Skip to main content

Regulation of the Structure and Function of the Light Harvesting Complexes of Photosystem II by the Xanthophyll Cycle

  • Chapter
The Photochemistry of Carotenoids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 8))

Summary

The xanthophyll cycle is a relatively simple process whereby the interconversion of violaxanthin into zeaxanthin in the light harvesting complexes serves to regulate light harvesting and subsequent energy dissipation in different light environments. In order to determine how these carotenoids can regulate such processes it is first important to ascertain what differences exist between these two xanthophylls. Deepoxidation brings about significant changes in the structures and hence the properties of these carotenoids. Thus when the conjugated chain length is increased from nine to eleven conjugated double bonds this in turn affects their S1 energies but also alters the molecule’s sizeandshape. The ‘Molecular Gear Shift Model’ describes the direct quenching of chlorophyll fluorescence by singlet-singlet energy transfer to zeaxanthin, while violaxanthin can only act to transfer its energy to chlorophyll. However this model does not account for the ability of these molecules to profoundly affect structure and organization of light harvesting complexes. Differences in carotenoid structure affect their interactions with the complexes so that violaxanthin and zeaxanthin play an important role in determining their structure and function by controlling its inter-subunit structure. In the presence of violaxanthin, complexes are optimized for light utilization and are resistant to ΔpH-dependent quenching. De-epoxidation into zeaxanthin allows a different state to be formed in which ΔpH formation readily triggers conversion to a strongly quenched state in which sub-unit interactions are increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DCCD:

dicyclhexylcarbodimmide

DEPS:

deepoxidation state

LHCII:

light harvesting complexes of Photosystem II

PFD:

photon flux density

Pmax:

light saturated rate of photosynthesis

PS II:

Photosystem II

qE:

nonphotochemical quenching of chlorophyll fluorescence dependent upon the transthylakoid proton gradient

qN:

nonphotochemical quenching of chlorophyll fluorescence

VDE:

violaxanthin deepoxidase

ΔpH:

transthylakoid pH gradient

References

  • Anderson JM, and Osmond CB (1987) Shade-sun responses: Compromises between acclimation and photoinhibition. In: Kuyle DJ, Osmond CB and Arntzen CJ (eds) Photoinhibition pp 1–38, Elsevier Science Publishers, The Hague

    Google Scholar 

  • Andersson B and Barber J (1996) Mechanisms of photodamage and protein degradation during photoinhibition of Photosystem II. In: Baker NR (ed) Photosynthesis and the Environment, pp 101–121, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Andersson PO and Gillbro T (1995) Photophysics and dynamics of the lowest excited singlet-state in long substituted polyenes with implications to the very long chain limit. J Chem Phys 103: 2509–2519

    Article  CAS  Google Scholar 

  • Andersson PO, Gillbro T, Asato AE and Liu RSH (1992) Dual singlet state emission in a series of mini-carotenes. J Luminescence 51: 11–20

    CAS  Google Scholar 

  • Bassi R, Pineau B, Dainese P and Marquardt J (1993) Carotenoid-binding proteins of Photosystem II. Eur J Biochem 212: 297–303

    Article  CAS  PubMed  Google Scholar 

  • Beddard GS, Davidson RS and Trethewey KR (1977) Quenching of chlorophyll fluorescence by β-carotene Nature 267: 373–374.

    Article  CAS  Google Scholar 

  • Bilger W and Björkman O (1994) Relationships among violaxanthin deepoxidation, thylakoid membrane conformation, and nonphotochemical chlorophyll fluorescence quenching in leaves of cotton Gossypium hirsutum. L. Planta 193: 238–246

    CAS  Google Scholar 

  • Björkman O and Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among plants of diverse origins. Planta 170: 489–504

    Article  Google Scholar 

  • Björkman O and Demmig-Adams B. (1995) Regulation of Photosynthetic Light Energy Capture, Conversion, and Dissipation in Leaves of Higher Plants. Ecophysiology of Photosynthesis Ecological Studies. Vol 100: 14–47

    Google Scholar 

  • Björkman O and Niyogi K (1999) Xanthophylls and excessenergy dissipation: A genetic dissection in Arabidopsis. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol III, pp 2085–2090. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boostra AF, Barber J and Rogner M. (1996) Supramolecular organisation of the Photosystem II complex from green plants and cyanobacteria. Proc Nat. Acad Sci USA 92: 175–179

    Google Scholar 

  • Boekema EJ, van Roon H and Dekker JP (1998) Specific association of Photosystem II and light harvesting complex II in partially solubilised Photosystem II membranes. FEBS Lett 424: 95–99

    Article  CAS  PubMed  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M and Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548: 128–138

    CAS  PubMed  Google Scholar 

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9: 1551–1558.

    CAS  PubMed  Google Scholar 

  • Chynwat V and Frank HA (1995) The application of the energy gap law to the S1 energies and dynamics of carotenoids. Chem Phys 194: 237–244.

    Article  CAS  Google Scholar 

  • Connelly JP, Muller, MG, Gatzen G, Mullineaux C, Ruban AV, Horton P and Holzwarth AR (1997) Ultrafast spectroscopy of trimeric light harvesting complex II from higher plants. J Chem Phys 101: 1902–1909

    CAS  Google Scholar 

  • Crofts AR and Yerkes CT (1994) A molecular mechanism for qE-quenching. FEBS Lett 352: 265–270

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24

    CAS  Google Scholar 

  • Demmig-Adams B and Adams III WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams III WW, Logan BA and Verhoevan AS (1995a) Xanthophyll cycle-dependent energy dissipation and flexible Photosystem II efficiency in plants acclimated to light stress. Aust J Plant Physiol 22: 249–60

    CAS  Google Scholar 

  • Demmig-Adams B, Gilmore AM and Adams III WW (1995b) Changing views of in vivo functions of carotenoids in higher plants. FASEB J 10: 403–412

    Google Scholar 

  • Egorova-Zachernyuk TA, Raap J, Oschkinat H, Gast P, Frank HA and de Groot, HJM (1996) β-Carotene/chlorophyll a interactions in solution. Abstract. 11th International Symposium on Carotenoids, Leiden

    Google Scholar 

  • Engleman R and Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18: 145–164.

    Google Scholar 

  • Falk S, Maxwell DP, Laudenbach DE and Huner NPA (1996) Photosynthetic adjustments to temperature. In: Baker NR (ed) Photosynthesis and the Environment, pp 367–385, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young AJ, Goztola D and Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41: 38–395

    Article  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young AJ, Zhu J and Blankenship RE (1995) Quenching of chlorophyll excited states by carotenoids. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol IV, pp. 3–7. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young AJ, Goztola D and Wasielewski M R (1996) The lifetimes and energies of the first excited singlet states of diadinoxanthin and diatoxanthin: The role of these molecules in excess energy dissipation in algae. Biochim Biophys Acta 1277: 243–252

    CAS  PubMed  Google Scholar 

  • Frank HA, Chynwat V, Desamero RZB, Farhoosh R, Erickson J and Bautista J (1997) On the photophysics and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Pure Appl Chem 69: 2117–2124

    CAS  Google Scholar 

  • Gilmore AM and Björkman O. (1994) Adenine nucleotides and the xanthophyll cycle in leaves II. Comparison of the effects of CO2 and temperature-limited photosynthesis on Photosystem II fluorescence quenching, the adenylate energycharge and violaxanthin deepoxidation in cotton. Planta 192: 537–544

    CAS  Google Scholar 

  • Gilmore AM and Yamamoto HY (1992) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35: 67–78

    Google Scholar 

  • Gilmore AM and Yamasaki H (1998) 9-aminoacridine and dibucaine exhibit competetive interactions and complicated inhibitory effects that interfere with measurements of ΔpH and xanthophyll cycle-dependent Photosystem II energy dissipation. Photosynth Res 57: 159–174

    Article  CAS  Google Scholar 

  • Gilmore AM, Hazlett TL and Govindjee (1995) Xanthophyll cycle dependent quenching of Photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short lifetime. Proc Nat Acad Sci USA 92: 2273–2277

    CAS  PubMed  Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG and Govindjee (1996) Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences betweenwild type and chlorina mutants: Photochemical and xanthophyll cycle-dependent quenching of fluorescence. Photosynth Res 48: 171–187

    Article  CAS  Google Scholar 

  • Gilmore AM, Shinkarev VP, Hazlett TL and Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry 37, 13582–13593

    Article  CAS  PubMed  Google Scholar 

  • Gradinaru CC, Pascal AA, van Mourik F, Robert B, Horton P, van Grondelle H and van Amerongen H (1998) Ultrafast evolution of the excited states in the chlorophyll a/b complex CP29 from green plants studied by energy-selective pump-probe spectroscopy. Biochemistry 37: 1143–1149

    Article  CAS  PubMed  Google Scholar 

  • Hankamer B, Barber J and Boekema EJ (1997) Structure and membrane organisation of Photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48: 641–671

    Article  CAS  PubMed  Google Scholar 

  • Heine I and Dau H (1997) The pH-dependence of the Photosystem II fluorescence:co-operative transition to a quenching state. Berichte der Bunsen-Gesellschaft-Physical Chemistry 100: 2008–2013

    Google Scholar 

  • Horton P (1989) Interactions between electron transport and carbon assimilation: Regulation of light harvesting and photochemistry. In: Briggs W (ed) Photosynthesis, Plant Biology, Vol 9, pp 393–406. A. Liss Inc., New York

    Google Scholar 

  • Horton P (1996) Nonphotochemical quenching of chlorophyll fluorescence. In: Jennings RC, Zucchelli G, Ghetti F and Colombetti G (eds) Light as an Energy Source and Information Carrier in Plant Physiology, pp 99–111. Plenum Press, New York

    Google Scholar 

  • Horton P and Ruban AV (1992) Regulation of Photosystem II. Photosynth Res 34: 375–385

    Article  CAS  Google Scholar 

  • Horton P and Ruban AV (1994) The role of LHCII in energy quenching. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis—From Molecular Mechanisms to the Field. pp 111–128. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Horton P, Ruban A V, Rees D, Pascal AA, Noctor G and Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292: 1–4

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996): Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 65–84

    Article  Google Scholar 

  • Hurry V, Anderson JM, Chow WS, Osmond CB (1997) Accumulation of zeaxanthin in abscisic acid-deficient mutants of Arabidopsis does not affect chlorophyll fluorescence quenching or sensitivity to photoinhibition in vivo. Plant Physiol 113, 639–648

    CAS  PubMed  Google Scholar 

  • Jahns P and Junge W. (1990) Dicyclohexyl carbodiimide-binding proteins related to the short circuit of the proton pumping activity of Photosystem II. Eur J Biochem 193: 731–736

    Article  CAS  PubMed  Google Scholar 

  • Jahns P and Krause GH. (1994) Xanthophyll cycle and energy-dependent fluorescence quenching in leaves from pea plants grown under intermittent light. Planta 1922: 176–182

    Google Scholar 

  • Jansson S (1994) The light harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta 1184: 1–19

    CAS  PubMed  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of the damaging and protective mechanisms. Physiol Plant 74: 566–574

    CAS  Google Scholar 

  • Krause GH, Laasch H and Weis E (1988) Regulation of thermal dissipation of absorbed light energy in chloroplasts indicated by energy-dependent fluorescence quenching. Plant Physiol Biochem 26: 445–52

    CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kwa SLS, Vanamerongen H, Lin S, Dekker JP, Van Grondelle R and Struve WS (1992) Ultrafast energy transfer in LHC-II trimers from the Chl a/b light-harvesting antenna of Photosystem-II. Biochim Biophys Acta 1102: 202–212.

    CAS  Google Scholar 

  • Mo F (1995) X-ray crystallographic studies. In: Britton G, Liaaen-Jensen S and Pfander H (eds) Carotenoids, Vol. 1B. Spectroscopy, pp 321–342. Birkhauser, Basel.

    Google Scholar 

  • Mullineaux CW, Pascal AA, Horton P and Holzwarth AR (1992) Excitation energy quenching in aggregates of the LHCII chlorophyll-protein complex: a time-resolved fluorescence study. Biochim Biophys Acta. 1141: 23–28

    Google Scholar 

  • Murakami S and Packer L (1970) Protonation and chloroplast membrane structure. J Cell Biol 47: 332–351

    Article  CAS  Google Scholar 

  • Murchie EH, Chen Y, Hubbart S, Peng S and Horton P (1999) Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field grown rice. Plant Physiol 119: 553–563

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997a) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9: 1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997b) The roles of specific xanthophylls in photoprotection. Proc Nat Acad Sci USA 94: 14162–14167

    Article  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR and Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134

    Article  CAS  PubMed  Google Scholar 

  • Noctor G and Horton P (1990) Uncoupler titration of energy-dependent chlorophyll fluorescence and Photosystem II photochemical yield in intact pea chloroplasts. Biochim Biophys Acta 1016: 228–234

    CAS  Google Scholar 

  • Noctor G, Rees D, Young AJ and Horton P (1991) The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence and the transthylakoid pH-gradient in isolated chloroplasts. Biochim Biophys Acta 1057: 320–330

    CAS  Google Scholar 

  • Noctor G, Ruban AV and Horton P (1993) Modulation of ΔpH-dependent nonphotochemical quenching of chlorophyll fluorescence in isolated chloroplasts. Biochim Biophys Acta 1183: 339–344

    CAS  Google Scholar 

  • Owens TG, Shreve AP and Albrecht AC (1992) Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: Light harvesting and nonphotochemical fluorescence quenching. In: Murata N (ed) Research in Photosynthesis, Vol 4, pp 179–186. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Oxborough K and Horton P (1987) Characterisation of the effects of antimycin A upon the high energy state quenching of chlorophyll fluorescence qE in spinach and pea chloroplasts. Photosynth Res 12: 119–128

    Article  CAS  Google Scholar 

  • Park YI, Chow WS and Anderson J (1995) Light inactivation of functional Photosystem II in leaves of peas grown in moderate light depends on photon exposure. Planta 196: 401–411

    Article  CAS  Google Scholar 

  • Pesaresi P, Sandona D, Giuffra E and Bassi R (1997) A single point mutation (E166Q) prevents dicychlohexylcarbodiimide binding to the Photosystem II subunit CP29. FEES Lett 402: 151–156

    Article  CAS  Google Scholar 

  • Peter GF and Thornber P (1991) Biochemical composition and organisation of higher plant Photosystem II light harvesting proteins. J Biol Chem 266: 16745–16754

    CAS  PubMed  Google Scholar 

  • Phillip D and Young AJ (1995) Occurrence of the carotenoid lactucaxanthin in higher plant LHCII. Photosynth Res 43: 273–282

    Article  CAS  Google Scholar 

  • Phillip D, Ruban AV, Horton P, Asato A and Young AJ (1996) Quenching of chlorophyll fluorescence in the major light harvesting complex of Photosystem II. Proc Nat Acad Sci USA, 93: 1492–1497

    Article  CAS  PubMed  Google Scholar 

  • Rees D, Young AJ, Noctor G, Britton G and Horton P (1989) Enhancement of theΔpH-dependent dissipation of excitation energy in spinach chloroplasts by light activation: Correlation with the synthesis of zeaxanthin. FEBS Lett 256: 85–90

    Article  CAS  Google Scholar 

  • Rhee K-H, Morris EP, Zhaleva D, Hankamer B, Kühlbrandt W, and Barber J (1997) Two-dimensional structure of plant Photosystem II at 8 Å resolution. Nature 389: 522–526

    CAS  Google Scholar 

  • Ruban AV and Horton P (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes I. Spectroscopic analysis of isolated light-harvesting complexes. Biochim Biophys Acta 1102: 30–38

    CAS  Google Scholar 

  • Ruban AV and Horton P (1994) Spectroscopy of non-photochemical and photochemical quenching of chlorophyll fluorescence in leaves; evidence for a role of the light harvesting complex of Photosystem II in the regulation of energy dissipation. Photosynth Res 40: 181–190

    Article  CAS  Google Scholar 

  • Ruban AV, and Horton P (1995) Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. Aust J Plant Physiol 22: 21–30

    Google Scholar 

  • Ruban AV and Horton P (1998) The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light harvestingcomplexes, intact chloroplasts and leaves. Plant Physiol 119: 531–542

    Google Scholar 

  • Ruban AV, Rees D, Pascal AA and Horton P (1992a) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes II. The relationships between LHCII aggregation in vitro and qE in isolated thylakoids. Biochim Biophys Acta 1102: 39–44

    CAS  Google Scholar 

  • Ruban AV, Waiters RG and Horton P (1992b) The molecular mechanism of the control of excitation energy dissipation in chloroplast membranes; inhibition of ΔpH-dependent quenching of chlorophyll fluorescence by dicyclohexyl-carbodiimide. FEES Lett. 309: 175–179

    Article  CAS  Google Scholar 

  • Ruban AV, Horton P and Young AJ (1993a) Aggregation of higher plant xanthophylls: Differences in absorption spectra and in the dependency on solvent polarity. J. Photobiol. Photobiochem. B. Biol. 21: 229–234

    CAS  Google Scholar 

  • Ruban AV, Young AJ and Horton P (1993b) Induction on nonphotochemical energy dissipation and absorbance changes in leaves. Evidence for changes in the state of the light harvesting system of Photosystem II in vivo. Plant Physiol 102: 741–750

    CAS  PubMed  Google Scholar 

  • Ruban AV, Young AJ and Horton P (1994a) Modulation of chlorophyll fluorescence quenching in isolated light harvesting complex of Photosystem II. Biochim Biophys Acta 1186: 123–127

    CAS  Google Scholar 

  • Ruban AV, Young AJ, Pascal AA and Horton P (1994b) The effects of illumination on the xanthophyll composition of the Photosystem II light harvesting complexes of spinach thylakoid membranes. Plant Physiol 104: 227–234

    CAS  PubMed  Google Scholar 

  • Ruban AV, Dekker JP, Horton P and van Grondelle R. (1995a) Temperature dependence of chlorophyll fluorescence from the light harvesting complex of higher plants. Photochem Photobiol 61: 216–221

    CAS  Google Scholar 

  • Ruban AV, Horton P and Robert B (1995b) Resonance Raman spectroscopy of the Photosystem II light harvesting complex of green plants. A comparison of the trimeric and aggregated states. Biochemistry. 34: 2333–2337

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Young AJ and Horton P (1996) Dynamic properties of the minor chlorophyll a/b binding proteins of Photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochemistry 35: 674–678

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Calkoen F, Kwa SLS, van Grondelle R, Horton P and Dekker JP (1997a) Characterisation of LHCII in the aggregated state by linear and circular dichroism spectroscopy. Biochim Biophys Acta 1321: 61–70

    CAS  Google Scholar 

  • Ruban AV, Philip D, Young AJ and Horton P (1997b) Carotenoid-dependent oligomerisation of the major light harvesting complex of Photosystem II in plants. Biochemistry 36: 7855–7859.

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Pesaresi P, Wacker U, Irrgang K-D, Bassi R and Horton P (1998a) The relationship between the binding of dicyclohexylcarbodiimide and pH-dependent quenching of chlorophyll fluorescence in the light harvesting proteins of Photosystem II. Biochemistry 37: 11586–11591

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Philip D, Young AJ and Horton P (1998b) Excited state energy level does not determine the differential effect of violaxanthin and zeaxanthin on chlorophyll fluorescence quenching in isolated light harvesting complex of Photosystem II. Photochem Photobiol 68: 829–834

    Article  CAS  Google Scholar 

  • Ruban AV, Young AJ and Horton P (1999) Determination of the stoichiometry and strength of binding of xanthophylls to the Photosystem II light harvesting complexes. J Biol Chem, in press

    Google Scholar 

  • Sandoná D, Croce R, Pagano A, Crimi M and Bassi R (1998) Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta 1365: 207–214

    PubMed  Google Scholar 

  • Sarry JE, Montillet JL, Sauvaire Y and Havaux M (1994) The protective function of the xanthophyll cycle in photosynthesis. FEBS Lett 353: 147–150

    Article  CAS  PubMed  Google Scholar 

  • Schonknecht G, Neimanis S, Gerst U and Heber U. (1996) The pH dependent regulation of photosynthetic electron transport in leaves. In: Mathis P (ed) Photosynthesis: From Light to the Biosphere, pp 843–846. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Walters RG and Horton P (1993) Theoreticalassessment of alternative mechanisms for non-photochemical quenching in barley leaves. Photosynth Res 27: 121–133

    Google Scholar 

  • Walters RG, Ruban AV and Horton P (1994) Light-harvesting complexes bound by dicyclohexylcarbodiimide during inhibition of protective energy dissipation. Eur J Biochem 226: 1063–1069

    Article  CAS  PubMed  Google Scholar 

  • Walters RG, Ruban AV and Horton P (1996) Identification of proton-active residues in a higher plant light-harvesting complex. Proc Nat Acad Sci USA 93: 14204–14209

    Article  CAS  PubMed  Google Scholar 

  • Weis E and Berry J (1987) Quantum efficiency of Photosystem II in relation to energy dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894: 198–208

    CAS  Google Scholar 

  • Yerkes CT and Crofts AR (1995) Antimycin inhibits qE quenching by a protonophoric mechanism. In: Mathis P (ed) Photosynthesis: From Light to the Biosphere, Vol III, pp 115–118. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Young AJ and Frank HA (1996) Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J Photochem Photobiol 36: 3–15

    CAS  Google Scholar 

  • Young AJ, Phillip D, Frank HA, Ruban A V and Horton P (1997). The xanthophyll cycle and carotenoid mediated dissipation of excess excitation energy in photosynthesis. Pure Appl Chem 69: 2125–2130

    CAS  Google Scholar 

  • Zhang H, Goodman HM and Jansson S (1997) Antisense inhibition of the Photosystem I antenna protein Lhca4 in Arabidopsis thaliana. Plant Physiol 115: 1525–1531

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Horton, P., Ruban, A.V., Young, A.J. (1999). Regulation of the Structure and Function of the Light Harvesting Complexes of Photosystem II by the Xanthophyll Cycle. In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, vol 8. Springer, Dordrecht. https://doi.org/10.1007/0-306-48209-6_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-48209-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5942-5

  • Online ISBN: 978-0-306-48209-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics