Skip to main content

Clouds and Rainfall by Visible-Infrared Radiometry

  • Chapter
  • 351 Accesses

Part of the book series: Advances in Global Change Research ((AGLO,volume 13))

Abstract

A precise understanding of the Earth’s clouds and precipitation processes represents the natural key for a weather forecasting strategy down to the nowcasting space and time scales where cloud processes play a role and must be accurately parameterized into models. Clouds are also a governing factor in the quantification of the Earth’s radiation budget, which is in turn crucial for climate and global change issues. A wide variety of satellite sensors is now in orbit or about to be launched with an unprecedented spectral width, sensitivity and space-time resolution. In the following we will examine just a few of the new possibilities offered to science and operational meteorology and climatology by the new generation VIS/IR sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R. F., and R. A. Mack, 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43, 1945–1960.

    Article  Google Scholar 

  • Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteorol., 27, 30–51.

    Article  Google Scholar 

  • Adler, R. F., G. J. Huffman, and P. R. Keehn, 1994: Global tropical rain estimates from microwave-adjusted geosynchronous IR data. Remote Sens. Rev., 11, 125–152.

    Google Scholar 

  • Adler, R. F., A. J. Negri, P. R. Keehn, and I. M. Hakkarinen, 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteorol., 32, 335–356.

    Article  Google Scholar 

  • Amorati, R., P. P. Alberoni, V. Levizzani, and S. Nanni, 1999: IR-based satellite and radar rainfall estimates of convective storms over northern Italy. Meteorol. Appl., 7, 1–18.

    Google Scholar 

  • Arkin, P. A., 1979: The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Wea. Rev., 106, 1153–1171.

    Google Scholar 

  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 51–74.

    Google Scholar 

  • Arkin, P. A., and P. E. Ardanuy, 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 1229–1238.

    Google Scholar 

  • Arkin, P. A., and J. Janowiak, 1991: Analysis of the global distribution of precipitation. Dyn. Atmos Oceans, 16, 5–16.

    Article  Google Scholar 

  • Arking, A., and J. D. Childs, 1985: Retrieval of cloud cover parameters from multispectral satellite images. J. Climate Appl. Meteorol., 24, 322–333.

    Article  Google Scholar 

  • Arnott, W. P, Y. Dong, J. Hallett, and M. R. Poellot, 1994: Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991. J. Geophys. Res., 99(D1), 1371–1381.

    Article  Google Scholar 

  • Asano, S., and M. Sato, 1980: Light scattering by randomly oriented spheroidal particles. Appl. Opt., 19, 962–974.

    CAS  Google Scholar 

  • Auer, A. H., Jr., and D. L. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919–926.

    Google Scholar 

  • Ba, M. B., and S. E. Nicholson, 1998: Analysis of convective activity and its relationship to the rainfall over the Rift Valley lakes of East Africa during 1983–90 using the Meteosat infrared channel. J. Appl. Meteorol., 37, 1250–1264.

    Article  Google Scholar 

  • Ba, M. B., and A. Gruber, 2001: GOES Multispectral Rainfall Algorithm (GMSRA). J. Appl. Meteorol., 40, 1500–1514.

    Article  Google Scholar 

  • Ba, M. B., D. Rosenfeld, and A. Gruber, 1998: AVHRR multispectral derived cloud parameters: relationship to microwave scattering signature and to cloud-to-ground lightning. Prepr. 9th Conf. Satellite Meteorology and Oceanography, AMS, 408–411.

    Google Scholar 

  • Baran, A. J., S. J. Brown, J. S. Foot, and D. L. Mitchell, 1999: Retrieval of tropical cirrus thermal optical depth, crystal size, and shape using a dual-view instrument at 3.7 and 10.8 μ. J. Atmos. Sci., 56, 92–110.

    Article  Google Scholar 

  • Barrett, E. C., and D. W. Martin, 1981: The Use of Satellite Data in Rainfall Monitoring. Academic Press, 340 pp.

    Google Scholar 

  • Bellon, A., S. Lovejoy, and G. L. Austin, 1980: Combining satellite and radar data for the short-range forecasting of precipitation. Mon. Wea. Rev., 108, 1554–1556.

    Google Scholar 

  • Bendix, J., 2000: Precipitation dynamics in Ecuador and Northern Peru during the 1991/92 El Niňo: a remote sensing perspective. Int. J. Remote Sensing, 21, 533–548.

    Article  Google Scholar 

  • Cheng, M., and R. Brown, 1995: Delineation of precipitation areas by correlation of METEOSAT visible and infrared data with radar data. Mon. Wea. Rev., 123, 2743–2757.

    Google Scholar 

  • Danielsen, E. F., 1993: In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones. J. Geophys, Res., 98(D5), 8665–8681.

    Google Scholar 

  • Doutriaux-Boucher, M., J.-C. Buriez, G. Brogniez, L. C. Labonnote, and A. J. Baran, 2000: Sensitivity of retrieved POLDER directional cloud optical thickness to various ice particle models. Geophys. Res. Lett., 27, 109–112.

    Article  Google Scholar 

  • Espinoza, R. C., Jr., and Harshvardhan, 1996: Parameterization of solar near-infrared radiative properties of cloudy layers. J. Atmos. Sci., 53, 1559–1568.

    Google Scholar 

  • Foster, T., W. P. Arnott, J. Hallett, and R. Pueschel, 1995: Measurements of ice particles in tropical cirrus anvils: importance in radiation balance. Prepr. Conf. Cloud Phys., AMS, 419–424.

    Google Scholar 

  • Francis, P. N., J. S. Foot, and A. J. Baran, 1999; Aircraft measurements of the solar and infrared radiative properties of cirrus and their dependence on ice crystal shape. J. Geophys. Res., 104(D24), 31685–31695.

    Article  Google Scholar 

  • Fu, Q., and K.-N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025.

    Article  Google Scholar 

  • Fulton. R., and G. M. Heymsfield, 1991: Microphysical and radiative characteristics of convective clouds during COHMEX. J. Appl. Meteorol., 30, 98–116.

    Article  Google Scholar 

  • Gagin, A., D. Rosenfeld, and R. E. Lopez, 1985: The relationship between height and precipitation characteristics of summertime convective cells in South Florida. J. Atmos. Sci., 42, 84–94.

    Article  Google Scholar 

  • Gayet, J.-F., G. Febvre, G. Brogniez, H. Chepfer, W. Renger, and P. Wendling, 1996: Microphysical and optical properties of cirrus and contrails: cloud field study on 13 October 1989. J. Atmos. Sci., 53, 126–138.

    Article  Google Scholar 

  • Gothe Betancor, M., and H. Graßl, 1993: Satellite remote sensing of the optical depth and mean crystal size of thin cirrus and contrails. Theor. Appl. Climatol., 48, 101–113.

    Google Scholar 

  • Greenwald, T. J., and S. A. Christopher, 2000: The GOES I-M imager: new tools for studying the microphysical of boundary layer stratiform clouds. Bull. Amer. Meteor. Soc., 81, 2607–2619.

    Google Scholar 

  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin. J. Stout, and D. N. Sikdar, 1978: Rain estimation from geosynchronous satellite imagery — Visible and infrared studies. Mon. Wea. Rev., 106, 1153–1171.

    Google Scholar 

  • Gruber, A., 1973: Estimating rainfall in regions of active convection. J. Appl. Meteorol., 12, 110–118.

    Article  Google Scholar 

  • Heintzenberg, J., Y. Fouquart, A. Heymsfield, J. Ström, and G. Brogniez, 1996: Interactions of radiation and microphysics in cirrus. In Clouds, Chemistry and Climate. P. J. Crutzen and V. Ramanathan, Ed., NATO ASI Series, 135, Springer, 29–55.

    Google Scholar 

  • Heymsfield, A. J., and G. McFarquhar, 1996: High albedos of cirrus in the tropical pacific warm pool: microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53, 2424–2451.

    Article  Google Scholar 

  • Heymsfield, G. M., and R. H. Blackmer, Jr., 1988: Satellite-observed characteristics of Midwest severe thunderstorm anvils. Mon. Wea. Rev., 116, 2200–2224.

    Google Scholar 

  • Heymsfield, G. M., R. H. Blackmer, Jr., and S. Schotz, 1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40, 1741–1755.

    Google Scholar 

  • Heymsfield, G. M., R. Fulton, and J. D. Spinhirne, 1991: Aircraft overflight measurements of Midwest severe storms: implications on geosynchronous satellite interpretations. Mon. Wea. Rev., 119, 436–456.

    Google Scholar 

  • Hong, Y., C. D. Kummerow, and W. S. Olson, 1999: Separation of convective and stratiform precipitation using microwave brightness temperature. J. Appl. Meteorol., 38, 1195–1213.

    Article  Google Scholar 

  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Am. Meteorol. Soc., 78, 2179–2196.

    Google Scholar 

  • Hu, Y. X. and K. Stamnes, 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 70–83.

    Article  Google Scholar 

  • Hutchison, K. D., 1999: Applications of AVHRR/3 imagery for the improved detection of thin cirrus clouds and specifications of cloud-top phase. J. Atmos. Oceanic Technol., 16, 1885–1899.

    Google Scholar 

  • Huffman, G. J., R. F. Adler, P. Arkin, A. Chang. R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolf, and U. Schneider, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc., 78, 5–20.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol., 2, 36–50.

    Google Scholar 

  • Inoue, T., 1985: On the temperature and effective emissivity determination of semitransparent cirrus clouds by bi-spectral measurements in the 10 μm window region. J. Meteorol. Soc. Japan, 63, 88–98.

    Google Scholar 

  • Inoue, T., 1987a: A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res., 92 D, 3991–4000.

    Google Scholar 

  • Inoue, T., 1987b: An instantaneous delineation of convective rainfall area using split window data of NOAA-7 AVHRR. J. Meteorol. Soc. Japan, 65, 469–481.

    Google Scholar 

  • Jobard, I., and M. Desbois, 1994: Satellite estimation of the tropical precipitation using the Meteosat and SSM/I data. Atmos. Res., 34, 285–298.

    Google Scholar 

  • Karlsson, K. G., and E. Liljas, 1990: The SHMI model for cloud and precipitation analysis from multispectral AVHRR data. Swedish Meteorological and Hydrological Institute, Norrköping, SMHI PROMIS Rep., 10, 74 pp.

    Google Scholar 

  • Kerrache, M., and J. Schmetz, 1988: A precipitation index from the ESOC climatological data set. ESA J., 12, 379–383.

    Google Scholar 

  • Key. J., 1999: STREAMER User’s Guide. Tech. Rep. 96-01. Dept. of Geography, Boston Univ., 90 pp., (http://stratus.ssec.wisc.edu/).

  • Key, J., and A. J. Schweiger, 1998: Tools for atmospheric radiative transfer: Streamer and Flux Net. Computers & Geosciences, 24, 443–451.

    Article  Google Scholar 

  • Kidder, S. Q., and T. H. Vonder Haar, 1995: Satellite Meteorology, An Introduction. Academic Press, 466 pp.

    Google Scholar 

  • King, P. W. S., W. D. Hogg, and P. A. Arkin, 1995: The role of visible data in improving satellite rainrate estimates. J. Appl. Meteorol., 34, 1608–1621.

    Google Scholar 

  • Kinne, S., T. P. Ackerman, A. J. Heymsfield, F. P. J. Valero, K. Sassen, and J. D. Spinhirne, 1992: Cirrus microphysics and radiative transfer: cloud field study on 28 October 1986. Mon. Wea. Rev., 120, 661–684.

    Google Scholar 

  • Kleespies, T. J., 1995: The retrieval of marine stratiform cloud properties from multiple observations in the 3.9-μm window under conditions of varying solar illumination. J. Appl. Meteorol., 34, 1512–1524.

    Google Scholar 

  • Kley, D., A. L. Schmeltekopf, K. Kelly, R. H. Winkler, T. L. Thompson, and M. McFarland, 1982: Transport of water through the tropical tropopause. Geophys. Res. Lett., 9, 617–620.

    Google Scholar 

  • Knap, W. H., M. Hess, P. Stammes, R. B. A. Koelemeijer, and P. D. Watts, 1999: Cirrus optical thickness and crystal size retrieval from ATSR-2 data using phase functions of imperfect hexagonal ice crystals. J. Geophys. Res., 104(D24), 31721–31730.

    Article  Google Scholar 

  • Knollenberg, R. G., K. Kelly, and J. C. Wilson, 1993: Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus. J. Geophys. Res., 98(D5), 8639–8664.

    Google Scholar 

  • Kuji, M., T. Hayasaka, N. Kikuchi, T. Nakajima, and M. Tanaka, 2000: The retrieval of effective particle radius and liquid water path of low-level marine clouds from NOAA AVHRR data. J. Appl. Meteorol., 39, 999–1016.

    Article  Google Scholar 

  • Kummerow, C. D., W. Barnes, T. Kozu, J, Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.

    Article  Google Scholar 

  • Kurino, T., 1997: A satellite infrared technique for estimating “deep/shallow” convective and stratiform precipitation. Adv. Space Res., 19, 511–514.

    Google Scholar 

  • Labonnote, L. C., G. Brogniez, M. Doutriaux-Boucher, J.-C. Buriez, J.F. Gayet, and H. Chepfer, 2000: Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. Comparison with in-situ and ADEOS-POLDER measurements. Geophys. Res. Lett., 27, 113–116.

    Google Scholar 

  • Laing, A. G., J. M. Fritsch, and A. J. Negri, 1999: Contribution of mesoscale convective complexes to rainfall in Sahelian Africa: estimates from geostationary infrared and passive microwave data. J. Appl. Meteorol., 38, 957–964.

    Article  Google Scholar 

  • Lensky, I. M., and D. Rosenfeld, 1997: Estimation of precipitation area and rain intensity based on the microphysical properties retrieved from NOAA AVHRR data. J. Appl. Meteorol., 36, 234–242.

    Article  Google Scholar 

  • Levizzani, V., and M. Setvák, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361–369.

    Article  Google Scholar 

  • Levizzani, V., R. Amorati, and F. Meneguzzo, 2002: A review of satellite-based rainfall estimation methods. EC Project MUSIC Rep. (EVKl-CT-2000-00058), http://www.geomin.unibo.it/orgv/hydro/music/deliverables.htm, 66 pp.

  • Levizzani, V., F. Porc00F9;, and F. Prodi, 1990: Operational rainfall estimation using METEOSAT infrared imagery: An application in Italy’s Arno river basin — Its potential and drawbacks. ESA J., 14, 313–323.

    Google Scholar 

  • Levizzani, V., F. Porcù, F. S. Marzano, A. Mugnai, E. A. Smith, and F. Prodi, 1996: Investigating a SSM/I microwave algorithm to calibrate METEOSAT infrared instantaneous rainrate estimates. Meteorol. Appl., 3, 5–17.

    Google Scholar 

  • Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino, 2001: Precipitation estimations from geostationary orbit and prospects for METEOSAT Second Generation. Meteorol. Appl., 8, 23–41.

    Article  Google Scholar 

  • Liljas, E., 1986: Use of the AVHRR 3.7 micrometer channel in multispectral cloud classification. Swedish Meteorological and Hydrological Institute, Norrköping, SMHI Promis Rep., 2, 23 pp.

    Google Scholar 

  • Liu, G., and J. A. Curry, 1992: Retrieval of precipitation from satellite microwave measurement using both emission and scattering. J. Geophys. Res., 97 D, 9959–9974.

    Google Scholar 

  • Liu, G., J. A. Curry, and R.-S. Sheu, 1995: Classification of clouds over the western equatorial Pacific Occan using combined infrared and microwave satellite data. J. Geophys. Res., 100 D, 13,811–13,826.

    Google Scholar 

  • Mack, R. A., A. F. Hasler., and R. F. Adler, 1983: Thunderstorm cloud top observations using satellite stereoscopy. Mon. Wea. Rev., 111, 1949–1963.

    Google Scholar 

  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 2813–2825.

    Article  Google Scholar 

  • Macke, A., P. N. Francis, G. M. McFarquhar, and S. Kinne, 1998: The role of ice particle shapes and size distributions in the single scattering properties of cirrus clouds. J. Atmos. Sci., 55, 2874–2883.

    Article  Google Scholar 

  • Masuda, K., and T. Takashima, 1990: Deriving cirrus information using the visible and near-IR channels of the future NOAA-AVHRR radiometer. Remote Sens. Environ., 31, 65–81.

    Article  Google Scholar 

  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the central equatorial pacific experiment. J. Atmos. Sci., 53, 2401–2423.

    Article  Google Scholar 

  • McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate mean-scattering properties and multispectral radiances: CEPEX April 4, 1993, case study. J. Geophys. Res., 104(D24), 31763–31779.

    Article  Google Scholar 

  • McKee, T. B., and J. T. Klehr, 1978: Effects of cloud shape on scattered solar radiation. Mon. Wea. Rev., 106, 399–404.

    Google Scholar 

  • Mclani, S., E. Cattani, V. Levizzani, M. Cervino, and F. Torricclla, 2000: Radiative effects of simulated cirrus clouds on top of a deep convective storm in METEOSAT Second Generation SEVIRI channels. Submitted to Meteor. Atmos. Phys.

    Google Scholar 

  • Minnis, P., D. P. Garber, D. F. Young, R. F. Arduini, and Y. Takano, 1998: Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci., 55, 3313–3339.

    Article  Google Scholar 

  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: theory. J. Atmos. Sci., 47, 1878–1893.

    Article  Google Scholar 

  • Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52, 4043–4059.

    Article  Google Scholar 

  • Negri, A. J., 1982: Cloud-top structure of lornadic storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Am. Meteor. Soc., 63, 1151–1159.

    Google Scholar 

  • Negri, A. J., and R. F. Adler, 1993: An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters. J. Appl. Meteorol., 32, 357–373.

    Article  Google Scholar 

  • Negri, A.J., R.F. Adler, and P.J. Wetzel, 1984: Rain estimation from satellite: An examination of the Griffith-Woodley technique. J. Climate Appl. Meteorol., 23, 102–116.

    Article  Google Scholar 

  • O’Sullivan, F., C. H. Wash, M. Stewart, and C. E. Motell, 1990: Rain estimation from infrared and visible GOES satellite data. J. Appl. Meteorol., 29, 209–223.

    Google Scholar 

  • Ou, S. C., K. N. Liou, W. M. Gooch, and Y. Takano, 1993: Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 3.7-and 10.9-μm channels. Appl. Optics, 32, 2171–2180.

    Google Scholar 

  • Parol, F., J. C. Buriez, G. Brogniez, and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteorol., 30, 973–984.

    Google Scholar 

  • Peter, T., and M. Baker, 1996: Lifetimes of ice crystals in the upper troposphere and stratosphere. In Clouds, Chemistry and Climate, P. J. Crutzen and V. Ramanathan, Ed., NATO ASI Series, 135, Springer, 57–82.

    Google Scholar 

  • Pilewskie, P., and S Twomey, 1987: Discrimination of ice from water in clouds by optical remote sensing. Atmos. Res., 21, 113–122.

    Google Scholar 

  • Platnick, S., and S. Twomey, 1994: Remote sensing the susceptibility of cloud albedo to changes in drop concentration. Atmos. Res., 34, 85–98.

    Google Scholar 

  • Platt, C. M. R., J. D. Spinhirne, and W. D. Hart, 1989: Optical and microphysical properties of a cold cirrus cloud: evidence for regions of small ice particles. J. Geophys. Res., 94(D8), 11151–11164.

    Google Scholar 

  • Porcù, F., M. Borga, and F. Prodi, 1999: Rainfall estimation by combining radar and infrared satellite data for nowcasting purposes. Meteor. Appl., 6, 289–300.

    Google Scholar 

  • Ramaswamy, V., and A. Detwiler, 1986: Interdependence of radiation and microphysics in cirrus clouds. J. Atmos. Sci., 43, 2289–2301.

    Article  Google Scholar 

  • Rao, N. X., S. C. Ou, and K. N. Liou, 1995: Removal of the solar component in AVHRR 3.7-μm radiances for the retrieval of cirrus cloud parameters. J. Appl. Meteorol., 34, 482–499.

    Google Scholar 

  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26(20), 3105–3108.

    Article  Google Scholar 

  • Rosenfeld, D., 2000a: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796.

    Article  CAS  Google Scholar 

  • Rosenfeld, D., 2000b: Reduction of tropical cloudiness by soot. Science. 288, 1042–1047.

    Google Scholar 

  • Rosenfeld, D., and G. Gutman, 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34, 259–283.

    Google Scholar 

  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Am. Meteor. Soc., 79, 2457–2476.

    Google Scholar 

  • Saunders, R. W., and K. T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sensing, 9, 123–150.

    Google Scholar 

  • Schmetz, J., P. Pili, S. A. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., in press.

    Google Scholar 

  • Scofield, R. A., 1987: The NESDIS operational convective precipitation technique. Mon. Wea. Rev., 115, 1773–1792.

    Google Scholar 

  • Scofield, R. A., and V. J. Oliver, 1977: A scheme for estimating convective rainfall from satellite imagery. NOAA Tech. Memo. NESS, 86, Dept. of Commerce, Washington, D.C., 47pp.

    Google Scholar 

  • Setvák, M., and C. A. Doswell, III. 1991: The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Wea. Rev., 119, 841–847.

    Google Scholar 

  • Slingo, A., and H. M. Schrecker, 1982: On the shortwave radiative properties of stratiform water clouds. Q. J. R. Meteorol. Soc., 108, 407–426.

    Google Scholar 

  • Stephens, G. L., 1980: Radiative properties of cirrus clouds in the infrared region. J. Atmos. Sci., 37, 435–446.

    Google Scholar 

  • Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Singles-cattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 3–19.

    Google Scholar 

  • Tjemkes, S. A., L. van de Berg, and J. Schmetz, 1997: Warm water vapour pixels over high clouds as observed by METEOSAT. Contr. Atmos. Phys., 70, 15–21.

    Google Scholar 

  • Todd, M. C., E. C. Barrett, M. J. Beaumont, and J. L. Green, 1995: Satellite identification of rain days over the upper Nile river basin using an optimum infrared rain/no-rain threshold temperature model. J. Appl. Meteorol., 34, 2600–2611.

    Article  Google Scholar 

  • Todd, M. C., E. C. Barrett, M. J. Beaumont, and T. J. Bellerby, 1999: Estimation of daily rainfall over the upper Nile river basin using a continuously calibrated satellite infrared technique. Meteorol. Appl., 6, 201–210.

    Article  Google Scholar 

  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteorol., 35, 355–371.

    Google Scholar 

  • Tsonis, A. A., 1987: Determining rainfall intensity and type from GOESimagery in the midlatitudes. Remote Sens. Environ., 21, 29–36.

    Article  Google Scholar 

  • Tsonis, A. A., and G. A. Isaac, 1985: On a new approach for instantaneous rain area delineation in the midlatitudes using GOES data. J. Climate Appl. Meteorol., 24, 1208–1218.

    Article  Google Scholar 

  • Turk, F. J., J. Vivekanandan, T. Lee, P. Durkee, and K. Nielsen, 1998: Derivation and applications of near-infrared cloud reflectances from GOES-8 and GOES-9. J. Appl. Meteorol., 37, 819–831.

    Article  Google Scholar 

  • Turk, F. J., G. D. Rohaly, J. Hawkins, E. A. Smith, F. S. Marzano, A. Mugnai, and V. Levizzani, 1999: Meteorological applications of precipitation estimation from combined SSM/I, TRMM and infrared geostationary satellite data. In: Microwave Radiometry and Remote Sensing of the Environment, P. Pampaloni and S. Paloscia Ed., VSP Int. Sci. Publisher, Utrecht (The Netherlands), 353–363.

    Google Scholar 

  • Turpeinen, O. M., A. Abidi, and W. Belhouane, 1987: Determination of rainfall with the ESOC precipitation index. Mon. Wea. Rev., 115, 2699–2706.

    Google Scholar 

  • Vicente, G. A., 1996: Algorithm for rainfall rate estimation using a combination of GOES-8 11.0 and 3.9 micron measurements. Prepr. 8th Conf. Satellite Meteorology and Oceanography, AMS, 274–278.

    Google Scholar 

  • Vicente, G. A., and J. R. Anderson, 1993: Retrieval of rainfall rates from the combination of passive microwave radiometric measurements and infrared measurements. Prepr. 20th Conf. Hurricane and Tropical Meteorol., AMS, 151–154.

    Google Scholar 

  • Vicente, G. A., and R. A. Scofield, 1996: Experimental GOES-8/9 derived rainfall estimates for flash flood and hydrological applications. Proc. The 1996 EUMETSAT Meteorological Satellite Data Users’ Conf., EUMETSAT, 89–96.

    Google Scholar 

  • Vicente, G. A., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Am. Meteorol. Soc., 79, 1883–1898.

    Article  Google Scholar 

  • Wang, P. K., 2001: Plumes above thunderstorm anvils and their contribution to cross tropopause transport of water vapor in midlatitudes. 11th Conf. Satellite Meteorology Oceanography, AMS, 161–164.

    Google Scholar 

  • Warren, S. G., 1984: Optical constants of ice from ultraviolet to the microwave. Appl. Opt., 23, 1206–1225.

    CAS  Google Scholar 

  • Watts, P.D., C. T. Mutlow, A. J. Baran, and A. M. Zavody, 1998: Study on cloud properties derived from Meteosat Second Generation observations. Final Rep., EUMETSAT ITT No. 97/181, 344 pp.

    Google Scholar 

  • Welch, R. M., S. K. Cox, and W. G. Zdunkowski, 1980: Calculations of the variability of ice cloud radiative properties at selected solar wavelengths. Appl. Opt., 19, 3057–3067.

    CAS  Google Scholar 

  • Wendling, P., R. Wendling, and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18, 2663–2671.

    Google Scholar 

  • Wiegner, M., P. Seifert, and P. Schlüssel, 1998: Radiative effect of cirrus clouds in METEOSAT Second Generation Spinning Enhanced Visible and Infrared Imager channels. J. Geophys. Res., 103(D18), 23217–23230.

    Article  Google Scholar 

  • Wylie, D. P., 1979: An application of a geostationary satellite rain estimation technique to an extra-tropical area. J. Appl. Meteorol., 18, 1640–1648.

    Article  Google Scholar 

  • Xu, L., X. Gao, S. Sorooshian, P. A. Arkin, and B. Imam, 1999a: A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteorol., 38, 569–579.

    Google Scholar 

  • Xu, L., S. Sorooshian, X. Gao, and H. V. Gupta, 1999b: A cloud-patch technique for identification and removal of no-rain clouds from satellite infrared imagery. J. Appl. Meteorol., 38, 1170–1181.

    Google Scholar 

  • Zender, C. S, and J. T. Kiehl, 1994: Radiative sensitivities of tropical anvils to small ice crystals. J. Geophys. Res., 99(D12), 25869–25880.

    Article  Google Scholar 

  • Zhang, Y., M. Laube, and E. Raschke, 1994: Numerical simulations of cirrus properties. Beitr. Phys. Atmosph., 67, 109–120.

    Google Scholar 

  • Zhang, Y., A. Macke, and F. Albers, 1999: Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing. Atmos. Res., 52, 59–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Levizzani, V. (2002). Clouds and Rainfall by Visible-Infrared Radiometry. In: Marzano, F.S., Visconti, G. (eds) Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques. Advances in Global Change Research, vol 13. Springer, Dordrecht. https://doi.org/10.1007/0-306-48150-2_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48150-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0943-3

  • Online ISBN: 978-0-306-48150-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics