Skip to main content

Remote Sensing of Snow and Characterization of Snow Albedo for Climate Simulations

  • Chapter

Part of the book series: Advances in Global Change Research ((AGLO,volume 7))

Abstract

Accurate estimates of the spatial distribution and albedo of snow cover are needed for climate models, that use surface albedo as a lower boundary condition. We perform a sensitivity study that shows how model parameterizations of snow albedo affect computed snow-atmosphere fluxes. When albedo is calculated as a function of snow surface grain size, the variable albedo is significantly more realistic and representative than constant albedo values. We then describe new and planned satellite-derived products that will monitor seasonal changes in snow extent and albedo and have particular relevance to the climate modeling community.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnett, T. P., L. Dumenil, U. Schlese, E. Roeckner, and M. Latif (1989), The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46:661–685

    Article  Google Scholar 

  • Basist, A., N. C. Grody, T. C. Peterson and C. N. Williams (1998), Using the Special Sensor Microwave Imager to monitor land surface temperatures, wetness and snow cover. J. Appl. Meteorol., 37:888–911.

    Article  Google Scholar 

  • Basist, A., D. Garrett, R. Ferraro, N. Grody and K. Mitchell (1996), A comparison between snow cover products derived from visible and microwave satellite observations. J. Appl. Meteorol, 35:163–177.

    Article  Google Scholar 

  • Bonan, G. B. (1996), A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note, NCAR/TN-417+STR, Boulder, CO, 150 pp.

    Google Scholar 

  • Caroll, S. S., T. R. Carroll and R. W. Poston (1999), Spatial modeling and prediction of snow water equivalent using ground-based, airborne, and satellite snow data, J. Geophys. Res., 104:19623–19629.

    Article  Google Scholar 

  • Carroll, T. R. (1990) Operational airborne and satellite snow cover products of the National Operational Hydrologic Remote Sensing Center, Proceedings of the 1990 Eastern Snow Conference, CRREL Special Report 90–44, 87–98.

    Google Scholar 

  • Chang, A. T. C., J. L. Foster, and D. K. Hall (1990), Satellite sensor estimates of Northern Hemisphere snow volume. Int. J. Remote Sensing, 11:167–171.

    Article  Google Scholar 

  • Chang, A. T. C. and A. Rango (1997), Algorithm Theoretical Basis Document (ATBD) for the AMSR Snow Water Equivalent Algorithm, Vers. 2.0, NASA EOS publication, available online at http://wwwghcc.msfc.nasa.gov/AMSR/html/amsratbd.html, 26pp.

    Google Scholar 

  • Clark, M. P. (1998), The Role of Snow Cover in the Climate System. Ph.D. Dissertation, Dept. of Geog., Univ. CO, Boulder, 108 pp

    Google Scholar 

  • Cohen, J. and D. Entekhabi (1999), Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26:345–348.

    Article  Google Scholar 

  • Cohen, J. and D. Rind (1991), The effect of snow cover on climate. J. Climate, 4:689–706.

    Article  Google Scholar 

  • Colbeck, S. C. (1979), Grain clusters in wet snow. J. Colloid Interface Sci., 72: 371–384.

    Article  Google Scholar 

  • Colbeck, S. C. (1982), An overview of seasonal snow metamorphism. Rev. Geophys. and Space Phys., 20:45–61.

    Article  Google Scholar 

  • Dewey, K. F. (1977), Daily maximum and minimum temperature forecasts and the influence of snow cover. Mon. Wea. Rev., 105, 1594–1597.

    Article  Google Scholar 

  • Dickson, R. R. and J. Namias (1976), North American influence on the circulation and climate of the North Atlantic sector. Mon. Wea. Rev. 104:1255–1265.

    Article  Google Scholar 

  • Ellis, A. W. and D. J. Leathers (1998), The effects of a discontinuous snow cover on lower atmospheric temperature and energy flux patterns. Geophys. Res. Lett., 25:2161–2164.

    Article  Google Scholar 

  • Frei, A. and D. A. Robinson (1999), Northern hemisphere snow extent: Regional variability 1972–1994. Int. J. Climate, 19:1535–1560.

    Article  Google Scholar 

  • Gates, W. L. (1992), AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73:1962–1970.

    Article  Google Scholar 

  • Goodison, B. E. (1989), Determination of areal snow water equivalent on the Canadian prairies using passive microwave satellite data. IGARSS ‘89, Proceedings 3:1243–1246.

    Google Scholar 

  • Goodison, B. E. and A. E. Walker (1993), Use of snow cover derived from satellite passive microwave data as an indicator of climate change. Ann.Glaciol. 17:137–142.

    Google Scholar 

  • Grody, N. C. (1991), Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res. 96:7423–7435.

    Article  Google Scholar 

  • Grody, N. C. and A. N. Basist (1996), Global identification of snowcover using SSM/I measurements. IEEE Trans. Geosci. Remote Sens,. 34:237–249.

    Article  Google Scholar 

  • Groisman, P. Y., T. R. Karl, and R. W. Knight (1994), Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263:198–200.

    Article  Google Scholar 

  • Gutzler, D. S. and J. W. Preston (1997), Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophys. Res. Lett., 24:2207–2210.

    Article  Google Scholar 

  • Hall, D. K., A. B. Tait, G. A. Riggs, V. V. Salomonson (1998), Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow-, Lake Ice-, and Sea Ice- Mapping Algorithm, Version 4.0. NASA EOS publication, available online at http://ltpwww.gsfc.nasa.gov/MODISSnow/modis.html, 50 pp.

    Google Scholar 

  • Jordan, R. (1991), A one-dimensional temperature model for a snow cover: technical documentation for SNTHERM.89. Special Report 91–16, US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, NH, 49 pp.

    Google Scholar 

  • Klein, A. G., D. K. Hall, and G. Riggs (1998), Improving snow-cover mapping in forests through the use of a canopy reflectance model. Hydrological Processes, 12:1723–1744.

    Article  Google Scholar 

  • Loth, B., H-F. Graf, and J. M. Oberhuber (1993), Snow cover model for global climate simulations. J. Geophys. Res., 98:10451–10465.

    Article  Google Scholar 

  • Marks, D. (1988), Climate Energy Exchange, and Snowmelt in Emerald Lake Watershed, Sierra Nevada. Ph.D. Dissertation, Dept. of Geog., Univ. Calif, Santa Barbara, 149 pp.

    Google Scholar 

  • Marshall, S. (1989), A physical parameterization of snow albedo for se in climate models. NCAR Cooperative Thesis no. 123, Boulder, CO.

    Google Scholar 

  • Matson, M. (1986), The NOAA satellite-derived snow cover data base: Past, present, and future. Proceedings of Snow Watch ‘85, World Data Center for Glaciology, Report GD-18, 115–124.

    Google Scholar 

  • Nolin, A. W., and J. C. Stroeve (1997), The changing albedo of the Greenland ice sheet: Implications for climate change, Ann. Glaciol., 25: 51–57.

    Google Scholar 

  • Robinson, D. A., J. D. Tarpley, and B. H. Ramsay (1999), Transition from NOAA weekly to daily hemispheric snow charts. AMS, Tenth Symp. on Global Change Studies, Dallas, TX, p. 487–490.

    Google Scholar 

  • Schweiger, A. J., R. Armstrong, and R. G. Barry (1987), Snow cover parameter retrieval from various data sources in the Federal Republic of Germany. In Large Scale Effects of Seasonal Snow Cover, Proceedings of he Vancouver Symposium, August 1987, IAHS Publ. no. 166, Oxford: International Association of Hydrometeorological Sciences, pp. 353–364.

    Google Scholar 

  • Stamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27:2502–2509.

    Article  Google Scholar 

  • Stroeve, J. C., A. W. Nolin, and K. Steffen (1997), Comparison of AVHRR-derived and in situ surface albedo over the Greenland ice sheet. Remote Sens. Environ., 62:262–276.

    Article  Google Scholar 

  • Tait, A. and R. Armstrong (1996), Evaluation of SMMR satellite-derived snow depth using ground-based measurements, Int. J. Remote Sensing, 17:657–665.

    Article  Google Scholar 

  • Verseghy, D. L. (1991), CLASS — A Canadian land surface scheme for GCMs, I: soil model, J. Climatol., 11:111–133.

    Google Scholar 

  • Walker, A. E., and B. E. Goodison (1993), Discrimination of a wet snow cover using passive microwave satellite data. Ann Glaciol. 17:307–311.

    Google Scholar 

  • Walland, D. J. and I. Simmonds (1997), Modelled atmospheric response to changes in Northern Hemisphere snow cover. Climate Dynamics, 13:25–34.

    Article  Google Scholar 

  • Walsh, J. E. (1993), Observational and modeling studies of the influence of snow anomalies on the atmospheric circulation, in Prediction of the interannual climate variations, NATO ASI Ser. 6, edited by Shukla, Kluwer, Norwell, Mass., pp. 89–105.

    Chapter  Google Scholar 

  • Walsh, J. E. and B. Ross (1988), Sensitivity of 30-day dynamical forecasts to continental snow cover. J. Climate, 1:737–754.

    Article  Google Scholar 

  • Wanner, W., A. Strahler, B. Hu, P. Lewis, J.-P Muller, X. Li, C. Barker-Schaaf, and M. Barnsley (1997), Global retrieval of BRDF and albedo over land from EOS MODIS and MISR data: Theory and algorithm. J. Geophys. Res., 102:17143–17162.

    Article  Google Scholar 

  • Warren, S. G., and Wiscombe, W. J. (1980), A model for the spectral albedo of snow, II, Snow containing atmospheric aerosols, J. Atmos. Sci., 37: 2734–2745.

    Article  Google Scholar 

  • Wiscombe, W. J., and Warren, S. G. (1980), A model for the spectral albedo of snow, I, Pure snow, J. Atmos. Sci., 37:2712–2713.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nolin, A.W., Frei, A. (2001). Remote Sensing of Snow and Characterization of Snow Albedo for Climate Simulations. In: Beniston, M., Verstraete, M.M. (eds) Remote Sensing and Climate Modeling: Synergies and Limitations. Advances in Global Change Research, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48149-9_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48149-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5648-1

  • Online ISBN: 978-0-306-48149-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics