Skip to main content

Carotenoids in Photosynthesis: An Historical Perspective

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 8))

Summary

This chapter presents a personal historical perspective of the role of carotenoids in photosynthesis. It leads the reader into the early literature on the carotenoids and photosynthesis that are related to the discoveries on the excitation energy transfer and, to a lesser extent, on photoprotection. Excitation energy transfer from the carotenoid fucoxanthin to chlorophyll (Chl) a was shown first in the diatoms by H. Dutton, W. M. Manning and B. M. Duggar, in 1943, at the University of Wisconsin at Madison. After the extensive researches of E. C. Wassink (in the Netherlands) on this topic, the classical doctoral thesis of L. N. M. Duysens became available in 1952, at the State University in Utrecht. This thesis dealt with the evidence of excitation energy transfer in many photosynthetic systems, including anoxygenic photosynthetic bacteria. The experiments of R. Emerson and C. M. Lewis, done at the Carnegie Institute of Washington, Stanford, California, in the 1940s, dealt with the quantum yield action spectra of photosynthesis. In these experiments, the famous red drop phenomenon was discovered; further, the authors showed here the low efficiency of carotenoids in the photosynthesis of both green algae and blue-green algae (cyanobacteria). In 1956, R. Stanier and his coworkers discovered, at the University of California at Berkeley, a special role of carotenoids in protection against death in phototrophic bacteria. Finally, in 1962, H. Yamamoto (of Hawaii) pioneered the role of xanthophyll cycle pignents in photoprotection. This was followed by key experiments and concepts from B. Demmig-Adams (1987, now in Colorado), and O. Bjökman (at California), among others mentioned in the text. In 1954, a 515 nm absorbance change was discovered by Duysens (1954) and has now become a quantitative measure of the membrane potential changes in photosynthesis. Historial aspects of some of the basic principles of light absorption and excitation energy transfer, and references to selected current literature are also included in this chapter to allow the reader to link the past with the present.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JM (1983) Chl-protein complexes of a Codium species, including a light-harvesting siphonaxanthin-Chl a/b-protein complex, an evolutionary relic of some chlorophyta. Biochim Biophys Acta 724: 370–380

    CAS  Google Scholar 

  • Arnold WA (1991) Experiments. Photosynth Res 27: 73–82

    Article  Google Scholar 

  • Arnold W and Meek ES (1956) The polarization of fluorescence and energy transfer in grana. Arch Biochem Biophys 60: 82–90

    Article  CAS  PubMed  Google Scholar 

  • Arnold W and Oppenheimer JR (1950) Internal conversion in the photosynthetic mechanism of blue-green algae. J Gen Physiol 33: 423–435

    Article  CAS  PubMed  Google Scholar 

  • Bannister TT (1972) The careers and contributions of Eugene Rabinowitch. Biophys J 12: 707–718

    CAS  PubMed  Google Scholar 

  • Barrett J and Anderson JM (1980) The P-700-Chl a-protein complex and two major light-harvesting complexes of Acrocarpia paniculata and other brown algae. Biochim Biophys Acta 590: 309–323

    CAS  PubMed  Google Scholar 

  • Bartley GE and Scolnik PA (1995) Plant carotenoids: Pigments for photoprotection, visual attraction and human health. The Plant Cell 7: 1027–1038

    CAS  PubMed  Google Scholar 

  • Bassi R, Pineau B, Dainese P and Marquardt J (1993) Carotenoid-binding proteins of Photosystem II. Eur J Biochem 212: 297–303

    Article  CAS  PubMed  Google Scholar 

  • Berzelius J (1837a) Über de gelbe Farbe der Blaetter im Herbste. Ann der Pharm 21: 257–262

    Google Scholar 

  • Berzelius J (1837b) Einige Untersuchungen ueber die Farbe, welche das Laub verschiedener Baumgattungen im Herbste vor dem Abfallen annimmt. (Poggendorf’s) Annalen der Physik und Chemie (Liebig) 42: 422–433

    Google Scholar 

  • Björkman O (1987) High irradiance stress in higher plants and interaction with other stress factors. In: Biggins J (ed) Progress in Photosynthesis Research, Volume 4, pp 11–18. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Björkman O and Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In: Schulze E-D and Caldwell M (eds) Ecological Studies, Vol 100, pp 17–47. Springer Verlag, Berlin

    Google Scholar 

  • Bogert MT (1938) Carotenoids. In: Gilman A (ed) Organic Chemistry, Vol II, p 1138. Wiley, New York

    Google Scholar 

  • Briantais J-M, Dacosta J, Goulas Y, Ducruet JM, Moya I (1996) Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F0—a time resolved analysis. Photosynth Res 48: 189–196

    Article  CAS  Google Scholar 

  • Britton G and Goodwin TW (eds) (1982) Carotenoid Chemistry and Biochemistry. Pergamon Press, Oxford

    Google Scholar 

  • Britton G, Liaaen-Jensen S and Pfander HP (eds) (1995) Carotenoids, Vol I and II, Birkhäuser Verlag, Basel

    Google Scholar 

  • Brody SS (1995) We remember Eugene (Rabinowitch and his laboratory, during the fifties). Photosynth Res 43: 67–74

    Article  CAS  Google Scholar 

  • Cario G and Franck J (1923) Über sensibilisierte Fluoreszenz von Gasen. Z Phys 17: 202–212

    CAS  Google Scholar 

  • Cho F and Govindjee (1970a) Low-temperature (4–77 K) spectroscopy of Chlorella:Temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216: 139–150

    CAS  PubMed  Google Scholar 

  • Cho, F and Govindjee (1970b) Low temperature (4–77 K) spectroscopy of Anacystis: Temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216: 151–161

    CAS  PubMed  Google Scholar 

  • Cogdell RJ (1978) Carotenoids in photosynthesis. Phil Trans Roy Soc London Series B 284: 569–579

    CAS  Google Scholar 

  • Cogdell RJ (1985) Carotenoid-bacteriochlorophyll interactions. Springer Ser Chem Phys 42: 62–66

    CAS  Google Scholar 

  • Cogdell RJ and Frank HA (1987) How Carotenoids function in photosynthetic bacteria. Biochim Biophys Acta 895: 63–79

    CAS  PubMed  Google Scholar 

  • Condon EU (1926) Atheoryof intensity distribution in band systems. Phys Rev 28: 1182–1201

    Article  CAS  Google Scholar 

  • Condon EU (1947) The Franck-Condon Principle and Related Topics. Am J Phys 15: 365–374

    Article  CAS  Google Scholar 

  • Crofts A R and Yerkes CT (1994) A molecular mechanism for qE quenching. FEBS Lett 352: 265–270

    Article  CAS  PubMed  Google Scholar 

  • de Grooth BG, van Grondelle R, Romijn JC and Pulles MPJ (1979) The mechanism of reduction of the ubiquinone pool in photosynthetic bacteria at different redox potential. Biochim Biophys Acta 503: 480–490

    Google Scholar 

  • Deisenhofer J and Michel H (1989) The photosynthesis reaction center from the bacterium Rhodopseudomonas viridis. EMBO J 8: 2149–2170

    CAS  PubMed  Google Scholar 

  • Demmig B, Winter K, Krueger A and Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol 84: 218–224

    CAS  Google Scholar 

  • Demmig-Adams B and Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21–26

    Google Scholar 

  • Demmig-Adams B, Gilmore A and Adams WW III (1996) In vivo functions of carotenoids in plants. FASEB J 10: 403–412

    CAS  PubMed  Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21: 836–850

    Article  CAS  Google Scholar 

  • Dutton HJ (1997) Carotenoid-sensitized photosynthesis: Quantum efficiency, fluorescence and energy transfer. Photosynth Res 52: 175–185

    Article  CAS  Google Scholar 

  • Dutton HJ and Manning (1941) Evidence for carotenoid-sensitized photosynthesis in the diatom Nitzschia closterium. Am J Bot 28: 516–526

    CAS  Google Scholar 

  • Dutton HJ, Manning WM and Duggar BM (1943) Chl fluorescence and energy transfer in the diatom Nitzscia closterium. J Phys Chem 47: 308–317

    Article  CAS  Google Scholar 

  • Duysens LNM (1951) Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature 168: 548–550

    CAS  PubMed  Google Scholar 

  • Duysens LNM (1952) Transfer of excitation energy in photosynthesis. Doctoral thesis. State University at Utrecht, Drukkerij en uitgevers-maatschappij v/h Kemink en zoon NV, Domplein 2, Utrecht

    Google Scholar 

  • Duysens LNM (1954) Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science 120: 353–354

    CAS  Google Scholar 

  • Duysens LNM (1989) The discovery of the two photosynthetic systems: A personal account. Photosynth Res 21: 61–79

    CAS  Google Scholar 

  • Emerson R and Arnold WA (1932a). A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420.

    Article  CAS  Google Scholar 

  • Emerson R and Arnold WA (1932b) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205.

    Article  CAS  Google Scholar 

  • Emerson R and Lewis CM (1942) The photosynthetic efficiency of phycocyanin in Chrococcus and the problem of carotenoid participation in photosynthesis. J Gen Physiol 25: 579–595

    Article  CAS  Google Scholar 

  • Emerson R and Lewis CM (1943) The dependence of quantum yield of Chlorella photosynthesis on wavelength of light. Am J Bot 30: 165–178

    CAS  Google Scholar 

  • Emerson R and Rabinowitch E (1960). Red drop and role of auxiliary pigments in photosynthesis. Plant Physiol 35: 477–485.

    CAS  Google Scholar 

  • Emerson R, Chalmers RV and Cederstrand CN (1957) Some factors influencing the long-wave limit of photosynthesis. Proc Natl Acad Sci USA 43: 133–143

    Google Scholar 

  • Engelmann TW (1883) Farbe und Assimilation. Botan Zeitung 41: 1–16

    Google Scholar 

  • Engelmann TW (1884) Untersuchungen ueber die quantitativen bezieschungen zwischen Absorption des Lichts und Assimilation in Pflanzenzellen. Bot Zeit 42: 81–96

    Google Scholar 

  • Firth JB (transl) (1909) The Letters of the Younger Pliny. Walter Scott, Ltd., London

    Google Scholar 

  • Förster Th (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33: 166–175

    Google Scholar 

  • Förster Th (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik [6] 2: 55–75 (English translation ‘Intermolecular energy migration and fluorescence’ is available from Professor RS Knox, Department of Physics and Astronomy, University of Rochester, Rochester, New York)

    Google Scholar 

  • Förster Th (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Part II.B. 1 of Modern Quantum Chemistry: Istanbul lectures. Part III. Action of Light and Organic Crystals, pp. 93–137. Academic Press, New York

    Google Scholar 

  • Fork DC and Amesz J (1969) Action spectra and energy transfer in photosynthesis. Ann Rev Plant Physiol 20: 305–328

    CAS  Google Scholar 

  • Franck J (1925) Elementary processes of photochemical reactions. Trans Faraday Soc 21: 536–542

    Google Scholar 

  • Franck J (1927) Über eine Rotverschiebung der Resonanzfluoreszenz durch vielfach wiederholte Streuung. Naturwiss 15: 236–238

    Article  CAS  Google Scholar 

  • Frank HA and Cogdell RJ (1993) Photochemistry and functions of carotenoids. In: Young A and Britton G (eds) Carotenoids in Photosynthesis, pp. 252–326. Springer Verlag, London

    Google Scholar 

  • Frank HA, Violette CA, Trautman JK, Shreve AP, Owens TG and Albrecht AC (1991) Carotenoids in photosynthesis: Structure and photochemistry. Pure Appl Chem 63: 109–114

    CAS  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D and Wasielewski M R (1994) Photophysics of carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41: 389–395

    Article  CAS  Google Scholar 

  • Fremy E (1860) Recherches sur la matière colorante verte des feuilles. Compt Rend 50: 405–412

    Google Scholar 

  • French CS and Young VMK (1952) The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and Chl. J Gen Physiol 35: 873–890

    Article  CAS  PubMed  Google Scholar 

  • Gaffron H and Wohl K (1936) Zur Theorie der Assimilation. Naturwissenschaften 24: 81–90; 103–107

    CAS  Google Scholar 

  • Gasanov R. Abilov ZK, Gazanchyan, RM, Kurbonova UM, Khanna, R and Govindjee (1979) Excitation energy transfer in Photosystems I and II from grana and in Photosystem I from stroma lamellae, and identification of emission bands with pigment-protein complexes at 77K. Z Pflanzenophysiol 95: 149–169

    CAS  Google Scholar 

  • Gilmore A (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99: 197–205

    Article  CAS  Google Scholar 

  • Gilmore A and Govindjee (1999) How higher plants respond to excess light: Energy dissipation in Photosystem II. In: Singhal GS, Renger G, Sopory S, Irrgang K-D and Govindjee (eds) Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Narosa Publishers, New Delhi/ Kluwer Academic Publishers, Dordrecht, in press

    Google Scholar 

  • Gilmore AM, Hazlett TL and Govindjee (1995) Xanthophyll cycle dependent quenching of Photosystem II Chl a fluorescence: Formation of a quenching complex with a short fluorescence lifetime. Proc Nat Acad Sci USA 92: 2273–2277

    CAS  PubMed  Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG and Govindjee (1996) Photosystem II chlorophyll a fluorescence lifetimes are independent of the antenna size differences between barley wild-type and chlorina mutants: Comparison of xanthophyll dependent quenching and photochemical quenching. Photosynth Res 48: 171–187

    Article  CAS  Google Scholar 

  • Gilmore AM, Shinkarev V, Hazlett TL and Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry 37: 13582–13593

    Article  CAS  PubMed  Google Scholar 

  • Goedheer JHC (1969a) Carotenoids in blue-green and red algae. In: Metzner H (ed) Progress in Photosynthesis Research, Vol II. Plastid Pigments, Electron Transfer, pp 811–817. H. Laupp Jr., Tübingen

    Google Scholar 

  • Goedheer JHC (1969b) Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves. Biochim Biophys Acta 172: 252–265

    CAS  PubMed  Google Scholar 

  • Goedheer JC (1972) Fluorescence in relation to photosynthesis. Ann Rev Plant Physiol 23: 87–112

    CAS  Google Scholar 

  • Goodwin TW (1952) The Comparative Biochemistry of Carotenoids. Chapman and Hall, London

    Google Scholar 

  • Goodwin TW (ed) (1976) Chemistry and Biochemistry of Plant Pigments. Academic Press, New York

    Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: Chl a fluorescence. Aust J Plant Physiol 22: 131–160

    CAS  Google Scholar 

  • Govindjee and Govindjee R (1965) Action spectra for the appearance of difference absorption bands at 480 and 520 nm in illuminated Chlorella cells and their possible significance to a two-step mechanism of photosynthesis. Photochem Photobiol 4: 675–683

    Google Scholar 

  • Govindjee and Rabinowitch E (1960) Two forms of Chl a in vivo with distinct photochemical function. Science 132: 355–356

    CAS  PubMed  Google Scholar 

  • Govindjee and Satoh K (1986) Fluorescence properties of Chl b-and Chl c-containing algae. In: Govindjee, Amesz J and Fork DC (eds) Light emission by plants and bacteria, pp. 497–537. Academic Press, Orlando

    Google Scholar 

  • Govindjee, Ichimura S, Cederstrand C and Rabinowitch E (1960) Effect of combining far-red light with shorter wave light on the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89: 322–323

    Article  CAS  PubMed  Google Scholar 

  • Griffiths M, Sistrom WR, Cohen-Bazire G and Stanier RY (1955) Function of carotenoids in photosynthesis. Nature 176: 1211–1214

    CAS  PubMed  Google Scholar 

  • Haxo F and Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33: 389–422

    Article  CAS  PubMed  Google Scholar 

  • Haxo FT, Kychia JH, Somers GH, Bennett A and Siegelman HS (1976) Peridinin-Chl a proteins of the dinoflagellate Amphidinium carterae (Plymouth 450). Plant Physiol 57: 297–303

    CAS  Google Scholar 

  • Hirschberg J and Chamovitz D (1994) Carotenoids in cyanobacteria. In Bryant D (ed) The Molecular Biology of Cyanobacteria, pp. 559–579. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Dietrichs K (1996) Structural basis of light harvesting by carotenoids-peridinin-chlorophyll protein from Amphidinium carterae. Science 272: 1788–1791

    CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1994) Regulation of light harvesting in green plants: Indication by nonphotochemical quenching of Chl fluorescence. Plant Physiol 106: 415–420

    CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Ann Rev Plant Physiol Plant Mol Biol 47: 655–684

    CAS  Google Scholar 

  • Isler O (1971) Carotenoids. Birkhäuser Verlag, Basel and Stuttgart

    Google Scholar 

  • IUPAC and IUB (1971) IUPAC commission on the nomenclature of organic chemistry and IUPAC-IUB commission on biochemical nomenclature: Tentative rules for the nomenclature of carotenoids. Biochemistry 10: 4827–4837

    Google Scholar 

  • IUPAC and IUB (1975) Nomenclature of carotenoids (Recommendations 1974). Biochemistry 14: 1803–1804

    Google Scholar 

  • Jablonski A Z (1935) Über den Mechanismus des Photolumineszenz von Farbstoffphosphoren. Zs Phys 94: 38–46

    CAS  Google Scholar 

  • Jackson JB and Crofts AR (1969) The high energy state in chromatophores from Rhodopseudomonas sphaeroides. FEBS Lett 4: 185–189

    Article  CAS  PubMed  Google Scholar 

  • Jensen A and Liaaen-Jensen S (1959) Quantitative paper chromatography of carotenoids. Acta Chem Scand 13: 1863–1868

    CAS  Google Scholar 

  • Junge W and Witt HT (1968) On the ion transport system of photosynthesis—Investigations on a molecular level. Z Naturforsch 23b: 244–254

    Google Scholar 

  • Kageyama A, Yokohama Y, Shimura S and Ikawa T (1977) An efficient excitation energy transfer from a carotenoid, siphonaxanthin to Chl a observed in a deep-water species of chlorophycean seaweed. Plant Cell Physiol 18: 477–480

    CAS  Google Scholar 

  • Kamen MD (1986) On creativity of eye and ear: A commentary on the career of TW Engelmann. Proc Amer Philos Sci 130: 232–246

    CAS  Google Scholar 

  • Karrer P (1934) Über Carotinoidfarbstoffe. Z Angew Chem 42: 918–924

    Google Scholar 

  • Karrer P and Helfenstein A (1933) Plant Pigments. Ann Rev Biochem 2: 397–418

    CAS  Google Scholar 

  • Karrer P and Jucker E (1948) Carotinoide. Birkh00E4;user, Basle (English translation, 1950, by Braude EA, Elsevier, Amsterdam)

    Google Scholar 

  • Karrer P and Oswald A (1935) Carotinoide aus den Staubbeuteln von Lilium trignirum. Ein neues carotinoid Antheraxanthin. Helv Chim Acta 18: 1303–1305

    CAS  Google Scholar 

  • Knox RS (1975) Excitation energy transfer and migration: theoretical considerations. In: Govindjee (ed) Bioenergetics of Photosynthesis, pp. 183–221. Academic Press, New York

    Google Scholar 

  • Knox RS (1996) Electronic excitation transfer in the photosynthetic unit: Reflections on work of William Arnold. Photosynth Res 48: 35–39

    Article  CAS  Google Scholar 

  • Kramer H J M, Amesz J and Rijgersberg CP (1981) Excitation spectra of chlorophyll fluorescence in spinach and barley chloroplasts at 4 K. Biochim Biophys Acta 637: 272–277

    CAS  Google Scholar 

  • Kohl FG (1902) Untersuchungen ueber das Carotin und seine physiologischeBedeutung in der Pflanze. Borntraeger, Leipzig

    Google Scholar 

  • Koyama FY (1991) Structures and functions of carotenoids in photosynthetic systems. J Photochem Photobiol B9: 265–280

    CAS  Google Scholar 

  • Krinsky NI (1968) The protective function of carotenoid pigments. In: Giese AC (ed) Photophysiology, Vol 3, pp 123–195. Academic Press, New York

    Google Scholar 

  • Krinsky N (1971) Function (of carotenoids) In: Isler O (ed) Carotenoids, pp. 670–716. BirkhauserVerlag, Basel and Stuttgart

    Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against photooxidation. Pure ApplChem 51: 649–660

    CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kühn R (1935) Plant Pigments. Ann Rev Biochem 4: 479–496

    Google Scholar 

  • Lederer E (1934) Les carotinoides des plantes. Hermann et Cie, Paris

    Google Scholar 

  • Liaaen-Jensen S (1978) Chemistry of carotenoid pigments. In: Clayton R and Sistrom WR (eds) The Photosynthetic Bacteria, pp 233–247. PlenumPress, New York

    Google Scholar 

  • Lubimenko V (1927) Recherches sur les pigments des plastes et sur la photosynthese. Rev GenBotan 39: 547–559

    Google Scholar 

  • MacKinney G (1935) Leaf carotenes. J Biol Chem 111: 75–84

    Google Scholar 

  • Mimuro M and Katoh T (1991) Carotenoids in photosynthesis—absorption, transfer and dissipation of light energy. Pure Appl Chem 63: 123–130

    CAS  Google Scholar 

  • Mimuro M, Tomo T, Nishimura Y, Yamazaki I and Satoh K (1995) Identification of a photochemically inactive pheophytin molecule in the spinach D1-D2-cyt b559 complex. Biochim Biophys Acta 1232: 81–88

    Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and proton transfer by a chemiosmotic type of mechanism. Nature 191: 144–148

    CAS  PubMed  Google Scholar 

  • Montfort C (1936) Carotinoide, Photosynthese und Quanten-theorie. Jahrb Wiss Botan 83: 725–772

    CAS  Google Scholar 

  • Montfort C (1940) Die Photosynthese brauner Zellen im Zusammenwirken von Chlorophyll und Carotinoiden. Zeit Physik Chem A 186: 57–93

    Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997a) Chlamydomonas xanthophyll cycle mutants identified by video imaging of Chl fluorescence quenching. Plant Cell 9: 1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997b) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94: 14162–14167

    Article  PubMed  Google Scholar 

  • Niyogi KK, Grossman and Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134

    Article  CAS  PubMed  Google Scholar 

  • Oppenheimer JR (1941) Internal conversion in photosynthesis. Phys Rev 60: 158

    Article  CAS  Google Scholar 

  • Owens TG (1996) Processing of excitation energy by antenna pigments. In: Baker NR (ed) Photosynthesis and the Environment, pp 1–23. Kluwer Academic, Dordrecht

    Google Scholar 

  • Packer L (ed) (1992a) Carotenoids, part A. Methods Enzymol 213: 1–538

    Google Scholar 

  • Packer L (ed) (1992b) Carotenoids, part B. Methods Enzymol 214: 1–468

    Google Scholar 

  • Palmer LS (1922) Carotenoids and Related Pigments. American Chemical Society Monographs Ser, Chemical Catalog, New York

    Google Scholar 

  • Palmer LS (1934) The biological and chemical nomenclature of the carotenoids. Science 79: 488–490

    CAS  Google Scholar 

  • Pearlstein RM (1982) Chlorophyll singlet excitons. In: Ovindjee (ed) Photosynthesis. Vol I, Energy Conversion by Plants and Bacteria, pp 293–330. Academic Press, New York

    Google Scholar 

  • Perrin F (1926) Polarisation de la lumiere de fluorescence. Vie moyenne des molecules dans ľetat excité. J Physique 7: 390–401

    CAS  Google Scholar 

  • Perrin F (1929) La fluorescence des solutions: Induction moleculaire, polarisation et duree ďemission, photochemie. Annales de Physique 12: 169–275

    CAS  Google Scholar 

  • Platt JR (1959) Carotene-donor-acceptor complexes in photosynthesis. Science 129: 372–374

    CAS  Google Scholar 

  • Pogson B, McDonald KA, Truong M, Britton G and DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8: 1627–1639

    Article  CAS  PubMed  Google Scholar 

  • Pogson B, Niyogi KK, Björkman O and Dellapenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95: 13324–13329

    Article  CAS  PubMed  Google Scholar 

  • Polivka T, Herek JL, Zigmantas D, Åkerlund H-E and Sundström V (1999) Direct observation of the (forbidden) S1 state in carotenoids. Proc Natl Acad Sci USA 96: 4914–4917

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitch E (1945) Photosynthesis and Related Processes. Vol. I. Chemistry of Photosynthesis, Chemosynthesis and Related Processes in Vitro and in Vivo. (See scheme 7.V on p. 162.) Interscience Publishers Inc., New York

    Google Scholar 

  • Rabinowitch E (1951) Photosynthesis and Related Topics, Vol. II, Part 1, Spectroscopy and fluorescence; Kinetics of Photosynthesis. Interscience Publishers Inc., New York

    Google Scholar 

  • Rabinowitch E (1956) Photosynthesis and Related Processes. Vol. II. Part 2. Kinetics of Photosynthesis (continued); Addenda to Vol. I and Vol. II, Part I. (See p. 1862, paragraph 2.) Interscience Publishers Inc., New York

    Google Scholar 

  • Rabinowitch E (1961) Robert Emerson. Nat Acad Sci USA Biographical Memoirs. 35: 112–131

    Google Scholar 

  • Sapozhnikov DI, Krasovskaya TA and Maevskaya AN (1957) Change in the interrelationship of the basic carotenoids of the plastids of green leaves under the action of light. DoklAkad Nauk SSSR (English Translation) 113: 465–467

    CAS  Google Scholar 

  • Schuett F (1890) Über Peridineen farbstoffe. Ber Deutsch Bot Ges 8: 9–32

    Google Scholar 

  • Siefermann-Harms D (1987a) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69: 561–568

    CAS  Google Scholar 

  • Siefermann-Harms D (1987b) Carotenoids in photosynthesis I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta 811: 325–355

    Google Scholar 

  • Siefermann-Harms, D and Ninnemann, H (1982) Pigment organization in the light-harvesting Chl-a/b protein complex of lettuce chloroplasts. Evidence obtained from protection of the Chls against proton attack and from excitation energy transfer. Photochem Photobiol 35: 719–731.

    CAS  Google Scholar 

  • Sistrom WR, Griffiths M and Stanier RY (1956) The biology of a photosynthetic bacterium which lacks colored carotenoids. J Cell Comp Physiol 48: 473–515

    CAS  Google Scholar 

  • Smith JHC (1930) The yellow pigments of green leaves: Their chemical constitution and possible function in photosynthesis. Contributions to Marine Biology, pp. 145–160. Stanford University, Stanford

    Google Scholar 

  • Song PS, Koka P, Prezelin B and Haxo F (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-Chl a-protein, from marine dinoflagellates. Biochemistry 15: 4422–4427

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY (1960) Carotenoid pigments: Problems of synthesis and function. The Harvey Lectures 54: 219–255

    CAS  Google Scholar 

  • Strehler BL (1957) Some energy transduction problems in photosynthesis. In: Rudnick D (ed) Rhythmic and Synthetic Processes in Growth, pp 171–199. Princeton University Press, Princeton

    Google Scholar 

  • Stokes GG (1852) On the change of refrangibility of light. Phil Trans Roy Soc London 142: 463–562

    Google Scholar 

  • Strain HH (1938) Leaf Xanthophylls. Carnegie Institute of Washington Publication No. 490, Stanford

    Google Scholar 

  • Strain HH, Manning WM and Hardin G (1944) Xanthophylls and carotenes of diatoms, brown algae, dinoflagellates and sea anemones. Biol Bull 86: 169–191

    CAS  Google Scholar 

  • Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Ann Rev Biochem 467: 819–846

    Google Scholar 

  • Stryer L and Haugland RP (1967) Energy transfer: A spectroscopic ruler. Proc Nat Acad Sci USA 58: 719–726

    CAS  PubMed  Google Scholar 

  • Tanada T (1951) The photosynthetic efficiency of carotenoid pigments in Navicula minima. Am J Bot 38: 276–283

    CAS  Google Scholar 

  • Telfer A, Dhami S, Bishop SM, Phillips D and Barber J (1994) Beta-carotene quenches singlet oxygen formed by isolated Photosystem II reaction centers. Biochemistry 33: 14469–14474

    Article  CAS  PubMed  Google Scholar 

  • Trebst A and Depka B (1997) Role of carotene in the rapid turnover and assembly of Photosystem II in Chlamydomonas reinhardtii. FEBS Lett 400: 359–362

    Article  CAS  PubMed  Google Scholar 

  • Tswett M (1906) Adsorptionsanalyse und Chromatographische Methode. Anwendung auf die Chemie des Chlorophylls. Ber Deutsch Botan Ges 24: 384–393

    CAS  Google Scholar 

  • Tswett M (1911) Über den makro-und microchemischen Nachweis des Carotins. Ber Deut Botan Ges 29: 630–636

    CAS  Google Scholar 

  • Van Grondelle R and Amesz J (1986) Excitation energy transfer in photosynthetic systems. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, pp 191–223. Academic Press, Orlando

    Google Scholar 

  • Van Grondelle R, Dekker JP, Gilbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    CAS  Google Scholar 

  • Van Niel CB and Smith JHC (1935) Studies on the pigments of the purple bacteria. I: On spirilloxanthin, a component of the pigment complex of Spirillum rubrum. Arch Mikrobiol 6: 219–229

    Google Scholar 

  • Van Norman RW, French CS and MacDowall FDH (1948) The absorption and fluorescence spectra of two red marine algae. Plant Physiol 23: 455–466

    Google Scholar 

  • Vermeulen D, Wassink EC and Reman GH (1937) On the fluorescence of photosynthesizing cells. Enzymologia 4: 254–268

    CAS  Google Scholar 

  • Wackenroder HWF (1831) Über das oleum rad. Danci aethereum, das Carotin, den Carotlenzucher und den officinellum succus Danci. Mag Pharm 33: 144 et seq

    Google Scholar 

  • Warburg O and Negelein E (1923) Über den Einfluss der Wellenlänge auf den Energie Umsatz bei der Kohlen-sauereassimilation. Z Phys Chem 106: 191–216

    CAS  Google Scholar 

  • Wassink EC and Kersten JAH (1945) Photosynthesis and fluorescence of the chlorophylls of diatoms. Enzymologia 11: 282–312

    CAS  Google Scholar 

  • Wassink EC and Kersten JAH (1946) Observations sur le spectre ďbsorption et sur le role des carotenoides dans la photosynthèse des diatomes. Enzymologia 12: 3–32

    Google Scholar 

  • Willstädt H (1934) Carotinoide, Bakterien-und Pilzfarbstoffe, Stuttgart

    Google Scholar 

  • Wilstätter R and Stoll A (1913) Unterssuchungen über chlorophyll. Springer, Berlin (American edition, 1928)

    Google Scholar 

  • Witt HT (1975) Energy conservation in the functional membrane. In: Govindjee (ed) Bioenergetics of Photosynthesis, pp 493–554. Academic Press, New York

    Google Scholar 

  • Wolff C, Buchwald H-E, Rüppel, Witt K and Witt HT (1969) Rise time of the light-induced electrical field across the function membrane of photosynthesis. Z Naturforsch B 24: 1038–1041

    CAS  PubMed  Google Scholar 

  • Xiong J, Subramaniam S and Govindjee (1996) Modeling of the D1/D2 proteins and cofactors of the Photosystem II reaction center. Protein Sci 5: 513–532

    Google Scholar 

  • Xiong J, Subramaniam S and Govindjee (1998) A knowledge-based three dimensional model of the Photosystem II reaction center of Chlamydomonas reinhardtii. Photosynth Res 56: 229–254

    Article  CAS  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51: 639–648

    CAS  Google Scholar 

  • Yamamoto HY and Bassi R (1996) Carotenoids: Localization and function. In: Ort DO and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 539–563. Kluwer Academic, Dordrecht

    Google Scholar 

  • Yamamoto HY, Nakayama TOM and Chichester CO (1962) Studies on the light and dark interconversion of leaf Xanthophylls. Arch Biochem Biophys 97: 168–173

    Article  CAS  PubMed  Google Scholar 

  • Zechmeister L (1934) Carotinoide, ein biochemischer Berichte über pflanzliche und tierische Polyenfarbstoffe. Springer Verlag, Berlin

    Google Scholar 

  • Zechmeister L (1962) Cis-trans Isomeric Carotenoids, Vitamins A and Arylpolyenes. Springer Verlag, Vienna and Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Govindjee (1999). Carotenoids in Photosynthesis: An Historical Perspective. In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, vol 8. Springer, Dordrecht. https://doi.org/10.1007/0-306-48209-6_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48209-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5942-5

  • Online ISBN: 978-0-306-48209-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics