Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 7))

Summary

The lipid composition of Chlamydomonas spp. is described. These algae contain all the fatty acids characteristic of higher eukaryotic photosynthetic tissues and also some unusual fatty acids. The chloroplast membranes contain galactolipids, sulfolipid and phosphatidylglycerol as do all photosynthetic membranes. Phosphatidyl-ethanolamine and phosphatidylinositol are found outside the chloroplast, but phosphatidylcholine is absent. Rather, an unusual betaine-containing lipid, diacylglycerol-trimethyl-homoserine, is present. The fatty acid distribution on the sn-1 and sn-2 carbons of the glycerol in different lipid classes is used to propose a scheme for the organization of glycerolipid metabolism in Chlamydomonas spp. in which most of the polyunsaturated fatty acids in the chloroplast are synthesized by the intrachloroplastic desaturase and acylase pathways. A set of experiments which demonstrate the ability of Chlamydomonas spp. to take up lipids from liposomes added to the medium, and consequently to change fatty acid and lipid composition is presented. Mutants affected in lipid composition are described. Four of them are affected in the biosynthesis of phosphatidylglycerol, one is affected in the synthesis of the sulfoquinovosyldiacylglycerol, while another shows a reduced level of chloroplastic poly-unsaturated fatty acids. Finally, evidence for the involvement of certain lipids such as phosphatidylglycerol or sulfoquinovosyl-diacylglycerol in some steps of thylakoid membrane biogenesis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACP:

acyl carrier protein

CF0CF1:

CF0CF1 sub-units of the ATP synthase complex

Cl6:0:

palmitic acid

Cl6:Δ7:

Δ7 hexadecamonoenoic acid

Cl6:Δ9:

Δ9 hexadecamonoenoic acid

Cl6:lΔ3t:

Trans-Δ 3-hexadecenoic acid

C16:2:

hexadecadienoic acid

C16:3:

hexadecatrienoic acid

C16:4:

hexadecatetraenoic acid

C18:0:

stearic acid

Cl8:lΔ9:

oleic acid

Cl8:lΔ11:

cis-vaccenic acid

C18:2:

linoleic acid

Cl8:3Δ5,9,12:

Δ5,9,12 octadecatrienoic acid

Cl8:3Δ9,12,15:

α-linolenic acid

C20:4:

eicosatetrienoic acid

DGDG:

digalactosyldiacylglycerol

DGTS:

digacyl-glycerol-trimethyl-homoserine

LHC I:

Light harvesting chlorophyll a+b protein complex associated with PS I

LHCII:

Light harvesting chlorophyll a+b protein complex associated with PS II

MGDG:

monogalactosyldiacylglycerol

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PlP2:

polyphosphoinositols

PG:

phosphatidylglycerol

PS I:

Photosystem I

PS II:

Photosystem II

SQDG:

sulfoquinovosyldiacylglycerol

References

  • Brederoo J, De Wildt P, Popp-Snijdcrs C, Irvine RF, Musgrave A and Van den Ende H (1991) Polyphosphoinositol lipids in Chlamydomonas eugametos gametes. Planta 184: 175–181

    CAS  Google Scholar 

  • Brown AE and Elovson J (1974) Isolation and characterization of a novel lipid, l(3), 2-diacylglyceryl-(3)-0-4′-(N,N,N-trimethyl)homoserine from Ochromonas danica. Biochemistry 13: 3476–3482

    CAS  PubMed  Google Scholar 

  • Browse J, Warwick N, Somerville CR and Slack CR (1986) Fluxes trough the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16∶3’ plant Arabidopsis thaliana. Biochem J 235: 25–31

    CAS  PubMed  Google Scholar 

  • Delo J, Ernst-Funberg MC and Bloch K (1971) Fatty acid synthetase from Euglena gracilis. Arch Biochem Biophys 143: 384–391

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM and Rozentsvet OA (1989) Diacylglycerol trimethylhomoserines and phospholipids of some green marine macrophytes. Phytochemistry 28: 3341–3343

    Google Scholar 

  • Dembitsky VM and Rozentsvet OA (1990) Glycolipids and phospholipids of brown algae species. Phytochemistry 29: 3417–3421

    CAS  Google Scholar 

  • Dubacq JP and Trémolières A (1983) Occurrence and function of phosphatidylglycerol containing Δ3-trans-hexadecenoic acid in photosynthetic lamellae. Physiol Veg 21: 293–312

    CAS  Google Scholar 

  • Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C and Trémolières A (1994) Evidence from in vivo manipulations of lipid composition in mutants that the Δ-trans-hexadecenoic acid containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226: 473–482

    Article  CAS  PubMed  Google Scholar 

  • Eichenberger W (1976) Lipids of Chlamydomonas reinhardtii under different growth conditions. Phytochemistry 15: 459–463

    Article  CAS  Google Scholar 

  • Eichenberger W (1982) Distribution of diacylglycerol O-4′-(N, N,N-trimethyl)homoserine in different algae. Plant Sci Lett 24:459–463

    Google Scholar 

  • Eichenberger W (1990) Identification of new plant lipids: structure of a second betaine lipid from algae. In: Quinn PJ and Harwood JL (eds) Plant Lipid Biochemistry, Structure and Utilization, pp 9–16. Portland Press, London

    Google Scholar 

  • Eichenberger W (1993) Betaine lipids in lower plants. Distribution of DGTS, DGTA and phospholipids and the intracellular localization and site of biosynthesis of DGTS. Plant Physiol Biochem 31:213–221

    CAS  Google Scholar 

  • Eichenberger W, Boschetti A and Michel HP (1986) Lipid and pigment composition of a chlorophyll b-deficient mutant of Chlamydomonasreinhardtii. Physiol. Plant 66:589–594

    CAS  Google Scholar 

  • El Maani A (1996) Etude du rôle du phosphatidylglycérol dans la biogenèse et ľorganisation fonctionnelle dc la membrane photosynthétique chez quatre mutants de Chlamydomonas reinhardtii affectéls dans le métabolisme des lipides. Thèse de Doctorat ďEtat, Université Paris-Sud, France.

    Google Scholar 

  • Frentzen M (1986) Biosynthesis and desaturation of different diacylglycerol moieties in higher plants. J Plant Physiol 124: 193–209

    CAS  Google Scholar 

  • Frentzen M, Hares W and Schiburr A (1984) Properties of the microsomal glyceroI-3-P and monoacylglycerol-3P-acyltransferases from leaves. In: Siegenthaler PA and Eichenberger W (eds) Structure Function and Metabolism of Plant Lipids. pp 105–110. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Gamier J, Wu B, Maroc J, Guyon D and Trémolières A (1990) Restoration of both an oligomeric form of the light-harvesting antenna CP II and a fluorescence state II-state I transition by Δ3-trans-hexadecenoic acid containing phosphatidylglycerol, in cells of a mutant of Chlamydomonas reinhardtii. Biochim Biophys Acta 1020:153–162

    Google Scholar 

  • Giroud C, Gerbert A and Eichenberger W (1988) Lipids of Chlamydomonas reinhardtii. Analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol 29: 587–595

    CAS  Google Scholar 

  • Grenier G, Guyon D, Roche O, Dubertret G and Trémolières A (1991) Modification of fatty acid composition of Chlamydomonas reinhardtii cultured in the presence of liposomes. Plant Physiol Biochem 29:429–440

    CAS  Google Scholar 

  • Gresti J, Mignerot C, Bezard J and Wolff RL (1996) Distribution of Δ5 olefinic acid in the triacylglycerols from Pinus coraiensis and Pinus pinaster seeds oil. J A O C S 73:1539–1548

    CAS  Google Scholar 

  • Hobe S, Prytulla S, Kühlbrandt W and Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b protein complex. EMBO J 13: 3423–3429

    CAS  PubMed  Google Scholar 

  • Hobo S, Förster R, Klinger J and Paulsen H (1995) N-proximal sequence motif in light-harvesting a/b binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 43: 10224–10228

    Google Scholar 

  • Hope W and Scwhenn JD (1981) In vitro biosynthesis of the plant sulfolipid: On the origin of the sulfonate group. Z Natörforch c36c: 820–826

    Google Scholar 

  • James AT and Nichols BW (1966) Lipids of photosynthetic systems. Nature 210: 372–375

    CAS  Google Scholar 

  • Janero DR and Barnett R (1982a) Isolation and characterization of an ether-linked homoserine from the thylakoid membrane of Chlamydomonas reinhardtii 137+− J Lipid Res 23: 307–316

    CAS  PubMed  Google Scholar 

  • Janero DR and Barnett R (1982b) Cardiolipin of Chlamydomonas reinhardtii 137+. Phytochemistry 21: 1151–1152

    CAS  Google Scholar 

  • Jeselma CLAS, Michaels DR, Janero DR and Barnett RJ (1982) Membrane lipid metabolism in Chlamydomonas reinhardtii 137+ and y-1.I. Biochemical localization and characterization of acyltransferase activities. J Cell Sci 58: 469–488

    Google Scholar 

  • Mac Court P, Kunstt L, Browse J and Somerville CR (1987) The effects of reduced amount of lipid unsaturation on chloroplast ultrastructure and photosynthesis in a mutant of Arabidopsis thaliana. Plant Physiol 84: 353–360

    Google Scholar 

  • Maroc J, Trémolières A, Gamier J and Guyon D (1987) Oligomeric form of the light-harvesting chlorophyll a+b protein complex CP II, phosphatidylglycerol; Δ3-trans-hexadecenoic acid and energy transfer in Chlamydomonas reinhardtii wild type and mutants. Biochim Biophys Acta 893: 91–99

    CAS  Google Scholar 

  • Matsumoto GI, Shioya M and Nagashima H (1984) Occurrence of 2-hydroxy acids in microalgae. Phytochemistry 23: 1421–1423

    CAS  Google Scholar 

  • Marshall MO and Kates M (1972) Biosynthesis of phosphatidylglycerol by cell-free preparation from spinach leaves. Biochim Biophys Acta 260: 558–570

    CAS  PubMed  Google Scholar 

  • Mendolia-Morgenthaler LW, Eichenberger W and Boschetti A (1985) Isolation of chloroplast envelopes from Chlamydomonas. Lipid and polypeptide composition. Plant Sci 41: 97–10

    Google Scholar 

  • Michaels ASCL, Jeselma CL and Barnett RJ (1983) Membrane lipid metabolism in Chlamydomonas reinhardtii 137+ and y-1 II Cytochemical localization of acyltransferases activities. J Ultrastr Res 82: 35–51

    Article  CAS  Google Scholar 

  • Moore TS, Lord JM, Kagawa T and Beevers H (1973) Enzymes of phospholipid metabolism in the endoplasmic reticuluin of castor bean endosperm. Plant Physiol 52: 50–53

    CAS  Google Scholar 

  • Moseley FR and Thompson CA jr (1980) Lipid composition of Volvox carteri. Plant Physiol 65: 260–265

    CAS  Google Scholar 

  • Oursel A, Escoffier A, Kader JC, Dubacq JP and Trémolières A (1987) Last step in the cooperative pathway for galactolipids synthesis in spinach leave: Formation of monogalactosyl-diacylglycerol with C18 polyunsaturated acyl groups at both carbon atoms of the glycerol. FEBS Lett 219: 393–399

    Article  CAS  Google Scholar 

  • Pick U, Gounaris K, Weiss M and Barber J (1985) Tightly bound sulpholipid in chloroplast CFo-CF. Biochim Biophys Acta 808: 415–420

    CAS  Google Scholar 

  • Remy R, Trémolières A and Ambard-Breteville F (1984) Formation of oligomeric light-harvesting chlorophyll a/b protein by interaction with liposomes. Photobiochem Photobiophys 7: 267–276

    CAS  Google Scholar 

  • Roughan PG and Slack CR (1982) Cellular organization of glycerolipid metabolism. Ann. Rev. Plant Physiol. 33: 97–132

    CAS  Google Scholar 

  • Roughan PG and Slack CR (1984) Glycerolipid synthesis in leaves. Trends Biochem Sci 9: 383–386

    Article  CAS  Google Scholar 

  • Seras M, Gamier J, Trémolières A and Guyon D (1989) Lipid biosynthesis in cells of the wild type and two photosynthesis mutants of Chlamydomonas reinhardtii. Plant Physiol Biochem 27: 393–399

    CAS  Google Scholar 

  • Sato N and Furuya M (1984) Distribution of diacylglycerol-trimcthylhomoscrinc in selected species of vascular plants. Phytochemistry 23: 1625–1627

    CAS  Google Scholar 

  • Sato N and Furuya M (1985) Distribution of diacylglycerol-trimethylhomoserine and phosphatidylcholine in non-vascular green plants. Plant Sci 38: 81–85

    Article  Google Scholar 

  • Sato N, Sonoike K, Tsuzuki M and Kawaguchi A (1995a) Impaired Photosystem II in a mutant of Chlamydomonas reinhardtii defective in sulfoquinovosyl diacylglycerol. Eur J Biochem 234: 16–23

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Tsuzuki M, Matsuda Y, Ehara T, Osafune T and Kawaguchi A (1995b) Isolation and characterization of mutants affected inlipidmetabolism of Chlamydomonas reinhardtii. Eu J Biochem 230: 987–993

    CAS  Google Scholar 

  • Sigrist M, Zwillenberg C, Giroud CH, Eichenberger W and Boschetti A (1998) Sulfolipid associated with the light-harvesting complex associated with Photosystem II apoproteins of Chlamydomonas reinhardtii. Plant Science 58: 15–23

    Google Scholar 

  • Trémolières A (1991) Lipid-protcin interactions in relation to light energy distribution inphotosynthetic membrane of cukaryotic organisms. Role of trans-Δ3-hexadecenoic acid containing phosphatidylglyccrol. Trends in Photochcm Photobiol 2: 13–32

    Google Scholar 

  • Trémolières A and Siegenthaler PA (1997) Reconstitution of photosynthetic structures and activities with lipids. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, function and Genetics, pp 175–189. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Trémolières A, Roche O, Dubcrtrct G, Guyon D and Gamier J (1991) Restoration of thylakoid appressions by trans-Δ3-hexadecenoic acid containing phosphatidy Iglycerol in a mutant of Clilamydonionas reinhardtii. Relationship with the regulation of excitation energy distribution. Biochim Biophys Acta 1059: 286–292

    Google Scholar 

  • Trémolières A, Dainese P and Bassi R (1994) Heterogenous lipid distribution among chlorophyll-binding proteins of Photosystem II in maize mesophyll chloroplasts. Eur J Biochem 22: 721–730

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Trémolières, A. (1998). Glycerolipids: Composition, Biosynthesis and Function in Chlamydomonas. In: Rochaix, J.D., Goldschmidt-Clermont, M., Merchant, S. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Advances in Photosynthesis and Respiration, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48204-5_21

Download citation

  • DOI: https://doi.org/10.1007/0-306-48204-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5174-0

  • Online ISBN: 978-0-306-48204-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics