Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Appl Environ Microbiol 47: 576–584

    CAS  PubMed  Google Scholar 

  • Raisig A, Bartley G, Scolnik P and Sandmann G (1996) Purification in an active state and properties of the 3-step phytoene desaturase from Rhodobacter capsulatus over-expressed in Escherichia coll. J Biochem 119: 559–564

    CAS  PubMed  Google Scholar 

  • Ryvarden L and Liaaen-Jensen S (1964) Bacterial carotenoids: XIV. The carotenoids of Rhodomicrobium vannielii. Acta Chem Scand 18: 643–654

    CAS  Google Scholar 

  • Saitoh S, Takaichi S, Shimada K and Nishimura Y (1995) Identification and subcellular distribution of carotenoids in the aerobic photosynthetic bacterium, Pseudomonas radiora strain MD-1. Plant Cell Physiol 36: 819–823

    CAS  Google Scholar 

  • Saitoh S, Suzuki T and Nishimura Y (1998) Proposal of Craurococcus roseus gen. nov., sp. nov. and Paracraurococcus ruber gen. nov., sp. nov., novel aerobic bacteriochlorophyll a-containing bacteria from soil. Int J Syst Bacteriol 48: 1043–1047

    PubMed  Google Scholar 

  • Sandmann G (1994) Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem 223: 7–24

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G (1997) High level expression of carotenogenic genes for enzyme purification and biochemical characterization. Pure Appl Chem 69: 2163–2168

    CAS  Google Scholar 

  • Schmidt K (1971) Carotenoids of purple nonsulfur bacteria: Composition and biosynthesis of the carotenoids of some strains of Rhodopseudomonas acidophila, Rhodospirillum tenue, and Rhodocyclus purpureus. Arch Mikrobiol 77: 231–238

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 729–750. Prenum Press, New York

    Google Scholar 

  • Schmidt K and Liaaen-Jensen S (1973) Bacterial carotenoids: XLII. New keto-carotenoids from Rhodopseudomonas globiformis (Rhodospirillaceae). Acta Chem Scand 27: 3040–3052

    CAS  PubMed  Google Scholar 

  • Schmidt K and Schiburr R (1970) The carotenoids of the green sulphur bacteria: carotenoid composition in 18 strains. Arch Mikrobiol 74: 350–355

    Article  CAS  Google Scholar 

  • Schmidt K and Trüper HG (1971) Carotenoid composition in the genus Ectothiorhodospira Pelsh. Arch Mikrobiol 80: 38–42

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K, Liaaen-Jensen S and Schlegel HG (1963) Die Carotinoide der Thiorhodaceae: I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Mikrobiol 46: 117–126

    CAS  PubMed  Google Scholar 

  • Schmidt K, Pfennig N and Liaaen-Jensen S (1965) Carotenoids of Thiorhodaceae: IV. The carotenoid composition of 25 pure isolates. Arch Mikrobiol 52: 132–146

    CAS  PubMed  Google Scholar 

  • Schmidt K, Francis GW and Liaaen-Jensen S (1971) Bacterial carotenoids: XXXVI. Remarkable C43-carotenoid artifacts of cross-conjugated carotenals and new carotenoid glucosides from Athiorhodaceae spp. Acta Chem Scand 25: 2476–2486

    CAS  PubMed  Google Scholar 

  • Schumann G, Nürnberger H, Sandmann G and Krügel H (1996) Activation and analysis of cryptic crt genes for carotenoid biosynthesis from Streptomyces griseus. Mol Gen Genet 252: 658–666

    CAS  PubMed  Google Scholar 

  • Schwerzmann RU and Bachofen R (1989) Carotenoid profiles in pigment-protein complexes of Rhodospirillum rubrum. Plant Cell Physiol 30: 497–504

    CAS  Google Scholar 

  • Scolnik PA, Walker MA and Marrs BL (1980) Biosynthesis of carotenoids derived from neurosporene in Rhodopseudomonas capsulata. J Biol Chem 255: 2427–2432

    CAS  PubMed  Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. System Appl Microbiol 14: 140–145

    Google Scholar 

  • Shimada K (1995) Aerobic anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 105–122. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shimada K, Hayashi H and Tasumi M (1985) Bacteriochlorophyll-protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. Arch Microbiol 143: 244–247

    Article  CAS  Google Scholar 

  • Shimada K, Itoh S, Iwaki M, Nagashima KVP, Matuura K, Kobayashi M and Wakao N (1999) Reaction center complex based on Zn-bacteriochlorophyll from Acidiphilium rubrum. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 909–912. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Shneour EA (1962a) Carotenoid pigment conversion in Rhodopseudomonas spheroides. Biochim Biophys Acta 62: 534–540

    Article  CAS  PubMed  Google Scholar 

  • Shneour EA (1962b) The source of oxygen in Rhodopseudomonas spheroides carotenoid pigment conversion. Biochim Biophys Acta 65: 510–511

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Britton G and Goodwin TW (1973) Carotenoid biosynthesis in Rhodopseudomonas spheroides: S-adeno-sylmethionine as the methylating agent in the biosynthesis of spheroidene and spheroidenone. Biochem J 136: 413–419

    CAS  PubMed  Google Scholar 

  • Straub O (1987) Key to Carotenoids. Pfander H (ed). Birkhauser, Basel

    Google Scholar 

  • Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S, Hosoya H, Tokiwa Y, Kanagawa T and Hanada S (1999) Roseateles depolymerans gen. nov., sp. nov., a New Bacteriochlorophyll a-Containing Obligate Aerobe Belonged to the β Subclass of the Proteobacteria. Int J Syst Bacteriol 49: in press

    Google Scholar 

  • Swarthoff T, Kramer HJM and Amesz J (1982) Thin-layer chromatography of pigments of the green photosynthetic bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 681: 354–358

    CAS  Google Scholar 

  • Takaichi S and Shimada K (1992) Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 213: 374–385

    CAS  Google Scholar 

  • Takaichi S, Shimada K and Ishidsu J (1988) Monocyclic cross-conjugated carotenal from an aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 27: 3605–3609

    Article  CAS  Google Scholar 

  • Takaichi S, Shimada K and Ishidsu J (1990) Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivatives. Arch Microbiol 153: 118–122

    Article  CAS  Google Scholar 

  • Takaichi S, Furihata K, Ishidsu J and Shimada K (1991a) Carotenoid sulphates from the aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 30: 3411–3415

    Article  CAS  Google Scholar 

  • Takaichi S, Furihata K and Harashima K (1991b) Light-induced changes of carotenoid pigments in anaerobic cells of the aerobic pliotosynthetic bacterium, Roseobacter denitrificans (Erythrobacter species OCh 114): reduction of spheroidenone to 3,4-dihydrospheroidenone. Arch Microbiol 155: 473–476

    CAS  Google Scholar 

  • Takaichi S, Tsuji K, Matsuura K and Shimada K (1995) A monocyclic carotenoid glucoside ester is a majorcarotenoid in the green filamentous bacterium Chloroflexus aurantiacus. Plant Cell Physiol 36: 773–778

    CAS  Google Scholar 

  • Takaichi S, Wang Z-Y, Umetsu M, Nozawa T, Shimada K and Madigan MT (1997a) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′,2′-dihydro-γ-carotene, 1′,2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains. Arch Microbiol 168: 270–276

    CAS  PubMed  Google Scholar 

  • Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-oka H and Madigan MT (1997b) The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Arch Microbiol 168: 277–281

    CAS  PubMed  Google Scholar 

  • Takamiya K, Iba K and Okamura K (1987) Reaction center complex from an aerobic pliotosynthetic bacterium, Erythrobacter species OCh 114. Biochim Biophys Acta 890: 127–133

    CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95: 12719–12723

    CAS  PubMed  Google Scholar 

  • Triiper HG and Imhoff JF (1999) International Committee on Systematic Bacteriology, Subcommittee on the Taxonomy of Phototrophic Bacteria, 10 September 1997. Int J Syst Bacteriol 49: in press

    Google Scholar 

  • Tsuji K, Takaichi S, Matsuura K and Shimada K (1995) Specificity of carotenoids in chlorosomes of the green filamentous bacterium, Chloroflexus aurantiacus. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol IV, pp 99–102. Kluwer, Dordrecht

    Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobicbacterium Acidiphilium rubrum. Plant Cell Physiol 37: 889–893

    CAS  Google Scholar 

  • Walz T and Ghosh R (1997) Two-dimensional crystallization of the light-harvesting I-reaction center photounit from Rhodospirillum rubrum. J Mol Biol 265: 107–111

    Article  CAS  PubMed  Google Scholar 

  • Weedon BCL and Moss GP (1995) Structure and nomenclature. In: Britton G, Liaaen-Jensen S and Pfander H (eds) Carotenoids, Vol 1 A: Isolation and Analysis, pp 27–70. Birkhäuser, Basel

    Google Scholar 

  • Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo J-M, Poralla K and Gotz F (1994) Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4′-diaponeurosporene of Staphylococcus aureus. J Bacteriol 176: 7719–7726

    CAS  PubMed  Google Scholar 

  • Xiong J, Inoue K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95: 14851–14856

    CAS  PubMed  Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: Protein-cofactor (bacterio-chlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc Natl Acad Sci USA 85: 7993–7997

    CAS  PubMed  Google Scholar 

  • Yeliseev AA and Kaplan S (1997) Anaerobic carotenoid biosynthesis in Rhodobacter sphaeroides 2,4,1: H2O is a source of oxygen for the 1-methoxy group of spheroidene but not for the 2-oxo group of spheroidenone. FEBS Lett 403: 10–14

    Article  CAS  PubMed  Google Scholar 

  • Yurkov VV, Gorlenko VM and Kompantseva EI (1992) A new type of freshwater aerobic orange-colored bacterium Erythromicrobium gen. nov., containing bacteriochlorophyll a. Mikrobiologiya 61: 256–260

    CAS  Google Scholar 

  • Yurkov V, Gad’on N and Drews G (1993) The major part of polar carotenoids of the aerobic bacteria Roseococcus thiosulfatophilus RB3 and Erythromicrobium ramosum E5 is not bound to the bacteriochlorophyll a-complexes of the photosynthetic apparatus. Arch Microbiol 160: 372–376

    Article  CAS  Google Scholar 

  • Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gad’on N, Gorlenko VM, Kompantseva EI and Drews G (1994) Phylogeneticpositions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosufatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44: 427–434

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Takaichi, S. (1999). Carotenoids and Carotenogenesis in Anoxygenic Photosynthetic Bacteria. In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, vol 8. Springer, Dordrecht. https://doi.org/10.1007/0-306-48209-6_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48209-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5942-5

  • Online ISBN: 978-0-306-48209-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics