Skip to main content

Novel and Biomimetic Functions of Carotenoids in Artificial Photosynthesis

  • Chapter
Book cover The Photochemistry of Carotenoids

Summary

In addition to their universal occurrence in photosynthetic organisms, carotenoid pigments are important components of biomimetic photosynthetic constructs. Much of the photophysics and photochemistry including singlet energy transfer, triplet energy transfer, sequential electron transfer, radical pair recombination, spin states and spin dynamics observed in natural photosynthetic reaction centers and antennas can be mimicked by these constructs. In addition to playing a role in biomimetic energy and electron transfer processes, carotenoid pigments are essential components of artificial photosynthetic membranes where they participate in a redox-loop-based light-driven proton pump.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ADP:

adenosinediphosphate

ATP:

adenosinetriphosphate

Car:

carotenoid

Chl:

chlorophyll

EPR:

electron paramagnetic resonance

Pi:

inorganic phosphate

References

  • Bensasson R, Land EJ and Maudinas B (1976) Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation. Photochem Photobiol 23: 189–193

    CAS  PubMed  Google Scholar 

  • Cardoso SL, Nicodem DE, Moore TA, Moore AL and Gust D (1996) Synthesis and fluorescence quenching studies of a series of caroteno porphyrins with carotenoids of various lengths. J Braz Chem Soc 7: 19–29

    CAS  Google Scholar 

  • Carbonera D, Di Valentin M, Corvaja C, Giacometti G, Agostini G, Liddell PA, Moore AL, Moore TA and Gust D (1997a) Carotenoid triplet detection by time resolved EPR spectroscopy in caroteno pyropheophorbide dyads. J Photochem Photobiol A: Chem 105: 329–335

    Article  CAS  Google Scholar 

  • Carbonera D, De Valentin M, Agostini G, Giacometti G, Liddell PA, Gust D, Moore AL and Moore TA (1997b) Energy transfer and spin polarization of the carotenoid triplet state in synthetic caroteno porphyrin dyads and in natural antenna complexes. Applied Magn Reson 13: 487–504

    CAS  Google Scholar 

  • Carbonera D, Di Valentin M, Corvaja C, Agostini G, Giacometti G, Liddell PA, Kuciauskas D, Moore AL, Moore TA and Gust D. (1998) EPR investigation of photoinduced radical pair formation and decay to a triplet state in a carotene-porphyrin-fullerene triad. J Am Chem Soc 120: 4398–4405

    Article  CAS  Google Scholar 

  • Cogdell RJ and Frank HA (1993) Photochemistry and function of carotenoids in photosynthesis. In: Young A and Britton G (eds) Carotenoids in Photosynthesis, pp 252–326. Chapman and Hall, London

    Google Scholar 

  • Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 186: 390–398

    Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21: 836–860

    Article  CAS  Google Scholar 

  • Foote CS, Chang YC and Deeny RW (1970) Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J Am Chem Soc 92: 5216–5218

    CAS  PubMed  Google Scholar 

  • Frank HA and Cogdell RJ (1987) How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895: 63–79

    PubMed  Google Scholar 

  • Frank HA and Cogdell RJ (1996) Carotenoid in photosynthesis. Photochem Photobiol 63: 257–264

    CAS  PubMed  Google Scholar 

  • Frank H, Cua A, Chynwat V, Young A, Gosztola D and Wasielewski MR (1996) The lifetimes and energies of the first excited singlet states of diadinoxanthin and diatoxanthin: the role of these molecules in excess energy dissipation in algae. Biochim Biophys Acta 1277 243–252

    CAS  PubMed  Google Scholar 

  • Förster T (1948) Intermolecular energy transfer and fluorescence. Ann Phys 2: 55–75

    Google Scholar 

  • Cohen-Bazire G and Stanier RY (1958) Inhibition of carotenoid synthesis in photosynthetic bacteria. Nature 181: 250–252

    CAS  PubMed  Google Scholar 

  • Gust D (1994) Molecular wires and girders. Nature 372: 133–134

    Article  CAS  Google Scholar 

  • Gust D and Moore TA (1991) Mimicking photosynthetic electron and energy transfer. Advances in Photochemistry 16: 1–65

    CAS  Google Scholar 

  • Gust D, Moote TA and Moore AL (1993) Molecular mimicry of photosynthetic energy and electron transfer. Ace Chem Res 26: 198–205

    CAS  Google Scholar 

  • Gust D, Moore TA, Moore AL, Devadoss C, Liddell PA, Hermant R, Nieman RA, Demanche LJ, DeGraziano JM and Gouni I (1992) Triplet and singlet energy transfer in carotene-porphyrin dyads: the role of the linkage bonds. J Am Chem Soc 114: 3590–3603

    Article  CAS  Google Scholar 

  • Gust D, Moore TA, Moore AL, Krasnovsky AA, Jr, Liddell PA, Nicodem D, DeGraziano JM, Kerrigan P, Makings LR and Pessiki PJ (1993) Mimicking the photosynthetic triplet energy transfer relay. J Am Chem Soc 115: 5684–5691

    CAS  Google Scholar 

  • Gust D, Moore TA and Moore AL (1994) Photosynthesis mimics as molecular electronic devices. IEEE Engineering in Medicine and Biology, February/March pp 58–66

    Google Scholar 

  • Gust D, Moore TA and Moore AL (1997a) Photosynthesis as a paradigm for molecular-scale electronics. Molecular Nanotechnology–Biological Approaches and Novel Applications, IBC, Southborough, MA, Ch. 2.1, 2.1.1–2.1.39

    Google Scholar 

  • Gust D, Moore TA, Moore AL, Kuciauskas D, Liddell PA and Halbert BD (1997b) Mimicry of carotenoid photoprotection in artificial photosynthetic reaction centers: Triplet-triplet energy transfer by a relay mechanism. J. Photochem Photobiol 43: 209–216

    Google Scholar 

  • Hermant RM., Liddell PA, Lin S, Alden RG, Kang HK, Moore A, Moore TA and Gust D (1993) Mimicking carotenoid quenching of chlorophyll fluorescence. J Am Chem Soc 115: 2080–2081

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  CAS  PubMed  Google Scholar 

  • Imahori H, Cardoso S, Tatman D, Lin S, Macpherson AN, Noss L, Seely GR, Sereno L, Chessa de Silber J, Moore TA, Moore AL and Gust D (1995) Photoinduced electron transfer in a caroteno buck minster fullerene dyad. Photochem Photobiol 62: 1009–1014

    CAS  Google Scholar 

  • Jones PF, Jones WJ and Davies BH (1992) Direct observation of the 2.1A g electronic state of carotenoid molecules by consecutive two-photon absorption spectroscopy. J. Photochem Photobiol A: Chem. 68: 59–75

    Article  CAS  Google Scholar 

  • Kandori H, Sansabe H, and Mimuro M, (1994) Direct determination of the lifetime of the S2 state of β-carotene by femtosecond time-resolved fluorescence spectroscopy. J Am Chem Soc 116: 2671–2672

    Article  CAS  Google Scholar 

  • Kohler BE (1991) Electronic properties of linear polyenes. In Bredas JL and Silbey R, (eds) Conjugated Polymers, pp 405–434. Kluwer Academic Publishers, Dodrecht

    Google Scholar 

  • Koyama Y, Kuki M, Andersson PO and Gillbro T (1996) Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis. Photochem Photobiol 63: 243–256

    CAS  Google Scholar 

  • Krasnovsky Jr, AA, Cheng P, Blankenship RE, Moore TA and Gust D (1993) The photophysics of monomeric bacterio-chlorophylls c and d and their derivatives: Properties of the triplet state and singlet oxygen photogeneration and quenching. Photochem Photobiol 57: 324–330

    CAS  PubMed  Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51: 649–660

    CAS  Google Scholar 

  • Krueger BP, Scholes GD, Jimenez R, and Fleming GR (1998) Electronic excitation transfer from carotenoid to bacterio-chlorophyl in the purple bacterium Rhodopseudomonas acidophila. J Phys Chem, 102: 2284–2292

    CAS  Google Scholar 

  • Leatherman G, Durantini EN, Gust D, Moore TA, Moore AL, Stone S, Zhou Z, Rez P, Liu Y, and Lindsay SM (1999) Carotene as a molecular wire: Conducting atomic force microscopy. J Phys Chem, in press

    Google Scholar 

  • Lewis JE, Moore TA, Benin D, Gust D, Nicodem D and Nonell S (1994) The triplet energy of a carotenoid pigment determined by photoacoustic calorimetry. Photochem Photobiol 59S: 35S

    Google Scholar 

  • Liddell PA, Kuciauskas D, Sumida JP, Nash B, Nguyen D, Moore AL, Moore TA, and Gust D (1997) Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene-Porphyrin-Fullerene Triad. J Am Chem Soc 119: 1400–1405

    Article  CAS  Google Scholar 

  • Macpherson AN and Gillbro T (1998) Solvent dependence of the ultrafast S2-S1 internal conversion rate of β-carotene. J Phys Chem 102: 5049–5058

    CAS  Google Scholar 

  • Mathis P and Kleo J (1973) The triplet state of β-carotene and of analog polyenes of different length. Photochem Photobiol 18: 343–346

    CAS  Google Scholar 

  • Moore TA, Gust D, Mathis P, Mialocq J-C, Chachaty C, Bensasson RV, Land EJ, Doizi D, Liddell PA, Lehman WR, Nemeth GA, and Moore AL (1984) Photodriven charge separation in a caroteno porphyrin-quinone triad. Nature 307: 630–632

    CAS  Google Scholar 

  • Moore TA, Gust D and Moore AL (1990) The function of carotenoid pigments in photosynthesis and their possible involvement in the evolution of higher plants. In: Krinsky NI, Mathews-Roth MM and Taylor RF, (eds) Carotenoids: Chemistry and Biology, pp. 223–228. Plenum Press, New York

    Google Scholar 

  • Moore TA, Gust D and Moore AL (1994) Carotenoids: Nature’s unique pigments for light and energy processing. Pure Appl Chem 66: 1033–1040

    CAS  Google Scholar 

  • Nagae H, Kakitani T, Katoh T, and Mimuro M (1993) Calculation of the excitation transfer matrix elements between the S2 or S] state of carotenoid and the S2 or S1 state of bacteriochlorophyll. J Chem Phys 98: 8012–8023

    Article  CAS  Google Scholar 

  • Quiňones MA, Lu Z and Zeiger E (1996) Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism. Proc Natl Acad Sci USA 93: 2224–2228

    PubMed  Google Scholar 

  • Ricci M, Bradforth SE, Jimenez R, and Fleming GR. (1996) Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH-1 and LH-2 light-harvesting complexes. Chem Phys Lett 259: 381–390

    Article  CAS  Google Scholar 

  • Shreve AP, Trautman JK, Owens TG, and Albrecht AC (1991) Determination of the S2 lifetime of β-carotene. Chem Phys Lett 178: 89–96

    Article  CAS  Google Scholar 

  • Shreve AP, Trautman JK, Frank HA, Owens TG, and Albrecht AC (1991) Femtosecond energy-transfer processes in the B800–850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta 1058: 280–288

    CAS  PubMed  Google Scholar 

  • Shreve AP, Trautman JK, Frank HA, Owens TG, van Beek JB and Albrecht AC (1992) On subpicosecond excitation energy transfer in light harvesting complexes (LHC): The B800–B850 LHC of Rhodobacter sphaeroides 2.4.1. J Lumin 53: 179–186

    CAS  Google Scholar 

  • Steinberg-Yfrach G, Liddell PA, Hung S-C, Moore AL, Gust D and Moore TA (1997) Conversion of light energy to proton potential in liposomes by artificial photosynthetic reactions centres. Nature 385: 239–241

    Article  CAS  Google Scholar 

  • Steinberg-Yfrach G, Rigaud J-L, Durantini EN, Moore AL, Gust D and Moore TA (1998) Light-driven production of ATP catalyzed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392: 479–482

    CAS  PubMed  Google Scholar 

  • Sieferman-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69: 561–568

    Google Scholar 

  • Trautman JK, Shreve AP, Owens TG and Albrecht AC (1990) Femtosecond dynamics of carotenoid-to-chlorophyll energy transfer in thylakoid membrane preparations. Chem Phys Lett 166: 369–374

    Article  CAS  Google Scholar 

  • Truscott TG (1990) The photophysics and photochemistry of the carotenoids. Photochem Photobiol B Biol 6: 359–371

    CAS  Google Scholar 

  • Wasielewski MA and Kispert LD (1986) Direct measurement of the lowest excited singlet state lifetime of all-trans-β-carotene and related carotenoids. Chem Phys Lett 128: 238–243

    Article  CAS  Google Scholar 

  • Yamamoto HY and Bassi R (1995) Carotenoids: localization and function. In Oxygenic Photocynthesis: The Light Reactions Ort DR and Yocum CF (eds) Advances in Photosynthesis, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle. Pure Appl Chem 51: 639–64

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Moore, T.A., Moore, A.L., Gust, D. (1999). Novel and Biomimetic Functions of Carotenoids in Artificial Photosynthesis. In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, vol 8. Springer, Dordrecht. https://doi.org/10.1007/0-306-48209-6_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-48209-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5942-5

  • Online ISBN: 978-0-306-48209-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics