Skip to main content

Chloroplast Protein Translocation

  • Chapter
  • 768 Accesses

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 7))

Summary

The signal hypothesis, first put forth by G. Blobel and B. Dobberstein over 20 years ago, suggested that all proteins had as part of their primary amino acid sequence an amino-terminal region that defined the destination of proteins carrying that signal. This hypothesis has stood the test of numerous experiments and appears to be pertinent to most cellular compartments and proteins within eukaryotes and prokaryotes, including the chloroplast. Studies with Chlamydomonas reinhardtii, the subject of this chapter, have tested these concepts in live cells and have provided both new findings and the confirmation of in vitro results derived from vascular plants. Proteins synthesized outside the plastid carry chloroplast specific signals, often at their amino terminus. This signal can be removed upon entry of the protein into the chloroplast, but those destined for internal compartments within the plastid also contain additional signals. This sub-organelle targeting information can be removed once the protein is correctly localized. Thus chloroplast sorting is determined by multifunctional signal sequences. Experiments with isolated organelles have defined a number of different energetic parameters that are required for the translocation of proteins with distinct types of signal sequences, and models suggest that multiple mechanisms exist within the chloroplast. C. reinhardtii can be grown either heterotrophically or photoautotrophically thereby allowing for the selection and propagation of mutations that affect the biogenesis of chloroplasts, and thus some that affect protein translocation directly. The genetic analysis of thylakoid protein translocation in C. reinhardtii has revealed at least six loci whose products are involved in the process, and has provided genetic means to dissect those paths in vivo that have been described in isolated organelle studies. While there are likely to be a variety of requirements for the targeting and translocation of proteins to and within the chloroplast, these mechanisms may well share components between apparatuses, and between diverse groups of organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Cyt f:

cytochrome f

DHFR:

dihydrofolate reductase

LHCP:

light harvesting chlorophyll a/b protein

OEC:

oxygen evolving complex

OEC33, OEC23, OEC17:

33 kDa, 23 kDA and 17 kDa subunits of the oxygen evolving complex

PC:

plastocyanin

Rubisco SSU:

small subunit of ribulose-1,5- bisphosphate carboxylase oxygenase

SRP54:

54 kDa subunit of the signal recognition particle

Tip:

thylakoid insertion protein

References

  • Auchincloss A, Alexander A and Kohorn BD (1992) Requirement for three membrane spanning alpha-helices in the post-translational insertion of a thylakoid membrane protein. J Biol Chem 267: 10439–10446

    CAS  PubMed  Google Scholar 

  • Baillet B and Kohorn BD (1996) Hydrophobic core but not amino-terminal charged residues are required for translocation of an integral thylakoid membrane protein in vivo. J Biol Chem 271: 18375–18378

    CAS  PubMed  Google Scholar 

  • Bernd KK and Kohorn BD (1998) Tip loci: Six Chlamydomonas nuclear suppressors that permit the translocation of proteins with mutant signal sequences. Genetics, in press

    Google Scholar 

  • Blobel G and Dobberstein B (1975) Transfer of proteins across membranes. Presence of proteolytically processed and unprocessed nascent immunoglobin light chains on the membrane-bound ribosomes of murine myeloma. J Cell Biol 67: 835–851

    CAS  PubMed  Google Scholar 

  • Blobel G and Dobberstein B (1977) In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-l,5-bisphosphate carboxylase of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 74: 1082–1085

    PubMed  Google Scholar 

  • Blobel G and Sabatini D (1971) Ribosome-membrane interaction in eukaryotic cells. In: Manson LA (ed) Biomembranes, pp 193–195. Plenum Publishing Corporation, New York

    Google Scholar 

  • Chua N-H and Schmidt G (1978) Post-translational transport into intact chloroplasts of a precursor to the small subunit of ribulose-l,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 75: 6110–6111

    CAS  Google Scholar 

  • Cline K and Henry R (1996) Import and routing of nucleus-encoded chloroplast proteins. Ann Rev of Cell and Devel Biol 12: 1–26

    CAS  Google Scholar 

  • Cline K, Ettinger W and Theg S (1992) Protein-specific energy requirements for protein transport across or into thylakoid membranes. J Biol Chem 267: 2688–2696

    CAS  PubMed  Google Scholar 

  • de Vitry C, Olive J, Drapier D, Recouvreur M and Wollman F-A (1989) Posttranslational events leading to the assembly of photosystem II protein complex: A study using photosynthesis mutants from C. reinhardtii. J Cell Biol 109: 991–1006

    PubMed  Google Scholar 

  • Emr S, Hanley-Way S and Silhavy T (1981) Suppressor mutations that restore export of a protein with a defective signal sequence. Cell 23: 79–88

    Article  CAS  PubMed  Google Scholar 

  • Falk H (1969) Rough thylakoids: polysomes attached to chloroplast membranes. J Cell Biol 42: 582–587

    Article  CAS  PubMed  Google Scholar 

  • Franzen L-G and Falk G (1992) Nucleotide sequence of cDNA clones encoding the beta subunit of mitochondrial ATP synthase from the green alga C. reinhardtii: The precursor protein encoded by the cDNA contains both an N-terminal presequence and a C-terminal extension. Plant Mol Biol 19: 771–780

    CAS  PubMed  Google Scholar 

  • Franzen L, Rochaix J and von Heijne G (1990) Chloroplast transit peptides from the green alga C. reinhardtii share features with both mitochondrial and higher plant chloroplast presequences. FEBS Lett 260: 165–168

    CAS  PubMed  Google Scholar 

  • Fujiki M and Verner K (1991) Coupling of protein synthesis and mitochondrial import in a homologous yeast in vitro system. J Biol Chem 266: 6841–6847

    CAS  PubMed  Google Scholar 

  • Fujiki M and Verner K (1993) Coupling of cytosolic protein synthesis and mitochondrial protein import in yeast. Evidence for cotranslational import in vivo. J Biol Chem 268: 1914–1920

    CAS  PubMed  Google Scholar 

  • Funke RP, Kovar JL and Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in C. reinhardtii at atmospheric levels of CO2 Demonstration via genomic complementation of the high CO2-requiring mutant ca-1. Plant Physiol 114: 237–244

    Article  CAS  PubMed  Google Scholar 

  • Gillham N (1994) Organelle genes and genomes. Oxford University Press New York

    Google Scholar 

  • Gorman D and Levine R (1966) Photosynthetic electron transport of C. reinhardtii VI. Electron transport in mutant strains lacking either cytochrome 553 or plastocyanin. Plant Physiol 41: 1648–1656

    CAS  Google Scholar 

  • Gray JC (1992) Cytochrome f: Structure function and biosynthesis. Photosyn Res 34: 359–374

    CAS  Google Scholar 

  • Grimm B, Ish-Shalom D, Even D, Glaczinski H, Ottersbach P, Ohad I and Kloppstech K (1989) The nuclear-encoded chloroplast 22kD heat-shock protein of C. reinhardtii. Evidence for translocation into the organelle without a processing step. Eur J Biochem 182: 539–46

    Article  CAS  PubMed  Google Scholar 

  • Hageman J, Baecke C, Ebskamp M, Pilon R, Smeekens S and Weisbeek P (1990) Protein import into and sorting inside the chloroplast are independent processes. Plant Cell 2: 479–494

    Article  CAS  PubMed  Google Scholar 

  • Henry R, Kapazoglou A, McCaffery M, and Cline K (1994) Differences between lumen targeting domains of chloroplast transit peptides determine pathway specificity for thylakoid transport. J Biol Chem 269: 10189–10192

    CAS  PubMed  Google Scholar 

  • Henry R, Carrigan M, McCaffery M, Ma X and Cline K (1997) Targeting determinants and proposed evolutionary basis for the Sec and delta pH protein transport systems in chloroplast thylakoid membranes. J Cell Biol 136: 823–832

    Article  CAS  PubMed  Google Scholar 

  • Harris EH (1989) The C. reinhardtii Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego

    Google Scholar 

  • High S, Henry R, Mould R, Valent Q, Meacock, S, Cline K, Gray J and Luirink J (1997) Chloroplast SRP54 interacts with a specific subset of thylakoid precursor proteins. J Biol Chem 272: 11622–11628

    Article  CAS  PubMed  Google Scholar 

  • Hoober J, White R, Marks D and Gabriel J (1994) Biogenesis of thylakoid membranes with emphasis on the process in C. reinhardtii. Photosyn Res 39: 15–31

    CAS  Google Scholar 

  • Horniak L Pilon M van’t Hof R and de Kruijff B 1993 The secondary structure of the ferredoxin transit sequence is modulated by its interaction with negatively charged lipids. FEBS Lett 334 241–246

    Article  CAS  PubMed  Google Scholar 

  • Howe G and Merchant S (1993) Maturation of thylakoid lumen proteins proceeds post-translationally through an intermediate in vivo. Proc Natl Acad Sci USA 90: 1862–1866

    CAS  PubMed  Google Scholar 

  • Huang L, Adam Z and Hoffman NE (1992) Deletion mutants of chlorophyll a/b binding proteins are efficiently imported into chloroplasts but do not integrate into thylakoid membranes. Plant Physiol 99: 247–255

    CAS  Google Scholar 

  • Hugosson M, Nurani G, Glaser E and Franzen LG (1995) Peculiar properties of the PsaF Photosystem J protein from the green alga C. reinhardtii: Presequence independent import of the PsaF protein into both chloroplasts and mitochondria. Plant Mol Biol 28: 525–535

    Article  CAS  PubMed  Google Scholar 

  • Hulford A, Hazell L, Mould R and Robinson C (1994) Two distinct mechanisms for the translocation of proteins across the thylakoid membrane, one requiring the presence of a stromal protein factor and nucleotide triphosphates. J Biol Chem 269: 3251–3256

    CAS  PubMed  Google Scholar 

  • Hurt E, Soltanifar N, Goldschmidt-Clermont M, Rochaix JD and Schatz G (1986) The cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria. EMBO J 5: 1343–1350

    CAS  PubMed  Google Scholar 

  • Jancro DR and Barrnett R (1981) Cellular and thylakoid-membrane phospholipids of C. reinhardtii 137+. J Lipid Res 22:1126–1130

    Google Scholar 

  • Kirwin P, Meadows J, Shackleton J, Musgrove J, Elderfield P, Hay N and Robinson C (1989) ATP-dependent import of a lumenal protein by isolated thylakoid vesicles. EMBO J 8: 2251–2255

    CAS  PubMed  Google Scholar 

  • Kohorn BD, Harel E, Chitnis PR, Thornber JP and Tobin EM (1986) Functional and mutational analysis of the light-harvesting chlorophyll a/b protein of thylakoid membranes. J Cell Biol 102: 972–981

    Article  CAS  PubMed  Google Scholar 

  • Kouranov A and Schnell D (1996) Protein translocation at the envelope and thylakoid membranes of chloroplasts. J Biol Chem 271: 31009–31012

    CAS  PubMed  Google Scholar 

  • Laidler V, Chaddock AM, Knott TG, Walker D and Robinson C (1995) A Sec Y homolog in Arabidopsis thaliana, J Biol Chem 270: 17664–17667

    CAS  PubMed  Google Scholar 

  • Li X, Henry R, Yuan J, Cline K and Hoffman N (1995) A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc Natl Acad Sci USA 92: 3789–3793

    CAS  PubMed  Google Scholar 

  • Margulies M and Michaels A (1974) Ribosomes bound to chloroplast membranes in C. reinhardtii. J Cell Biol 60: 65–77

    Article  CAS  PubMed  Google Scholar 

  • Mayfield S, Bennoun P and Rochaix JD (1987a) Expression of the nuclear encoded OEE1 protein is required for oxygen evolution and stability of Photosystem II particles in C. reinhardtii. EMBO J 6: 313–318

    CAS  PubMed  Google Scholar 

  • Mayfield S, Rahire M, Frank G, Zuber H and Rochaix JD (1987b) Expression of the nuclear gene encoding oxygen-evolving enhancer protein 2 is required for high levels of photosynthetic oxygen evolution in C. reinhardtii. Proc Natl Acad Sci USA 84: 749–753

    CAS  PubMed  Google Scholar 

  • Mayfield S, Schirmer-Rahire M, Frank G, Zuber H and Rochaix J-D (1989) Analysis of the genes of the OEE1 and OEE3 proteins of the Photosystem II complex from C. reinhardtii. Plant Mol Biol 12: 683–693

    Article  CAS  Google Scholar 

  • Merchant S and Bogorad L (1987) The Cu(II)-repressible plastidic cytochrome c: Cloning and sequence of a complementary DNA for the pre-apoprotein. J Biol Chem 262: 9062–9067

    CAS  PubMed  Google Scholar 

  • Michl D, Robinson C, Schackleton J, Herrmann R and Klosgen R (1994) Targeting of proteins to the thylakoids by bipartite presequences: CFoll is imported by a novel, third pathway. EMBO J 13: 1310–1317

    CAS  PubMed  Google Scholar 

  • Mishkind M, Wessler S and Schmidt G (1985) Functional determinants in transit sequences: Import and partial maturation by vascular plant chloroplasts of the ribulose-1,5-bisphosphate carboxylase small subunit of C. reinhardtii. J Cell Biol 100: 226–234

    Article  CAS  PubMed  Google Scholar 

  • Mould R and Robinson C (1991) A proton gradient is required for the transport of two lumenal oxygen-evolving proteins across the thylakoid membrane. J Biol Chem 266: 12189–12193

    CAS  PubMed  Google Scholar 

  • Nakai M, Tanaka A, Omata T and Endo T (1992) Cloning and characterization of the secY gene from the cyanobacterium Synechococcus PCC7942. Biochem Biophys Acta 1171:113–116

    CAS  PubMed  Google Scholar 

  • Nakai M, Goto A, Nohara T, Sugita D and Endo T (1994) Identification of the SecA protein homolog in pea chloroplasts and its possible involvement in thylakoidal protein import. J Biol Chem 269: 31338–31341

    CAS  PubMed  Google Scholar 

  • Nielsen V, Mant A, Knoetzel J, Moller B and Robinson C (1994) Import of barley photosystem I subunit N into the thylakoid lumen is mediated by a bipartite presequence lacking an intermediate processing site. J Biol Chem 269: 3762–3766

    CAS  PubMed  Google Scholar 

  • Nohara T, Asai T, Nakai M, Suguira M, and Endo T (1996) Cytochrome f encoded by the chloroplast genome is imported into thylakoids via the SecA-dependent pathway. Biochem Biophys Res Com 224: 474–478

    CAS  PubMed  Google Scholar 

  • Quinn J, Li H, Singer J, Morimoto B, Mets L, Kindle K and Merchant S (1993) The plastocyanin-deficient phenotype of C. reinhardtii ac-208 results from a frame-shift mutation in the nuclear gene encoding plastocyanin. J Biol Chem 268: 7832–7841

    CAS  PubMed  Google Scholar 

  • Reed HS (1942) A Short History of the Plant Science. Chronica Botanica Company, Waltham, MA

    Google Scholar 

  • Robinson C and Klosgen R (1994) Targeting of proteins into and across the thylakoid membrane—a multitude of mechanisms. Plant Mol Biol 26: 15–24

    Article  CAS  PubMed  Google Scholar 

  • Robinson C, Cai D, Hulford A, Brock I, Michl D, Hazell L, Schmidt I, Herrmann R and Klosgen R (1994) The presequence of a chimeric construct dictates which of two mechanisms are utilized for translocation across the thylakoid membrane: evidence for the existence of two distinct translocation systems. EMBO J 13: 279–285

    CAS  PubMed  Google Scholar 

  • Rufenacht A and Boschetti A (1995) Specificity of processing enzymes in chloroplasts of C. reinhardtii In: P. Mathis (ed) Photosynthesis: From Light to Biosphere, Vol III, pp 767–770. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Schatz G and Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271: 1519–1526

    CAS  PubMed  Google Scholar 

  • Schnarrenberger C, Pelzer-Reith B, Yatsuki H, Freund S, Jacobshagen S and Hori K (1994) Expression and sequence of the only detectable aldolase in C. reinhardtii. Arch Biochem Biophys 313: 173–78

    Article  CAS  PubMed  Google Scholar 

  • Schnell D (1995) Shedding light on the chloroplast protein import machinery. Cell 83: 521–524

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S, Bauerle C, Hageman J, Keegstra K and Weisbeek P (1986) The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46: 365–375

    Article  CAS  PubMed  Google Scholar 

  • Smith T and Kohorn BD (1994) Mutations in a signal sequence for the thylakoid membrane identify multiple protein transport pathways and nuclear suppressors. J Cell Biol 126: 365–374

    Article  CAS  PubMed  Google Scholar 

  • Su Q and Boschetti A (1993) Partial purification and properties of enzymes involved in the processing of a chloroplast import protein from C. reinhardtii. Eur J Biochem 217: 1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Su Q and Boschetti A (1994) Substrate-and species-specific processing enzymes for chloroplast precursor proteins. Biochem J 300: 787–792

    CAS  PubMed  Google Scholar 

  • Theg SM and Geske FJ (1992) Biophysical characterization of a transit peptide directing chloroplast protein import. Biochemistry 31: 5053–5060

    Article  CAS  PubMed  Google Scholar 

  • Van den Broeck G, Timko MP, Kausch AP, Cashmore AR, Van Montagu M and Herrera-Estrella L (1985) Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. Nature 313: 358–363

    PubMed  Google Scholar 

  • van’t Hof R, van Klompenburg W, Pilon M, Kozubek A, de Korte-Kool G, Demel R, Weisbeek PJ and de Kruijff B (1993) The transit sequence mediates the specific interaction of the precursor of ferredoxin with chloroplast envelope membrane lipids. J Biol Chem 268: 4037–4042

    Google Scholar 

  • Verner K (1993) Co-translational protein import into mitochondria: An alternate view. Trends Biochem Sci 18: 366–371

    Article  CAS  PubMed  Google Scholar 

  • Voelker R and Barkan A (1995) Two nuclear mutations disrupt distinct pathways for targeting proteins to the chloroplast thylakoid. EMBO J 14: 3905–3914

    CAS  PubMed  Google Scholar 

  • Voelker R, Mendel-Hartvig J and Barkan A (1997) Transposon-disruption of a maize nuclear gene, tha 1 encoding a chloroplast SecA homologue: In vivo role of cp-SecA in thylakoid protein targeting. Genetics 145: 467–478

    CAS  PubMed  Google Scholar 

  • von Heijne G, Steppuhn J and Herrmann R (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545

    Article  Google Scholar 

  • von Heijne G, Hirai T, Klosgen RB, Steppuhn J, Bruce B, Keegstra K, and Herrmann R (1991) CHLPEP—A database of chloroplast transit peptides. PMB Reporter 9: 104–126

    Google Scholar 

  • Wan J, Blakely SD, Dennis DT and Ko K (1995) Import characteristics of a leucoplast pyruvate kinase are influenced by a 19-amino-acid domain within the protein. J Biol Chem 270: 16731–16739

    CAS  PubMed  Google Scholar 

  • Whelan J and Glaser E (1997) Protein import into plant mitochondria. Plant Mol Biol 33: 771–789

    Article  CAS  PubMed  Google Scholar 

  • Wood PM (1978) Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c-552 in C. reinhardtii. Eur J Biochem 87: 9–19

    Article  CAS  PubMed  Google Scholar 

  • Yu LM, Merchant S, Theg SM and Selman BR (1988) Isolation of a cDNA for the gamma subunit of the chloroplast ATP synthase of C. reinhardtii import and cleavage of the precursor protein. Proc Natl Acad Sci USA 85: 1369–1373

    CAS  PubMed  Google Scholar 

  • Yuan J and Cline K (1994) Plastocyanin and the 33-kD a subunit of the oxygen-evolving complex are transported into thylakoids with similar requirements as predicted from path way specificity. J Biol Chem 269: 18463–18467

    CAS  PubMed  Google Scholar 

  • Yuan J, Henry R, McCaffery M and Cline K (1994) SecA homolog in protein transport within chloroplasts: Evidence for endosymbiont-derived sorting. Science 266: 796–798

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Perret, M.C., Bernd, K.K., Kohorn, B.D. (1998). Chloroplast Protein Translocation. In: Rochaix, J.D., Goldschmidt-Clermont, M., Merchant, S. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Advances in Photosynthesis and Respiration, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48204-5_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48204-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5174-0

  • Online ISBN: 978-0-306-48204-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics