Skip to main content

SOI SRAMs

  • Chapter
SOI Design
  • 464 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Prince, “Semiconductor Memories”, Wiley Publishers.

    Google Scholar 

  2. B. Bateman, “High Speed SRAM Design”, Tutorial, ISSCC 1998.

    Google Scholar 

  3. M. Terauchi & K. Terada, IEEE International SOI Conference, 1999, pp. 36–37.

    Google Scholar 

  4. M. Terauchi, “A novel 4T SRAM cell using self body biased SOI MOSFET structure operating at 0.5V”, 2000 IEEE SOI Conference, pp. 108–109.

    Google Scholar 

  5. M. Terauchi, et. al., IEEE Trans. Electron Device, vol 44, 1997, pp. 2303.

    Article  Google Scholar 

  6. O. Le Neel & H. Haond, “Electrical transient study of negative resistance in SOI MOS transistors,” Electron.Lett., vol. 26, no. 1, 1990, pp. 73–74.

    Google Scholar 

  7. K. Bernstein & N. J. Rohrer, “SOI Circuit Design Concepts”, Kluwer Academic Publishers, January 2000, ISBN 0-7923-7762-1

    Google Scholar 

  8. G. Shahidi, et. al., “Partially depleted SOI Technology for digital logic”, Proceedings of 1999 ISSCC, Feb 1999, pp. 426–427.

    Google Scholar 

  9. E. Seevinck, “Static noise margin analysis of MOS SRAM cells”

    Google Scholar 

  10. J. Lohsstroh, et. al., “Worst case static noise margin critiera for logic circuits and their mathematical equivalence”, IEEE JSSC, Vol SC-18, no.6, Dec 1983, pp. 803–807.

    Google Scholar 

  11. K. Anami, et. al., “Design considerations of SRAM cell” IEEE JSSC, Vol. SC-18, No.4, Aug 1983, pp. 414–418.

    Google Scholar 

  12. C.F. Hill, “Noise margin and noise immunity in logic circuits”, Microelectronics, Vol. 1, Apr 1968, pp. 16–21.

    Google Scholar 

  13. A. Wei & D. A. Antoniadis, “Measurement of transient effects in SOI DRAM/SRAM access transistors”, IEEE Electron Devices, Vol 17, May 1996, pp. 193–195.

    Google Scholar 

  14. M.M. Pallela et. al., “Low voltage transient bipolar effect induced by dynamic floating body charging in scaled PD/SOI MOSFETs”, IEEE Trans. Electron devices, Vol 17, May 1996, pp. 196–198.

    Google Scholar 

  15. J.B. Kuang, et. al., “SRAM bitline circuits on PD SOI: Advanatages and concerns”, IEEE JSSC, Vol 32, June 1997, pp. 837–844.

    Google Scholar 

  16. Chappell, et. al., “A 2ns cycle, 4ns access 512Kb CMOS ECL SRAM”, ISSCC 1991, Vol. 34, pp. 50–51.

    Google Scholar 

  17. M. Yoshimoto, et. al., “A Divided Word line structure in SRAM and its application to a 64K Full CMOS RAM”, IEEE JSSC, 18, 1983, pp. 479–485.

    Google Scholar 

  18. D.H. Allen, et. al., “A 0.2um 1.8V SOI 550Mhz 64b PowerPC Microprocessor with copper interconnects”, Proceedings of 1999 IEEE ISSCC, Feb 1999, pp. 438–439.

    Google Scholar 

  19. A. Karandikar & K. K. Parhi, “Low Power SRAM Design using Hierarchical Divided Bit-Line Approac”, Proc. of the International Conference on Computer Design, 1998

    Google Scholar 

  20. J. Kuo & J. Hong Lou, “Low voltage CMOS VLSI circuits”, John Wiley & Sons, ISBN: 0-471-32105-2, 1999.

    Google Scholar 

  21. K. Mai, et. al., “Low power SRAM design using half swing pulse mode techniques”, IEEE Journal SSC., Vol 33, No. 11, Nov 1998, pp. 1659–1670.

    Google Scholar 

  22. T. Tanizaki, et. al., “Practical Low power design architecture for 64Mb DRAM”, ESSCIRC 1997

    Google Scholar 

  23. J. Juo & K. W. Su, “CMOS VLSI Engineering — SOI”, Kluwer Academic Publishers, ISBN: 0-7923-8272-2.

    Google Scholar 

  24. T. Hirose, et. al., “A 20-ns 4Mb CMOS SRAM with Hierarchical Word Decoding Architecture”, IEEE JSSC 25(5), 1990, pp. 1068–1074.

    Google Scholar 

  25. J. Uyemura, “CMOS Logic Circuit Design”, Kluwer Publishers. ISBN 0-7923-8452-0

    Google Scholar 

  26. K. Bernstein, et. al., “High Speed CMOS Design styles”, Kluwer Academic Publishers, 1998, ISBN 0-7923-8220-X.

    Google Scholar 

  27. E. Seevinck, et. al., “Current Mode techniques for high speed VLSI circuits with application to current sense amplifier for CMOS SRAM”, IEEE Journal SSC, Vol. 26., No. 4, April 1991, pp. 525–535.

    Google Scholar 

  28. B. Trenbek, et. al., “Characterisation of layout dependent thermal coupling in SOI CMOS Current mirrors”, IEEE Trans. Electron Devices, Vol 43, No. 12, Dec 1996

    Google Scholar 

  29. A. Pellela, et. al., “A 2ns access 500Mhz 288Kb SRAM Macro”, VLSI circuits, 1996, pp. 128–129.

    Google Scholar 

  30. L. A. Glasser & D. W. Dobberpuhl, “The design and analysis of VLSI circuits”, Addison-Wesley, 1988, p288.

    Google Scholar 

  31. C.T. Chuang, et. al., “SOI for Digital CMOS VLSI:Design Considerations and Advances”, IEEE Proc., Vol 86, No. 4, April 1988.

    Google Scholar 

  32. J. Kuang, et. al., “Dynamic body charge modulation for sense amplifiers in partially depleted SOI technology”, IEEE SOI Conference 2000.

    Google Scholar 

  33. J. B. Kuang, et. al., “A high performance body charge modulated SOI sense amplifier”, International SOI Conference 2000, pp. 100–101.

    Google Scholar 

  34. D. Scepis et. al., “A 0.25um CMOS SOI technology and its application to 4Mb SRAM”, IEDM Digest, Dec 1997, pp. 587–590.

    Google Scholar 

  35. J. B. Kuang, et. al., “A dynamic body discharge technique for SOI circuit applications”, IEEE International SOI Conference, 1999, pp. 77–78.

    Google Scholar 

  36. T. W. Houston, “A novel dynamic VT circuit configuration”, IEEE International SOI Conf. Proc. 1997, pp. 154–155.

    Google Scholar 

  37. S. Kuge et. al., “SOI DRAM circuit technologies for low power high speed multi giga scale memories”, Dig. Tech. Papers, symp. VLSI Circuits, 1995, pp. 103–104.

    Google Scholar 

  38. J. Gautier, et. al., IEEE IEDM Technical Digest, 1995, pp. 623–625.

    Google Scholar 

  39. J. A. Mandelman, et. al., “SOI MOSFET mismatches due to floating body effects”, Proceedings 1997 IEEE International SOI Conference, Oct 1997, pp. 164–165.

    Google Scholar 

  40. C. F. Edwards & W. Redman-White, “The effect of body contact serios resistance on SOI CMOS stages”, IEEE Electron devices, Vol. 44, Dec. 1997, pp. 2290–2294.

    Article  Google Scholar 

  41. M. Shoji, “Theory of digital CMOS circuits and circuit failures”, Princeton University Press, ISBM 0-0691-08763-6, 1992.

    Google Scholar 

  42. K. Sasaki, “High Speed low voltage design for high performance SRAMs”, Proc. Tech Papers, VLSI Tech. Systems and Applications, May 1993, pp. 292–296.

    Google Scholar 

  43. J. P. Colinge, “SOI Technology, Materials to VLSI, 2nd Edition”, Kluwer Academic publishers, ISBN: 0-7923-8007-X.

    Google Scholar 

  44. C. M. Hsieh, et. al., “A field funneling effect on the collection of alpha particle generated carriers in silicon devices”, Electron Devices, April 1981, pp. 104–106.

    Google Scholar 

  45. S. W. Kerns, et. al., “Model for CMOS/SOI single event vulnerability” IEEE Trans., Nucl. Sci., Vol 36, Dec 1989, pp. 2305–2310.

    Article  Google Scholar 

  46. H. Iwata, Ohzone, “Numerical analysis of alpha particle induced soft errors in SOI MOS devices”, IEEE Trans. Electron Device, Vol 39, May 1992, pp. 1184–1190.

    Article  Google Scholar 

  47. Y. Tosaka, et. al., “Alpha particle induced soft errors in submicron SOI SRAM” Symp. VLSI Technology, 1995, pp. 39–40.

    Google Scholar 

  48. T. Karnik, et. al., “Scaling trends of Cosmic Rays induced soft errors in static latches beyond 0.18um”, VLSI Symp. Circuits, 2001, pp. 61–62.

    Google Scholar 

  49. T. P. Haraszti, “CMOS Memory Circuits”, Kluwer Academic Publishers, ISBN 0-7923-7950-0

    Google Scholar 

  50. J. M. Rabaey & M. Pedram, “Low power design methodologies”, Kluwer Academic publishers. ISBN:0-7923-9630-8

    Google Scholar 

  51. M. Takada et. al., “Reviews and prospects of SRAM technology”, IEICE Transactions., Vol E74, No. 4, April 1991, pp. 827–838.

    MathSciNet  Google Scholar 

  52. H. Kawamato, et. al., “A 288K CMOS pseudo static RAM”, IEEE JSSC., vol SC-19, Oct 1984, pp. 619–623.

    Google Scholar 

  53. J. J. J Bastian & W. C. H Gubbels, “The 256k SRAM: An important step on the way to submicron IC technology”, Philips Technical Review, 44, No.2, April 1988, pp. 33.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). SOI SRAMs. In: SOI Design. Springer, Boston, MA. https://doi.org/10.1007/0-306-48161-8_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48161-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7640-8

  • Online ISBN: 978-0-306-48161-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics