Skip to main content

The Electronic Structure, Stereochemistry and Resonance Raman Spectroscopy of Carotenoids

  • Chapter
The Photochemistry of Carotenoids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 8))

Summary

Resonance Raman Spectroscopy yields information on the conformation and the configuration of carotenoid molecules, whether isolated in solvents or embedded in soluble or membrane proteins. Deviations of the conjugated polyene chain from linearity indeed results in the appearance of new Raman bands, arising from modes which have become allowed by the change in molecular symmetry. By making use of time-resolved Raman techniques, it is possible to extend these studies to the singlet and triplet states of carotenoids, and to gain insights into the nature of these excited states. After a short introduction to the physical principles that govern resonance Raman Spectroscopy, adetailed characterization of resonance Raman spectra of carotenoids is described in this chapter, together with the experiments which helped in determining to which structural parameter each Raman band is sensitive. Applications of this technique on the carotenoid molecules involved in the photosynthetic process are then reviewed. In particular the molecular conformation and configuration of carotenoids bound to photochemical reaction centers and to light-harvesting proteins of the different photosynthetic organisms is discussed in the light of resonance Raman results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

NMR:

Nuclear Magnetic Resonance

PS:

Photosystem

Rb.:

Rhodobacter

RC:

reaction center

Rps.:

Rhodopseudomonas

References

  • Agalidis I, Lutz M and Reiss-Husson F (1980) Binding of carotenoid on reaction centers from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 589: 264–274

    CAS  PubMed  Google Scholar 

  • Albrecht AC (1961) On the theory of Raman intensities. J Chem Phys 34:1476–1484

    Article  CAS  Google Scholar 

  • Szymansky HA (1962) Raman Spectroscopy, Theory and Practice. Plenum Press, New York

    Google Scholar 

  • Bialek-Bylka GE, Tomo T, Satoh K and Koyama Y (1995) 15-cis β-carotene found in the reaction center of spinach Photosystem II. FEBS Lett 363: 137–140

    CAS  Google Scholar 

  • Carey PR (1982) Biochemical applications of Raman and Resonance Raman spectroscopies. Academic Press, New York

    Google Scholar 

  • Chadwick BW and Frank HA (1986) Electron-spin resonance studies of carotenoids incorporated into reaction centers of Rhodobacter sphaeroides R26.1. Biochim Biophys Acta 851: 257–266

    CAS  Google Scholar 

  • Conn PF, Haley J, Lambert CR, Truscott TG and Parker AW (1993) Time-resolved resonance Raman spectroscopy of carotenoids in triton X-100 micellar solution. J Chem Soc Faraday Trans 89: 1753–1757

    Article  CAS  Google Scholar 

  • Dallinger RF, Guanci JJ, Woodruff WH and Rodgers MA (1979) Vibrational spectroscopy of the electronically excited state: pulse radiolysis/time-resolved resonance Raman study of the triplet β-carotene. J Am Chem Soc 101: 1355–1357

    CAS  Google Scholar 

  • De Paula JC, Ghanotakis DF, Bowlby NR, Dekker JP, Yocum CF and Babcock GT (1990) Chlorophyll-protein interactions in PhotosystemI II. Resonance Raman spectroscopy of the D1 D2-cytochrome b559 complex and the 47 kDa protein. In: Baltscheffsky M (ed) Current Research in Photosynthesis, pp 643–646, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frank HA and Cogdell RJ (1993) Photochemistry and functions of carotenoids in Photosynthesis. In: Young A and Britton G (eds) Carotenoids in Photosynthesis, pp 252–326. Chapman & Hall, London

    Google Scholar 

  • Frank HA, Farhoosh R, Gebhard R, Lugtenburg J, Gosztola D and Wasielewski MR (1993) The dynamics of the S1 states of carotenoids. Chem Phys Lett 207: 88–92

    Article  CAS  Google Scholar 

  • Gill D, Kilponen RG and Rimai L (1970) Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature, 227: 743–744

    Article  CAS  PubMed  Google Scholar 

  • Gruszecki WI, Matula M, Ko-chi N, Koyama Y and Krupa Z (1997) Cis-trans isomerization of violaxanthin in LHCII: violaxanthin isomerization within the violaxanthin cycle. Biochim Biophys Acta 1319: 267–274

    Google Scholar 

  • Hashimoto H and Koyama Y (1988) Time-resolved Raman spectroscopy of triplet β-carotene produced from all-trans, 7-is, 13-cis and 15-cis isomers and high-pressure liquid chromatography analyses of photoisomerisation via the triplet state. J Phys Chem 92: 2101–2108

    CAS  Google Scholar 

  • Hashimoto H and Koyama Y (1989a) Raman spectra of all-trans β-carotene in the S1 and T1 states produced by direct photoexcitation. Chem Phys Lett 163: 251–256

    Article  CAS  Google Scholar 

  • Hashimoto H and Koyama Y (1989b) The C=C stretching Raman lines of β-carotene isomers in the Sl state as detected by pump-probe resonance Raman spectroscopy. Chem Phys Lett 154: 321–325

    Article  CAS  Google Scholar 

  • Hayashi H, Kolaczkowski SV, Noguchi T, Blanchard D and Atkinson GH (1990) Picosecond time-resolved resonance Raman scattering and absorbance changes of carotenoids in light-harvesting systems of photosynthetic bacterium Chromatium vinosum. J Am Chem Soc 112: 4664–4670

    Article  CAS  Google Scholar 

  • Hayashi H, Brack TL, Noguchi T, Tasumi M and Atkinson GH (1991) Vibrational relaxation in carotenoids in vivo and in vitro: picosecond time-resolved anti-Stokes resonance Raman spectroscopy. J Phys Chem 95: 6797–6802

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G and Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292: 1–4

    Article  CAS  PubMed  Google Scholar 

  • Iwata K, Hayashi H and Tasumi M (1985) Resonance Raman studies of the conformations of all-trans carotenoids in light-harvesting systems of photosynthetic bacteria. Biochim Biophys Acta 810: 269–273

    CAS  Google Scholar 

  • Jirsakova V and Reiss-Husson F (1994) A specific carotenoid is required for reconstitution of the Rubrivivax gelatinosus B875 light harvesting complex from its subunit form B820. FEBS Lett 353: 151–154

    Article  CAS  PubMed  Google Scholar 

  • Koepke J, Hu X, Münke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B8000-850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  CAS  PubMed  Google Scholar 

  • Kok P, Koehler J, Groenen EJJ, Gebhard R, van der Hoef I, Lugtenburg J, Hoff AJ, Farhoosh R and Frank HA (1994) Towards a vibrational analysis of spheroidene. Resonance Raman spectroscopy of 13C-labeled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction center. Biochim Biophys Acta 1185: 188–192

    CAS  PubMed  Google Scholar 

  • Kok P, Koehler J, Groenen EJJ, Gebhard R, van der Hoef I, Lugtenburg J, Hoff AJ, Farhoosh R and Frank HA (1997) Resonance Raman spectroscopy of 2H-labeled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction center. Spectrochim Acta 53A: 381–392

    CAS  Google Scholar 

  • Koyama Y, Takii T, Saiki K, Tsukida K and Yamashita KJ (1982) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction centers of Rhodopseudomas sphaeroides G1C with those of cis-trans isomers from β-carotene. Biochim Biophys Acta 680: 109–118

    CAS  Google Scholar 

  • Koyama Y, Takii T, Saiki K and Tsukida K (1983) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. 2) Comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of β-carotene. Photobiochem Photobiophys 5: 139–150

    CAS  Google Scholar 

  • Koyama Y, Takatsuka I, Nakata M and Tasumi, M (1988a) Raman and infra-red spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene Key bands distinguishing stretched or terminal bent configurations from central-bent configurations. J Raman Spectrosc 19: 37–49

    Article  CAS  Google Scholar 

  • Koyama Y, Kanaji M, and Shimamura T (1988b) Configurations of neurosporene isomers isolated from the reaction center and the light-harvesting complex of Rhodobacter sphaeroides G1C. A resonance Raman, electronic absorption and proton NMR study. Photochem Photobiol 48: 107–114

    CAS  Google Scholar 

  • Koyama Y, Kuki M, Andersson PO and Gillbro T (1996) Singlet excited states in the light-harvesting function of carotenoids in bacterial photosynthesis. Photochem Photobiol 63: 243–256

    CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kuki M, Hashimoto H & Koyama Y (1990) The 21Ag state of a carotenoid bound to the chromatophore membrane of Rhodobacter sphaeroides 2.4.1. as revealed by transient resonance Raman spectroscopy. Chem Phys Lett 165: 417–422

    Article  CAS  Google Scholar 

  • Kuki M, Nagae R, Cogdell RJ, Shimada K and Koyama Y (1994) Solvent effect on spheroidene in non-polar and polar solutions and the environment of spheroidene in the light-harvesting complexes of Rhodobacter sphaeroides 2.4.1. as revealed by the energy of the 1Ag→IBQ absorption and the frequency of the vibronically coupled C=C stretching Raman line in the 1Ag and 21Ag states. Photochem Photobiol 59: 116–124

    CAS  Google Scholar 

  • Kuki M, Naruse M, Kakuno T and Koyama Y (1995) Resonance Raman evidence for 15-cis to all trans photoisomerisation of spirilloxanthin bound to a reduced form of the reaction centers of Rhodospirillum rubrum S1. Photochem Photobiol 62: 502–507

    CAS  Google Scholar 

  • Lutz M, Kleo J and Reiss-Husson F (1976) Resonance Raman scattering of bacteriochlorophyll, bacteriopheophytin and spheroidene in reaction centers of Rhodopseudomonas spheroides. Biochem Biophys Res Comm 69: 711–717

    Article  CAS  PubMed  Google Scholar 

  • Lutz M, Agalidis A, Hervo G, Cogdell RJC and Reiss-Husson F (1978) On the state of the carotenoids bound to reaction centers of photosynthetic bacteria: A resonance Raman study. Biochim Biophys Acta 503: 387–303

    Google Scholar 

  • Lutz M, Chinsky L and Turpin PY (1983) Triplet states of carotenoid bound to the reaction centers of photosynthetic bacteria. Time resolved resonance Raman spectroscopy. Photochem Photobiol 36: 503–513

    Google Scholar 

  • Lutz M, Szponarski W, Berger G, Robert B and Neumann JM (1987) The stereoisomerism of bacterial, reaction center bound carotenoids revisited: an electronic absorption, resonance Raman and 1H-NMR study. Biochim Biophys Acta 894: 423–433

    CAS  Google Scholar 

  • Mc Dermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    CAS  Google Scholar 

  • Moenne-Loccoz P, Robert B and Lutz M (1990) Structure of the primary reactants in Photosystem II: resonance Raman studies of D1D2 particles. In: Baltscheffsky M (ed) Current Research in Photosynthesis, pp 423–426, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D1 and D2 polypeptides and cytochrome b559. Proc Natl Acad Sci USA 84: 109–112

    CAS  Google Scholar 

  • Noguchi T, Hayashi H, Tasumi M and Atkinson GH (1991) Solvent effects on the ag stretching mode in the 21Ag-excited state of β-carotene and two derivatives:picosecond time-resolved resonance Raman spectroscopy. J Phys Chem 95: 3167–3172

    Article  CAS  Google Scholar 

  • Pascal AA, Caron L, Rousseau B, Lapouge K, Duval JC and Robert B (1998) Resonance Raman spectroscopy of a light-harvesting protein from the brown Alga Laminaria saccharina. Biochemistry 37: 2450–2457

    Article  CAS  PubMed  Google Scholar 

  • Raman CV and Krishnan KS (1928) A new type of secondary radiation. Nature 121: 501–502

    CAS  Google Scholar 

  • Rimai L, Gill D and Parson JL (1971) Raman spectra of dilute solutions of some stereoisomers of vitamin A-type molecules. J Am Chem Soc 93: 1353–1357

    Article  CAS  Google Scholar 

  • Rimai L, Heyde ME and Gill D (1973) Vibrational spectra of some carotenoids and related linear polyenes. A Raman spectroscopic study. J Am Chem Soc 95: 4493–4501

    Article  CAS  PubMed  Google Scholar 

  • Robert B (1983) Etude par diffusion Raman de resonance de complexes proteine-pigment antennes des Rhodospirillales. These Doct. 3ème Cycle, Université Pierre et Marie Curie, Paris

    Google Scholar 

  • Robert B and Lutz M (1985) Structures of antenna complexes of several Rhodospirillales from their resonance Raman spectra. Biochim Biophys Acta 807: 10–23

    CAS  Google Scholar 

  • Robert B and Frank HA (1988) A resonance Raman investigation of the effect of lithium dodecyl sulfate on the B800–850 light-harvesting protein of Rhodopseudomonas acidophila 7750. Biochim Biophys Acta 934: 401–405

    CAS  Google Scholar 

  • Robert B, Nabedryk E and Lutz M (1989) Vibrational spectroscopy of transient states in photosynthetic bacterial reaction centers. In: Clark RJH and Hester RE (eds) Time-resolved spectroscopy, pp 301–333. John Wiley and Sons, New York

    Google Scholar 

  • Ruban AV, Horton P and Robert B (1995) Resonance Raman spectroscopy of the Photosystem II light-harvesting complexes of green plants. A comparison of the trimeric and aggreggated states Biochemistry 34: 2333–2337

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Tasumi M and Eugster CH (1983) Resonance Raman spectra (5800-40 cm−1) of all-trans and 15-cis isomers of βcarotene in the solid state and in solution. Measurements with various laser lines from ultraviolet to red. J Raman Spectrosc 14: 299–309

    CAS  Google Scholar 

  • Saito S and Tasumi M (1983) Normal-coordinate analysis of β-carotene isomers and assignments of the Raman and infrared bands. J Raman Spectrosc 14: 310–321

    CAS  Google Scholar 

  • Shreve AP, Trautman JK, Owens TG and Albrecht CA (1991) Determination of the S2 lifetime of β-carotene. Chem Phys Lett 178: 89–96

    Article  CAS  Google Scholar 

  • Thrash RJ, Fang HLB and Leroi GE (1977) The Raman excitation profile spectrum of β-carotene in the preresonance region: Evidence for a low-lying singlet state. J Chem Phys 67: 5929–5931

    Google Scholar 

  • Wilbrandt R, Jensen NH, Pagsberg P, Sillesen AH and Hansen KB (1980) Time-resolved resonance Raman spectroscopy: the triplet state of all-trans β-carotene and related compounds. In: Murphy WF (ed) Proceedings of the 7th International Conference on Raman Spectroscopy, pp 632–633. NRCC, Ottawa

    Google Scholar 

  • Zhou Q, Robert BandLutz M (1987) Intergeneric structural variability of the primary donor of photosynthetic bacteria: Resonance Raman spectroscopy of reaction centers from two Rhodospirillum and Rhodobacter species. Biochim Biophys Acta 890: 368–376

    CAS  Google Scholar 

  • Zurdo J, Centeno MA, Odriozola JA, Fernandez-Cabrera C, and Ramirez JM (1995) The structural role of the carotenoid in the bacteriallight-harvesting protein II(LHII) of Rhodobacter capsulatus. A Fourier trans form Raman spectroscopy and circular dichroism study. Photosynth Res 46: 363–369

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Robert, B. (1999). The Electronic Structure, Stereochemistry and Resonance Raman Spectroscopy of Carotenoids. In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, vol 8. Springer, Dordrecht. https://doi.org/10.1007/0-306-48209-6_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48209-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5942-5

  • Online ISBN: 978-0-306-48209-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics