Skip to main content

The Use of Remotely-Sensed Data for the Estimation of Energy Balance Components in a Mountainous Catchment Area

  • Chapter
Remote Sensing and Climate Modeling: Synergies and Limitations

Part of the book series: Advances in Global Change Research ((AGLO,volume 7))

Abstract

The knowledge of the spatial distribution of biophysical parameters related to the surface energy balance, such as surface albedo and surface temperature, is of great interest for various applications, such as the modelling of atmospheric behaviour and the monitoring of water resources.

Satellite-based remotely-sensed data may provide an important contribution in the estimation of energy fluxes, at the surface-atmosphere interface, through the determination of biophysical parameters in a distributed way.

In this study the determination of actual evapotranspiration is estimated as a key input to the hydrological balance at catchment scale. The experiment was conducted using high resolution satellite data of Landsat Thematic Mapper in an high mountainous catchment (Valmasino) of the Italian Alps. The watershed surface covers an area of 188 km2 and elevation ranges from 250 m to 3650 m, including different land cover types from prairie to forest.

Remotely-sensed images were integrated with ground based meteorological measurements and with a Digital Elevation Model in a GIS environment to solve latent heat flux as residual term of the one-dimensional surface energy balance equation.

Daily values of evapotranspiration, estimated from spatially distributed instantaneous latent heat fluxes, are compared with daily rate of actual evapotranspiration computed according to the Priestley-Taylor and Penmann-Monteith methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson M.C., J.M. Norman, G.R. Diak, W.P. Kustas and J. R. Mecikalski (1996). A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing. Remote Sens. Environ., 60, pp. 195–216.

    Article  Google Scholar 

  • Belloni S., and M. Pelfini (1987). Il gradiente termico in Lombardia. Acqua-Aria, 4, pp. 441 – 447.

    Google Scholar 

  • Baldocchi D.D., B. B. Hicks and T.P. Meyers (1988). Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, pp. 1331–1340.

    Article  Google Scholar 

  • Brest C.L., and S.N. Goward (1987). Deriving Surface Albedo from Narrow Band Satellite Data. Int. J. Remote Sensing, 8, pp. 351–367.

    Article  Google Scholar 

  • Carrara A., G. Bitelli, R. Carlà (1997). Comparison of techniques for generating digital terrain models from contour lines. Int. Journal of Geographical Information System, 5, 11 pp 451–473.

    Article  Google Scholar 

  • Chehbouni A., J. Qi, D. Lo Seen, Y.H. Kerr, G. Dedieu, S. Moran, M. Daubas and B. M. Monteney (1997). Estimation of Real Evapotranspiration. FAO Water Reports n. 16. Remote Sensing and Water Resources. Proc. of the Int. Workshop, Montpellier, France, 16, pp. 319–328.

    Google Scholar 

  • CIPRA (1991). La Convenzione delle Alpi. Commissione Internazionale per la Protezione delle Alpi. Salisburgo, 7 Novembre 1991.

    Google Scholar 

  • Clothier B.E., R.L. Clavson, P.J.Jr. Pinter, M. S. Moran, R. J. Reginato and R. D. Jackson (1986). Estimation of soil heat flux from net radiation during the growth of alfaalfa. Agric. For. Meteorol., 37, pp. 319–329.

    Article  Google Scholar 

  • Crago R.D. and W. Brutsaert (1996). Daytime evaporation and self-preservation of the evaporative fraction and the Bowen ratio. Journal of Hydrology, 177, pp. 241–255.

    Article  Google Scholar 

  • Dozier J., J. Bruno, P. Downey (1981). A faster solution to the horizon problem. Computers and Geosciences, 7, pp. 145–151.

    Article  Google Scholar 

  • Duguay C.R., and E.F. LeDrew (1992). Estimating Surface Reflectance and Albedo from Landsat-5 Thematic Mapper over Rugged Terrain. Photogrammetric Eng. and Remote Sensing, 58, pp. 551–558.

    Google Scholar 

  • Eastman J.R. (1997). IDRISI for Windows, User’s Guide V. 2.0, Clark University, Worcester, MA, USA.

    Google Scholar 

  • ERSAL (1992). I suoli del Fondovalle Valtellinese. Milano

    Google Scholar 

  • Giacomini V. (1960). Il paesaggio vegetale della Provincia di Sondrio. Flora et Vegetatio Italica, 3.

    Google Scholar 

  • Gilabert M.A., C. Conese and F. Maselli (1995). An atmospheric correction method for the automatic retrieval of surface reflectances from TM images. Int. J. Remote Sensing, 15, pp. 2065–2086.

    Article  Google Scholar 

  • Goodin D. G. (1995). Mapping the surface radiation budget and net radiation in a sand hills wetland using a combined modeling/remote sensing method and Landsat Thematic Mapper imagery. Geocarto International, 2, pp. 19–29.

    Article  Google Scholar 

  • Hall F.G., P.J. Sellers, D. E. Strebel, E.T. Kanemasu, R.D. Kelly, B.L. Blad, B.J. Markham, J.R. Wang and F. Huemmrich (1991). Satellite Remote sensing of Surface Energy and Mass Balance: Results from FIFE. Remote Sens. Environ., 35, pp. 187–199.

    Article  Google Scholar 

  • Haltiner G.J. and F.L. Martin (1957). Dynamical and Physics Meteorology. McGraw-Hill Book Company, N.Y., pp. 25.

    Google Scholar 

  • Hurtado E., M.M. Artigao and V. Caselles (1994). Estimating maize (Zea mays) evapotranspiration from NOAA-AVHRR thermal data in the Albacete area, Spain. Int. J. Remote Sensing, 15(10), pp. 2023–2037.

    Article  Google Scholar 

  • Hurtado E., M.M. Artigao and V. Caselles (1997). Models for Determining Evapotranspiration. FAO Water Reports n. 16. Remote Sensing and Water Resources. Proceedings of the International Workshop held in Montpellier, France, 16, pp. 305–310.

    Google Scholar 

  • Jackson R.D., R.J. Reginato and S.B. Idso (1977). Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research, 13, pp. 651–656.

    Article  Google Scholar 

  • Kaimal J. C. and J. J. Finnigan (1994). Atmospheric Boundary Layer Flows. Oxford University Press, 289 pp.

    Google Scholar 

  • Kaneko D. and M. Hino (1996). Proposal and investigation of a method for estimating surface energy balance in regional forests using TM derived vegetation index and observatory routine data. Int. J. Remote Sensing, 17 (6), pp. 1129–1148.

    Article  Google Scholar 

  • Kneizys F.X., E.P. Shettle, W.O. Gallery, J.H. Chetwynd, L.W. Abreu, J.E.A. Selby, S.A. Clough, Fenn R.W. (1989). Atmospheric transmittance/irradiance: computer code LOWTRAN-6. Air Force Geophysic Laboratoy. Hanscom, USA.

    Google Scholar 

  • Kustas W.P. and K.S. Humes (1996). Sensible heat flux from remotely-sensed data at different resolutions. In Scaling up in hydrology using remote sensing. Ed. by J. B. Stewart, E.T. Engman, Feddes R.A. and Y. Kerr, John Wiley & Sons, New York, pp. 127–145.

    Google Scholar 

  • Kustas W.P., E.M. Perry, P.C. Doraiswamy and M.S. Moran (1994). Using Satellite Remote Sensing to Extrapolate Evapotranspiration Estimates in Time and Space over a Semiarid Rangeland Basin. Remote Sens. Environ., 49, pp. 275–286.

    Article  Google Scholar 

  • Kustas W.P., R.D. Jackson and G. Asrar (1989). Estimating surface energy-balance components from remotely-sensed data, in Theory and Application of Optical Remote Sensing (G. Asrar, ed.) John Wiley & Sons, New York, pp. 604–627.

    Google Scholar 

  • Linsley R.K.Jr., M.A. Kohlenm, J.L.H. Paulhus (1982). Hydrology for Engineers. McGraw-Hill International Book Company, New York.

    Google Scholar 

  • Matveev L.T. (1965). Fundamentals of General Meteorology: Physics of the Atmosphere. Israel Program for Scientific Translation, Jerusalem, pp. 29–59.

    Google Scholar 

  • Meijerink A.M.J., H.A.M. De Brower, C.M. Mannaerts, C.R. Valenzuela (1994). Introduction to the use of Geographic Information System for practical Hydrology. The Int. Inst. For Aerospace Survey and Earth Sciences (ITC), The Netherlands.

    Google Scholar 

  • Menzel L. and H. Lang (1998). Spatial variation in evapotranspiration in Swiss Alpine regions. Hydrology, Water Resources and Ecology Headwaters. Proc. of the HeadWater’98 Conference, Merano, Italy. IAHS n. 248.

    Google Scholar 

  • Monteith J.L. (1965). Evaporation and Environment. Sym. Soc. Expl., 19, pp. 205–234.

    Google Scholar 

  • Monteith J.L. (1973). Principles of Environmental Physics. Arnold, London, pp. 241.

    Google Scholar 

  • Moran M. S., R. D. Jackson, L.H. Raymond, L.W. Gay, and P.N. Slater (1989). Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data. Remote Sens. Environ., 30, pp. 77–87.

    Article  Google Scholar 

  • Norman J.M. and F. Becker (1995). Terminology in the thermal infrared remote sensing of natural surfaces. Agric.For. Meteor. 77, pp. 153–166.

    Article  Google Scholar 

  • Olioso A., Chauki H., Courault D., J.P. Wigneron (1999). Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models. Remote Sens. Environ., 68, pp. 341–356.

    Article  Google Scholar 

  • Pegrum H. and W.G.M. Bastiaanssen (1996). An intercomparison of techniques to determine the area-averaged latent heat flux from individual in situ observations: a remote sensing approach using the European Field Experiment in a Desertification-Threatened Area data. Water Resources Research, 9, pp. 2775–2786.

    Article  Google Scholar 

  • Priesley C.H.B. and R.J. Taylor (1972). On the assessment of surface heat flux and evaporation using large scale parameters, Monthly Weather Rev., 100, n.2, pp. 81–92.

    Article  Google Scholar 

  • Richards J.A. (1986). Remote Sensing Digital Image analysis. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Rott H. and M. Rast (1999). Geosphere/Biosphere. ESA, Earth Observ. Quarterly, 63, pp. 14–17.

    Google Scholar 

  • Rubio E., V. Caselles and C. Badenas (1997). Emissivity Measurements of Several Soils and Vegetation Types in the 8–14 m Wave Band: Analysis of Two Field Methods. Remote Sens. Environ., 59, pp. 490–521.

    Article  Google Scholar 

  • Running S.W., D.D. Baldocchi, D.P. Turner, S.T. Gower, P.S. Bakwin and K.A. Hibbard (1999). A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data. Remote Sens. Environ., 70, pp. 108–127.

    Article  Google Scholar 

  • Schwab G.O., D.D. Fangmeier, W.J. Elliot and R.K. Frevert (1993). Soil and Water Conservation Engineering. John Wiley & Sons Inc., New York, pp. 60.

    Google Scholar 

  • Seguin B. and B. Itier (1983). Using midday surface temperature to estimate daily evapotranspiration from satellite thermal IR data. Int. Journal of Remote Sensing, 4, pp 371–383.

    Article  Google Scholar 

  • Spittelehouse D. L. and T.A. Black (1980). Evaluation of the Bowen ratio/energy balance method for determining forest evapotranspiration. Atmosphere-Ocean, 18, pp. 98–116.

    Article  Google Scholar 

  • Vermote E.D., J.L. Tanré, M. Deuzé, J.J. Moncrette (1996). Second Simulation of the Satellite signal in the Solar Spectrum (6S), User Guide. NASA GSFC, Greenbelt MD, USA.

    Google Scholar 

  • Vidal A., F. Pinglo, H. Durand, C. Devaux-Ros and A. Maillet (1994). Evaluation of a Temporal Fire Risk Index in Mediterranean Forest from NOAA Thermal IR. Remote Sens. Environ., 49, pp. 296–303.

    Article  Google Scholar 

  • Wigmosta M.S., L.W. Vail and D.P. Lettenmaier (1994). A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30, pp. 1655–1679.

    Article  Google Scholar 

  • Wukelich G.E., D.E. Gibbson, L.M. Martucci and H.P. Foote (1989). Radiometric Calibration of Landsat Thematic Mapper Thermal Band. Remote Sens. Environ., 28, pp. 339–347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brivio, P.A., Colombo, R., Meroni, M. (2001). The Use of Remotely-Sensed Data for the Estimation of Energy Balance Components in a Mountainous Catchment Area. In: Beniston, M., Verstraete, M.M. (eds) Remote Sensing and Climate Modeling: Synergies and Limitations. Advances in Global Change Research, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48149-9_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48149-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5648-1

  • Online ISBN: 978-0-306-48149-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics