Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 7))

Summary

Transcription and RNA maturation are two essential steps in gene expression. In chloroplasts, transcription is carried out by at least two biochemically and genetically separable activities, which may participate in establishing different basal expression rates for ribosomal RNAs, transfer RNAs and protein-coding genes. Because chloroplast RNA polymerases do not generally terminate transcription at sites corresponding to the 3′ termini of mature transcripts, these termini must be formed by RNA processing events. In Chlamydomonas reinhardtii chloroplasts, it appears that most or all transcript 5′-ends are also formed by RNA processing rather than by transcription initiation. Thus, RNA processing converts primary transcripts of generally unknown dimensions to the mature, accumulating transcripts. Molecular, genetic and biochemical approaches have been used to unravel the chloroplast transcription and RNA processing machinery, with the most information gained to date from the analysis of chimeric reporter genes introduced into chloroplasts by biolistic transformation. The picture painted bythese data reveals both similarities and differences between these processes in Chlamydomonas and land plants. However, some perceived differences, particularly based on the phenotypes of nuclear mutants which affect chloroplast mRNA metabolism, may reflect selection or screening procedures and thus may mask an overall congruity between gene expression mechanisms in the chloroplasts of all organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cpDNA:

chloroplast DNA

cpRNA:

chloroplast RNA

IR:

inverted repeat

LRP:

light-regulated promoters

NEP:

nucleus-encoded RNA polymerase

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

TAC:

transcriptionally active chromosome

UTR:

untranslated region

References

  • Allison LA and Maliga P (1995) Light-responsive and transcription-enhancing elements regulate the plastid psbD core promoter. EMBO J 14: 3721–3730

    CAS  PubMed  Google Scholar 

  • Allison LA, Simon LD and Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15: 2802–2809

    CAS  PubMed  Google Scholar 

  • Babitzke P, Granger L, Olszewski J and Kushner SR (1993) Analysis of mRNA decay and rRNA processing in Escherichia coli multiplemutants carrying a deletion in RNase III. J Bacteriol 175:229–239

    CAS  PubMed  Google Scholar 

  • Barkan A (1993) Nuclear mutants of maize with defects in chloroplast polysome assembly have altered chloroplast RNA metabolism. Plant Cell 5: 389–402

    Article  CAS  PubMed  Google Scholar 

  • Barkan A, Walker M, Nolasco M and Johnson D (1994) A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. EMBO J 13:3170–3181

    CAS  PubMed  Google Scholar 

  • Blowers AD, Klein U, Ellmore GS and Bogorad L (1993) Functional in vivo analyses ofthe 3′ flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol Gen Genet 238: 339–349

    Article  CAS  PubMed  Google Scholar 

  • Boudreau E, Otis C and Turmel M (1994) Conserved gene clusters in the highly rearranged chloroplast genomes of Chlamydomonas moewusii and Chlamydomonas reinhardtii. Plant Mol Biol 24: 585–602

    Article  CAS  PubMed  Google Scholar 

  • Bradley D and Gatenby AA (1985) Mutational analysis of the maize chloroplast ATPase-beta subunit gene promoter: The isolation of promoter mutantsin E. coli and their characterization in a chloroplast in vitro transcription system. EMBO J 4:3641–3648

    CAS  PubMed  Google Scholar 

  • Chen H and Stern DB (1991) Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. J Biol Chem 266: 24205–24211

    CAS  PubMed  Google Scholar 

  • Chen L and Orozco EM, Jr. (1988) Recognition of prokaryotic transcription terminators by spinach chloroplast RNA polymerase. Nucleic Acids Res 16: 8411–8431

    CAS  PubMed  Google Scholar 

  • Chen LJ, Rogers SA, Bennett DC, Hu MC and Orozco EMJ (1990) An in vitro transcription termination system to analyze chloroplast promoters: Identification of multiple promoters for the spinach atpB gene. Curr Genet 17: 55–64

    Article  CAS  PubMed  Google Scholar 

  • Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kück U, Bennoun P and Rochaix JD (1988) Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell 52: 903–914

    Article  CAS  PubMed  Google Scholar 

  • Christopher DA, Kim M and Mullet JE (1992) A novel light-regulated promoter is conserved in cereal and dicot chloroplasts. Plant Cell 4: 785–798

    Article  CAS  PubMed  Google Scholar 

  • Cohen SN (1995) Surprises at the 3′ end of prokaryotic RNA. Cell 80: 829–832

    CAS  PubMed  Google Scholar 

  • Daga A, Micol V, Hess D, Aebersold R and Attardi G (1993) Molecular characterization of the transcription termination factor from human mitochondria. J Biol Chem 268: 8123–8130

    CAS  PubMed  Google Scholar 

  • Deng XW and Gruissem W (1987) Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49: 379–387

    Article  CAS  PubMed  Google Scholar 

  • Deng XW, Stern DB, Tonkyn JC and Gruissem W (1987) Plastid run-on transcription: Application to determine the transcriptional regulation of spinach plastid genes. J Biol Chem 262: 9641–9648

    CAS  PubMed  Google Scholar 

  • Dinkins RD, Bandaranayake H, Baeza L, Griffiths AJF and Green BR (1997) hcf5, a nuclear photosynthetic electron transport mutant of Arabidopsis thaliana with a pleiotropic effect on chloroplast gene expression. Plant Physiol 113: 1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Donovan WP and Kushner SR (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci USA 83: 120–124

    CAS  PubMed  Google Scholar 

  • Drager RG (1993) Structure and transcript processing of a Euglena gracilis chloroplastoperon encoding genes rps2, atp1, atpH, atpF, atpA and rps18. PhDThesis, University of Arizona, Tucson

    Google Scholar 

  • Drager RG, Zeidler M, Simpson CL and Stern DB (1996) A chloroplast transcript lacking the 3′ invertedrepeat is degraded by 3′→5′ exoribonuclease activity. RNA 2: 652–663

    CAS  PubMed  Google Scholar 

  • Drager RG, Girard-Bascou J, Choquet Y, Kindle KL and Stern DB (1998) In vivo evidence for 5′→3′ exoribonuclease degradation of an unstable chloroplast mRNA. Plant J 13: 85–96

    Article  CAS  PubMed  Google Scholar 

  • Drapier D, Girard-Bascou J and Wollman F-A (1992) Evidence for nuclear control of the expression of the atpA and atpB chloroplast genes in Chlamydomonas. Plant Cell 4: 283–295

    Article  CAS  PubMed  Google Scholar 

  • Erion J (1985) Characterization of the mRNA transcripts of the maize, ribulose-l,5-bisphosphate carboxylase, large subunit gene. Plant Mol Biol 4: 169–179

    CAS  Google Scholar 

  • Finnegan PM and Brown GG (1990) Transcriptional and post-transcriptional regulation of RNA levels in maize mitochondria. Plant Cell 2: 71–84

    Article  CAS  PubMed  Google Scholar 

  • Fischer N, Stampacchia O, Redding K and Rochaix JD (1996) Selectable marker recycling in the chloroplast. Mol Gen Genet 251: 373–380

    CAS  PubMed  Google Scholar 

  • Fujie M, Kuroiwa H, Kawano S, Mutoh S and Kuroiwa T (1994) Behavior of organelles and their nucleoids in the shoot apical meristem during leaf development in Arabidopsis thaliana L. Planta 194: 395–405

    Article  CAS  Google Scholar 

  • Goldschmidt-Clermont M, Girard-Bascou J, Choquet Y and Rochaix JD (1990) Trans-splicing mutants of Chlamydomonas reinhardtii. Mol Gen Genet 223: 417–425

    Article  CAS  PubMed  Google Scholar 

  • Greenberg BM, Narita JO, DeLuca-Flaherty C, Gruissem W, Rushlow KA and Hallick RB (1984) Evidence for two RNA polymerase activities in Euglena gracilis chloroplasts. J Biol Chem 25′: 14880–14887

    Google Scholar 

  • Gruissem W and Zurawski G (1985a) Analysis of promoter regions for the spinach chloroplast rbcL, atpB and psbA genes. EMBO J 4: 3375–3383

    CAS  PubMed  Google Scholar 

  • Gruissem W and Zurawski G (1985b) Identification and mutational analysis of the promoter for a spinach chloroplast transfer RNA gene. EMBO J 4: 1637–1644

    CAS  PubMed  Google Scholar 

  • Gruissem W, Greenberg BM, Zurawski G, Prescott DM and Hallick RB (1983) Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system. Cell 35: 815–828

    Article  CAS  PubMed  Google Scholar 

  • Gruissem W, Elsner-Menzel C, Latshaw S, Narita JO, Schaffer MA and Zurawski G (1986) A subpopulation of spinach chloroplast tRNA genes does not require upstream promoter elements for transcription. Nucleic Acids Res 14: 7541–7556

    CAS  PubMed  Google Scholar 

  • Guertin M and Bellemare G (1979) Synthesis of chloroplast ribonucleic acid in Chlamydomonas reinhardtii toluene-treated cells. Eur J Biochem 96: 125–129

    Article  CAS  PubMed  Google Scholar 

  • Gumpel NJ, Ralley L, Girard-Bascou J, Wollman FA, Nugent JH and Purton S (1995) Nuclear mutants of Chlamydomonas reinhardtii defective in the biogenesis of the cytochromeb b6f complex. Plant Mol Biol 29: 921–932

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz PTJ, Allison LA and Maliga P (1997) The two RNA polymerases encoded by the nuclear and plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16: 4041–4048

    Article  CAS  PubMed  Google Scholar 

  • Hajnsdorf E, Steier O, Coscoy L, Teysset L and Régnier P (1994) Roles of RNase E, RNase II and PNPase in the degradation of the rpsO transcripts of Escherichia coli: Stabilizing function of RNase II and evidence for efficient degradation in an ams pnp rnb mutant. EMBO J 13: 3368–3377

    CAS  PubMed  Google Scholar 

  • Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A and Stutz E (1993) Complete DNA sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21: 3537–3544

    CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Orozco EMJ and Chua NH (1985) In vitro synthesis and processing of a maize chloroplast transcript encoded by the ribulose-1 5-bisphosphate carboxylase large subunit gene. Mol Cell Biol 5: 2733–2745

    CAS  PubMed  Google Scholar 

  • Haugel-Nielsen J, Hajnsdorf E and Régnier P (1996) The rpsO mRNA of Escherichia coli is polyadenylated at multiple sites resulting from endonucleolytic processing and exonucleolytic degradation. EMBO J 15: 3144–3152

    CAS  PubMed  Google Scholar 

  • Hayes R, Kudla J, Schuster G, Gabay L, Maliga P and Gruissem W (1996) Chloroplast mRNA 3′-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J 15: 1132–1141

    CAS  PubMed  Google Scholar 

  • Hess WR, Prombona A, Fieder B, Subramanian AR and Borner T (1993) Chloroplast rps15 and the rpoB-C1-C2 gene cluster are strongly transcribed in ribosome-deficient plastids: Evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBOJ 12: 563–571

    CAS  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibash T, Sakamoto M, Mori M, Kendo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K and Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194

    CAS  PubMed  Google Scholar 

  • Hong S and Spreitzer RJ (1994) Nuclear mutation inhibits expression of the chloroplast gene that encodes the large subunit of ribulosc-1,5-bisphosphatc carboxylase-oxygenase. Plant Physiol 106: 673–678

    CAS  PubMed  Google Scholar 

  • Hong L, Stevenson JK, Roth WB and Hallick RB (1995) Euglena gracilis chloroplast psbB, psbT, psbN and psbH gene cluster: Regulation of psbB-psbT pre-mRNA processing. Mol Gen Genet 247: 180–188

    Article  CAS  PubMed  Google Scholar 

  • Hu J and Bogorad L (1990) Maize chloroplast RNA polymerase: the 180-, 120-, and 38-kilodalton polypeptides arc encoded in chloroplast genes. Proc Natl Acad Sci USA 87: 1531–1535

    CAS  PubMed  Google Scholar 

  • Hu J, Troxler RF and Bogorad L (1991) Maize chloroplast RNA polymerase: The 78-kilodalton polypeptide is encoded by the plastid rpoC1 gene. Nucleic Acids Res 19: 3431–3434

    CAS  PubMed  Google Scholar 

  • Hwang S, Kawazoe R and Herrin DL (1996) Transcription of tufA and other chloroplast-encoded genes is controlled by a circadian clock in Chlamydomonas. Proc Natl Acad Sci USA 93:996–1000

    CAS  PubMed  Google Scholar 

  • Iratni R, Baeza L, Andreeva A, Mache R and Lerbs-Mache S (1994) Regulation of rDNA transcription in chloroplasts: promoter exclusion by constitutive repression. Genes Dev 8: 2928–2938

    CAS  PubMed  Google Scholar 

  • Jahn D (1992) Expression of the Chlamydomonas reinhardtii chloroplast tRNAglu gene in a homologous in vitro transcription system is independent of upstream promoter elements. Arch Biochem Biophys 298: 505–513

    Article  CAS  PubMed  Google Scholar 

  • Jenkins BD, Kulhanek DJ and Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9: 283–296

    Article  CAS  PubMed  Google Scholar 

  • Johnson CH and Schmidt GW (1993) The psbB gene cluster of the Chlamydomonas reinhardtii chloroplast sequence and transcriptional analyses of psbN and psbH. Plant Mol Biol 22: 645–658

    Article  CAS  PubMed  Google Scholar 

  • Kapoor S, Suzuki JY and Sugiura M (1997) Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J 11: 327–337

    Article  CAS  PubMed  Google Scholar 

  • Keus RJA, Dekker AF, Kreuk KCJ and Groot GSP (1984) Transcription of ribosomal DNA in chloroplasts of Spirodela oligorhiza. Curr Genet 9: 91–98

    Article  CAS  Google Scholar 

  • Kim M and Mullet JE (1995) Identification of a sequence-specific DNA binding factor required for transcription of the barley chloroplast blue light-responsive psbD-psbC promoter. Plant Cell 7: 1445–1457

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Christopher DA and Mullet JE (1993) Direct evidence for selective modulation of psbA, rpoA, rbcL, and 16S RNA stability during barley chloroplast development. Plant Mol Biol 22: 447–463

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL, Suzuki H and Stern DB (1994) Gene amplification can correct a photosynthetic growth defect caused by mRNA instability in Chlamydomonas chloroplasts. Plant Cell 6: 187–200

    Article  CAS  PubMed  Google Scholar 

  • Klein U, De Camp JD and Bogorad L (1992) Two types of chloroplast gene promoters in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 89: 3453–3457

    CAS  PubMed  Google Scholar 

  • Kuchka MR, Goldschmidt-Clermont M, van Dillewijn J and Rochaix JD (1989) Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 and PS II. Cell 58: 869–876

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Hayes R and Gruissem W (1996) Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J 15: 7137–7146

    CAS  PubMed  Google Scholar 

  • Lam E and Chua N-H (1987) Chloroplast DNA gyrase and in vitro regulation of transcription by template topology and novobiocin. Plant Mol Biol 8: 415–424

    Article  CAS  Google Scholar 

  • Lee H, Bingham SE and Webber AN (1996) Function of 3′ non-coding sequences and stop codon usage in expression of the chloroplast psaB gene in Chlamydomonas reinhardtii. Plant Mol Biol 31: 337–354

    Article  CAS  PubMed  Google Scholar 

  • Lemaire C, Girard-Bascou J, Wollman F-A and Bennoun P (1986) Studies on the cytochrome b6/f complex. 1. Characterization of the complex subunits in Chlamydomonas reinhardtii. Biochim Biophys Acta 851: 229–238

    CAS  Google Scholar 

  • Lerbs S, Braeutigam E and Mache R (1988) DNA-dependent RNA polymerase of spinach chloroplasts: Characterization of alpha-like and sigma-like polypeptides. Mol Gen Genet 211: 458–464

    Article  Google Scholar 

  • Lerbs-Mache S (1993) The110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: Single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proc Natl Acad Sci USA 90: 5509–5513

    CAS  PubMed  Google Scholar 

  • Leu S, White D and Michaels A (1990) Cell cycle-dependent transcriptional and post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii. Biochim Biophys Acta 1049: 311–317

    CAS  PubMed  Google Scholar 

  • Levy H, Kindle KL and Stern DB (1997) A nuclear mutation that affects the 3′ processing of several mRNAs in Chlamydomonas chloroplasts. Plant Cell 9: 825–836

    Article  CAS  PubMed  Google Scholar 

  • Lisitsky I, Klaff P and Schuster G (1996) Addition of poly(A)-rich sequences to endonucleolytic cleavage sites in the degradation of spinach chloroplast mRNA. Proc Natl Acad Sci USA 93: 13398–13403

    Article  CAS  PubMed  Google Scholar 

  • Lisitsky I, Kotler A and Schuster G (1997) The mechanism of preferential degradation of polyadenylated RNA in the chloroplast: The exoribonuclease 100RNP-polynucleotide phosphorylase displays high binding affinity for poly(A) sequence. J Biol Chem 272: 17648–17653

    Article  CAS  PubMed  Google Scholar 

  • Little MC and Hallick RB (1988) Chloroplast rpoA, rpoB, and rpoC genes specify at least three components of a chloroplast DNA-dependent RNA polymerase active in tRNA and mRNA transcription. J Biol Chem 263: 14302–14307

    CAS  PubMed  Google Scholar 

  • Liu B and Troxler RF (1996) Molecular characterization of a positively photoregulated nuclear gene for a chloroplast RNA polymerase sigma factor in Cyanidium caldarium. Proc Natl Acad Sci USA 93: 3313–3318

    CAS  PubMed  Google Scholar 

  • Maier RM, Neckermann K, Igloi GL and Kössel H (1995) Complete sequence of the maize chloroplast genome: Gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251: 614–628

    Article  CAS  PubMed  Google Scholar 

  • Marion-Poll A, Hibbert CS, Radebaugh CA and Hallick RB (1988) Processing of monocistronic, dicistronic and tricistronic transfer RNA precursors in a spinach or pea chloroplast soluble extract. Plant Mol Biol 11: 45–56

    Article  CAS  Google Scholar 

  • Matsumoto T, Matsuo M and Matsuda Y (1991) Structural analysis and expression during dark-light transitions of a gene for cytochrome f in Chlamydomonas reinhardtii. Plant Cell Physiol 32: 863–872

    CAS  Google Scholar 

  • McLaren RS, Newbury SF, Dance GSC and Causton HC (1991) Messenger RNA degradation by processive 3′–5′ exoribo-nucleases in vitro and the implications for prokaryotic messenger RNA decay in vivo. J Mol Biol 221: 81–96

    CAS  PubMed  Google Scholar 

  • Meurer J, Berger A and Westhoff P (1996) A nuclear mutant of Arabidopsis with impaired stability on distinct transcripts of the plastid psbB, psbD/C, ndhH, and ndhC operons. Plant Cell 8: 1193–1207

    Article  CAS  PubMed  Google Scholar 

  • Monod C, Goldschmidt-Clermont M and Rochaix J (1992) Accumulation of chloroplast psbB RNA requires a nuclear factor in Chlamydomonas reinhardtii. Mol Gen Genet 231: 449–459

    Article  CAS  PubMed  Google Scholar 

  • Mullet JE and Klein RR (1987) Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. EMBO J 6: 1571–1579

    CAS  PubMed  Google Scholar 

  • Mullet JE, Orozco E and Chua N-H (1985) Multiple transcripts for higher plant rbcL and atpB genes and localization of the transcription initiation sites of the rbcL gene. Plant Mol Biol 4: 39–54

    CAS  Google Scholar 

  • Nakamura S, Sakihara M, Chibana H, Ikehara T and Kuroiwa T (1994) Mutations disturbing the condensation of plastid nucleoids in Chlamydomonas reinhardtii. Protoplasma 178: 111–118

    Article  Google Scholar 

  • Nickelsen J and Link G (1993) The 54 kDa RNA-binding protein from mustard chloroplasts mediates endonucleolytic transcript 3′ end formation in vitro. Plant J 3: 537–544

    Article  CAS  PubMed  Google Scholar 

  • Nickelsen J, Van-Dillewijn J, Rahire M and Rochaix JD (1994) Determinants for stability of the chloroplast psbD RNA are located with in its short leader region in Chlamydomonas reinhardtii. EMBO J 13: 3182–3191

    CAS  PubMed  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M and al. e (1986) Chloroplast gene organization deduced from complete sequence of liverwort (Marchantia polymorpha) chloroplast DNA. Nature 322: 572–574

    Article  CAS  Google Scholar 

  • Pfannschmidt T and Link G (1994) Separation of two classes of plastid DNA-dependent RNA polymerases that are differentially expressed in mustard (Sinapis alba L.) seedlings. Plant Mol Biol 25: 69–81

    Article  CAS  PubMed  Google Scholar 

  • Platt T (1986) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55: 339–372

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C and Paithier B (1993) A methyl jasmonate-induced shift in the length of the 5′ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12: 1505–1512

    CAS  PubMed  Google Scholar 

  • Reith M and Munholland J (1993) A high-resolution gene map of the chloroplast genome of thered alga Porphyra purpurea. Plant Cell 5: 465–475

    Article  CAS  PubMed  Google Scholar 

  • Robertson D, Gillham NW and Boynton JE (1990) Cotranscription of the wild-type chloroplast atpE gene encoding the CF1/CF0 epsilon subunit with the 3′ half of the rps7 gene in Chlamydomonas reinhardtii and characterization of frameshift mutations in atpE. Mol Gen Genet 221: 155–163

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J-D (1996) Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas. Plant Mol Biol 32: 327–341

    Article  CAS  PubMed  Google Scholar 

  • Rock CD, Barkan A and Taylor WC (1987) The maize plastid psbB-psbF-petB-petD genecluster: Spliced and unspliced petB and petD RNAs encode alternative products. Curr Genet 12: 69–77

    Article  CAS  PubMed  Google Scholar 

  • Rott R, Drager RG, Stern DB and Schuster G (1996) The 3′ untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Mol Gen Genet 252: 676–683

    CAS  PubMed  Google Scholar 

  • Sakamoto W, Sturm NR, Kindle KL and Stern DB (1994) petD mRNA maturation in Chlamydomonas reinhardtii chloroplasts: The role of 5′ endonucleolytic processing. Mol Cell Biol 14: 6180–6186

    CAS  PubMed  Google Scholar 

  • Salvador ML, Klein U and Bogorad L (1993a) 5′ sequences are important positive and negative determinants of the longevity of Chlamydomonas chloroplast gene transcripts. Proc Natl Acad Sci USA 90: 1556–1560

    CAS  PubMed  Google Scholar 

  • Salvador ML, Klein U and Bogorad L (1993b) Light-regulated and endogenous fluctuations of chloroplast transcript levels in Chlamydomonas. Regulation by transcription and RNA degradation. Plant J 3: 213–219

    Article  CAS  PubMed  Google Scholar 

  • Satoh J, Baba K, Nakahira Y, Shiina T and Toyoshima Y (1997) Characterization of dynamics of the psbD light-induced transcription in mature wheat chloroplasts. Plant Mol Biol 33: 267–278

    Article  CAS  PubMed  Google Scholar 

  • Sexton TB, Christopher DA and Mullet JE (1990) Light-induced switch inbarley psbD-psbC promoter utilization: Anovel mechanism regulating chloroplast gene expression. EMBO J 9: 4485–4494

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh H, Shimada H and Suguira M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J 5: 2043–2050

    CAS  PubMed  Google Scholar 

  • Staub JM and Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6: 547–553

    Article  CAS  PubMed  Google Scholar 

  • Stern DB and Gruissem W (1987) Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51: 1145–1157

    Article  CAS  PubMed  Google Scholar 

  • Stern DB and Gruissem W (1989) Chloroplast mRNA 3′ end maturation is biochemically distinct from prokaryotic mRNA processing. Plant Mol Biol 13: 615–625

    Article  CAS  PubMed  Google Scholar 

  • Stern DB and Kindle KL (1993) 3′ end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNAis a two-step process. Mol Cell Biol 13: 2277–2285

    CAS  PubMed  Google Scholar 

  • Stern DB, Jones H and Gruissem W (1989) Function of plastid mRNA 3′inverted repeats: RNA stabilization and gene-specific protein binding. J Biol Chem 264: 18742–18750

    CAS  PubMed  Google Scholar 

  • Stern DB, Radwanski ER and Kindle KL (1991) A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3: 285–297

    Article  CAS  PubMed  Google Scholar 

  • Stern DB, Higgs DC and Yang J (1997) Transcriptional and translational activities of chloroplasts. Trends Plant Sci 2: 308–316

    Article  Google Scholar 

  • Stevenson JK and Hallick RB(1994) The psaA operon prc-mRNA of the Euglena gracilis chloroplast is processed into photosystem I and II mRNAs that accumulate differentially depending on the conditions ofcell growth. Plant J 5: 247–260

    Article  CAS  PubMed  Google Scholar 

  • Stollar NE and Hollingsworth MJ (1994) Expression of the large ATP synthase gene cluster from spinach chloroplasts. J Plant Physiol 144: 141–149

    CAS  Google Scholar 

  • Sturm N, Kuras R, Büschlen S, Sakamoto W, Kindle KL, Stern DB and Wollman FA (1994) The petD gene is transcribed by functionally redundant promoters in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 14: 6171–6179

    CAS  PubMed  Google Scholar 

  • Surzycki SJ and Shellenbarger DL (1976) Purification and characterization of a putative sigma factor from Chlamydomonas reinhardii. Proc Natl Acad Sci USA 73: 3961–3965

    CAS  PubMed  Google Scholar 

  • Suzuki H, Ingersoll J, Stern DB and Kindle KL (1997) Generation and maintenance of tandemly repeated extrachromosomal plasmid DNA in Chlamydomonas chloroplasts. Plant J 11: 635–648

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Oikawa K, Ohta N, Kuroiwa H, Kuroiwa T and Takahashi H (1996) Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science 272: 1932–1935

    CAS  PubMed  Google Scholar 

  • Thompson RJ and Mosig G (1985) AnATP-dependent supercoiling topoisomerase of Chlamydomonas reinhardtii affects accumulation of specific chloroplast transcripts. Nucleic Acids Res 13: 873–891

    CAS  PubMed  Google Scholar 

  • Thompson RJ and Mosig G (1987) Stimulation of a Chlamydomonas chloroplast promoter by novobiocin in situ and in E. coli implies regulation by torsional stress in the chloroplast DNA. Cell 48: 281–287

    CAS  PubMed  Google Scholar 

  • Thompson RJ and Mosig G (1990) Light affects the structure of Chlamydomonas chloroplast chromosomes. Nucleic Acids Res 18: 2625–2631

    CAS  PubMed  Google Scholar 

  • Tiller K and Link G (1993) Sigma-likc transcription factors from mustard Sinapis alba L. etioplasts arc similar in size to, but functionally distinct from, their chloroplast counterparts. Plant Mol Biol 21: 503–513

    Article  CAS  PubMed  Google Scholar 

  • Tracy RL and Stern DB (1995) Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet 28: 205–216

    Article  CAS  PubMed  Google Scholar 

  • Troxler RF, Zhang F, Hu J and Bogorad L (1994) Evidence that sigma factors are components of chloroplast RNA polymerase. Plant Physiol 104: 753–759

    Article  CAS  PubMed  Google Scholar 

  • Vera A and Sugiura M (1995) Chloroplast rRNA transcription from structurally different tandem promoters: An additional novel-type promoter. Curr Genet 27: 280–284

    Article  CAS  PubMed  Google Scholar 

  • Wang MJ, Davis NW and Gegenheimer P (1988) Novel mechanisms for maturation of chloroplast transfer RNA precursors. EMBO J 7: 1567–1574

    CAS  PubMed  Google Scholar 

  • Westhoff P and Herrmann RG (1988) Complex RNA maturation in chloroplasts: the psbB operon from spinach. Eur J Biochem 171: 551–564

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Morden CW and Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648–10652

    CAS  PubMed  Google Scholar 

  • Woodbury NW, Dobres M and Thompson WF(1989) The identification and localization of 33 pea chloroplast transcription initiation sites. Curr Genet 16: 433–446

    Article  CAS  PubMed  Google Scholar 

  • Yang J and Stern DB (1997) The spinachch loroplast endoribonuclease CSP41 cleaves the 3′ untranslated region of petD mRNA primarily within its terminal stem-loop structure. J Biol Chem 272: 12874–12880

    CAS  PubMed  Google Scholar 

  • Zaitlin D, Hu J and Bogorad L (1989) Binding and transcription of relaxed DNA templates by fractions of maize chloroplast extracts. Proc Natl Acad Sci USA 86: 876–880

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stern, D.B., Drager, R.G. (1998). Chloroplast RNA Synthesis and Processing. In: Rochaix, J.D., Goldschmidt-Clermont, M., Merchant, S. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Advances in Photosynthesis and Respiration, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48204-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48204-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5174-0

  • Online ISBN: 978-0-306-48204-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics