Skip to main content

Using Satellite Data Assimilation to Infer Global Soil Moisture Status and Vegetation Feedback to Climate

  • Chapter
Remote Sensing and Climate Modeling: Synergies and Limitations

Part of the book series: Advances in Global Change Research ((AGLO,volume 7))

Abstract

The importance of land surface and vegetation characteristics for climate has long been hypothesisized and is reflected by increasingly sophisticated land surface schemes used in climate models. However, accurate parameterisation of land surface processes is still hampered by the complexity of the processes, and by data availability at the global scale required for general circulation models. It is, therefore, desirable to utilise additional data sources for land surface models, of which satellite data appear to be the most promising in terms of availability and spatial and temporal coverage. Here, monthly satellite-derived fields of the fraction of Absorbed Photosynthetically Active Radiation (fAPAR) are assimilated into a land surface and vegetation model, the Biosphere Energy-Transfer Hydrology scheme (Bethy). Assimilation offers the advantage that uncertainties of both the satellite-derived fAPAR and model parameters can be accounted for. Since fAPAR can also be predicted by the model, this information is not discarded as in other approaches where satellite data are used as forcing. During assimilation, a number of model parameters are adjusted until a cost function reaches its minimum. This cost function is defined by the squared deviation between monthly model-simulated and satellite-derived fAPAR as well as between initial and adjusted model parameters, both normalised by their assumed error variances. One of the adjusted parameters, the maximum plant-available soil moisture, is used in a subsequent sensitivity study with the Echam-4 climate model. The results show that changes in this parameter as a result of satellite data assimilation can lead to significant changes in simulated soil moisture and 2m air temperature over large parts of the tropics, where soil water storage is usually underestimated in climate and vegetation models. A comparison of Bethy simulations with soil water measurements from Amazonia supports this finding, and also shows that using fAPAR as forcing would have lead to inconsistencies between the carbon balance, predicting a strong decrease in fAPAR at negative carbon gains, and the value of fAPAR prescribed from the satellite data. The study aims at demonstrating the potential of assimilating satellite data into land surface models, as well as the significance of vegetation for the land surface climate. It is further intended to indicate a methodology for the assimilation of satellite data into general circulation models that include an interactive, i.e. climate-responsive, vegetation component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, E., J. Pailleux, J.-N. Thépaut, J.R. Eyre, A.P. McNally, G.A. Kelly, and P. Courtier, Use of cloud-cleared radiances in three/four-dimensional variational data assimilation, Ouaterly Journal of the Royal Meteorological Society, 120, 627–653, 1994.

    Article  Google Scholar 

  • Asrar, G. M. R.B., and B.J. Choudhury, Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation: a modeling study, RemoteSensing of Environment, 41, 627–653, 1994.

    Google Scholar 

  • Beerling, D.J., and W.P. Quick, A new technique for estimating rates of carboxylation and electron transport in leaves of C3 plants for use in dynamic global vegetation models, Global Change Biology, 1, 289–294, 1995.

    Article  Google Scholar 

  • Berthelot, B., G. Dedieu, F. Cabot, and S. Adam, Estimation of surface reflectance and vegetation index using NOAA/AVHRR: Methods and results at global scale, in 6 th international symposium on physical measurements and signatures in remote sensing, ISPRS, Val d’Isère, France, 1994.

    Google Scholar 

  • Blyth, K., The use of microwave remote sensing to improve spatial parameterization of hydrological models, Journal of Hydrology, 152, 103–129, 1993.

    Article  Google Scholar 

  • Box, E.O., Macroclimate and plant forms: An introduction to predictive modeling inphytogeography, 174 pp., Junk, Den Haag, 1981.

    Book  Google Scholar 

  • Brutsaert, W., Evaporation into the atmosphere, 299 pp., Reidel, Dordrecht, The Netherlands, 1982.

    Book  Google Scholar 

  • Budyko, M.I., Heat balance of the Earth’s surface, 255 pp., 1956.

    Google Scholar 

  • Budyko, M.I., Climate and Life, 508 pp., Academic Press, New York, 1974.

    Google Scholar 

  • Budyko, M.I., and A.A. Sokolov, Water Balance of the Earth, 663 pp., UNESCO Press, 1978.

    Google Scholar 

  • Canadell, J., R.B. Jackson, J.R. Ehleringer, H.A. Mooney, D.E. Sala, and E.D. Schulze, Maximum rooting depth of vegetation types at the global scale, Oecologia, 108, 583–595, 1996.

    Article  Google Scholar 

  • Charney, J.G., W.J. Quirk, S.-H. Chow, and J. Kornfield, A comparative study of the effects of albedo change on drought in semi-arid regions, Journal of Atmospheric Sciences, 34, 1366–1385, 1977.

    Article  Google Scholar 

  • Charney, J.G., P.H. Stone, and W.J. Quirk, Drought in the Sahara: A biogeophysical feedback mechanism, Science, 187, 434–435, 1975.

    Article  Google Scholar 

  • Chase, T.N., R.A. Pielke, T.G.F. Kittel, R.R. Nemani, and S.W. Running, Simulated impacts of historical land cover changes on global climate in northern winter, Climate Dynamics, 16, 93–105, 2000.

    Article  Google Scholar 

  • Christensen, J.H., B. Machenhauer, R.G. Jones, C. Schär, P.M. Ruti, M. Castro, and G. Visconti, Validation of present-day regional climate simulations over Europe — LAM simulations with observed boundary conditions, Climate Dynamics, 13, 489–506, 1997.

    Article  Google Scholar 

  • Claussen, M., U. Lohmann, E. Roeckner, and U. Schulzweida, A global data set of land-surface parameters, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1994.

    Google Scholar 

  • Claussen, M., U. Lohmann, E. Roeckner, and U. Schulzweida, The greening of the Sahara during the mid-holocene — results of an interactive atmosphere-biome model, GlobalEcology and Biogeography Letters, 6, 369–377, 1997.

    Article  Google Scholar 

  • Collatz, G.J., M. Ribas-Carbo, and J.A. Berry, Coupled photosynthesis-stomatal conductance model for leaves of C4 plants, Australian Journal of Plant Physiology, 19, 519–538, 1992.

    Article  Google Scholar 

  • Dickinson, R.E., A. Henderson-Sellers, P.J. Kennedy, and M.F. Wilson, Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model, National Center for Atmospheric Research, Boulder, CO, 1986.

    Google Scholar 

  • Farquhar, G.D., S. von Caemmerer, and J.A. Berry, A biochemical model of photosynthesis in leaves of C3 species, Planta, 149, 78–90, 1980.

    Article  Google Scholar 

  • Federer, C.A., Transpirational supply and demand: plant, soil, and atmospheric effects evaluated by simulation, Water Resources Research, 18,355–362, 1982.

    Article  Google Scholar 

  • Fiasse, S., and M.M. Verstraete, Monitoring the environment with vegetation indices: comparison of NDVI and GEMI using AVHRR data over Africa, in Vegetation, Modellingand Climate Change Effects, edited by F. Veroustraete, and R. Ceulemans, pp. 107–135, Academic Publishing, The Hague, The Netherlands, 1994.

    Google Scholar 

  • Foley, J.A., I.C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochemical Cycles, 10 (4), 603–628, 1996.

    Article  Google Scholar 

  • Ganopolski, A., C. Kubatzki, M. Claussen, V. Brovkin , and V. Petoukhov, The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene, Science, 280, 1916–1919, 1998.

    Article  Google Scholar 

  • Garratt, J.R., Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments — a review, Journal of Climate, 6, 419–449, 1993.

    Article  Google Scholar 

  • Geiger, R., The Climate near the Ground, Harvard University Press, Cambridge MA, 1965.

    Google Scholar 

  • Geiger, R., R.H. Aron, and P. Todhunter, The Climate near the Ground, 528 pp., Vieweg-Verlag, Braunschweig, Germany, 1995.

    Book  Google Scholar 

  • Geng, S., F. Penning de Vries, and I. Supit, A simple method for generating daily rainfall data, Agricultural and Forestry Meteorology, 36, 363–376, 1986.

    Article  Google Scholar 

  • Gobron, N., B. Pinty, M.M. Verstraete, and Y. Govaerts, A semi-discrete model for the scattering of light by vegetation, Journal of Geophysical Research, 102, 9431–9446, 1997.

    Article  Google Scholar 

  • Goel, N.S., and W. Qin, Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation, Remote Sens. Rev., 10, 309–347, 1994.

    Article  Google Scholar 

  • Grace, J., J. Lloyd, J. McIntyre, A. Miranda, P. Meir, H. Miranda, C. Nobre, J. Moncrieff, J. Massheder, Y. Mahli, I. Wright, and J. Gash, Carbon dioxide uptake by an undisturbed tropical rain forest in South-West Amazonia, Science, 270, 778–780, 1995.

    Article  Google Scholar 

  • Gutman, G., Numerical experimants on land surface alterations with a zonal model allosin for interaction between geobotanic state and climate, Journal of Atmosperic Sciences, 41, 2679–2685, 1984.

    Article  Google Scholar 

  • Gutman, G., D. Tarpley, A. Ignatov, and S. Olson, The enhanced NOAA global land dataset from the Advanced Very High Resolution Radiometer, Bulletin of the AmericanMeteorological Society, 76, 1141–1156, 1995.

    Article  Google Scholar 

  • Gutman, G., D. Tarpley, A. Ignatov, and S. Olson, The relative merit of cloud/clear identification in the NOAA/NASA Pathfinder AVHRR 10-day composites, InternationalJournal of Remote Sensing, 17, 3295–3304, 1996.

    Article  Google Scholar 

  • Haxeltine, A., and I.C. Prentice, BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types, Global Biogeochemical Cycles, 10 (4), 693–709, 1996.

    Article  Google Scholar 

  • Henderson-Sellers, A., K. McGuffie, and A.J. Pitman, The Project for intercomparison of land-surface parameterization schemes (PILPS): 1992 to 1995, Climate Dynamics, 12, 849–859, 1996.

    Article  Google Scholar 

  • Holben, B.N., Characteristics of maximum-value composite images from temporal AVHRR data, IntemationalJournal of Remote Sensing, 7, 1417–1434, 1986.

    Article  Google Scholar 

  • Holdridge, L.R., Determination of world formations from simple climatic data, Science, 105, 193–215, 1947.

    Article  Google Scholar 

  • Jarvis, P.G., and K.G. McNaughton, Stomatal control of transpiration: scaling up from leaf to region, Advances in Ecological Research, 15, 1–49, 1986.

    Article  Google Scholar 

  • Jones, H.G., Plants and Microclimate, 323 pp., Cambridge University Press, Cambridge, U.K., 1983.

    Google Scholar 

  • Kelliher, F.M., R. Leuning, and E.-D. Schulze, Evaporation and canopy characteristics of coniferous forests and grasslands., Oecologia, 95, 152–163, 1993.

    Article  Google Scholar 

  • Kleidon, A., and M. Heimann, Optimised rooting depth and its impacts on the simulated climate of an atmospheric general circulation model, Geophysical Research Letters, 25, 345–348, 1998.

    Article  Google Scholar 

  • Knorr, W., Satellitengestützte Fernerkundung und Modellierung des globalen CO2-Austauschs der Landvegetation: Eine Synthese, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1997 (available in English through http://www.bgc-jena.mpg.de/∼wolfgang.knorr).

    Google Scholar 

  • Knorr, W., Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties, Global Ecology and Biogeography, 9, 225–252, 2000.

    Article  Google Scholar 

  • Knorr, W., N. Gobron, P. Martin, B. Pinty, M.M. Verstraete, and G. Dedieu, Constraining a climate driven vegetation model with satellite data, in International Colloquium onPhotosynthesis and Remote Sensing, edited by G. Guyot, pp. 269–279, Earseel, Montpellier, France, 1995.

    Google Scholar 

  • Le Dimet, F.X., and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, 38, 91–110, 1986.

    Google Scholar 

  • Lean, J., and D.A. Warrilow, Simulation of the regional climatic impact of Amazon deforestation, Nature, 342, 411–413, 1989.

    Article  Google Scholar 

  • Leemans, R., and W. Cramer, The IIASA climate database for mean monthly values of temperature, precipitation and cloudiness on a terrestrial grid, Institute of Applied Systems Analysis, Laxenburg, Austria, 1991.

    Google Scholar 

  • Legates, D.R., and C.J. Willmott, Mean seasonal and spatial variability in global surface air temperature, Theoretical and Applied Climatology, 41, 11–21, 1990a.

    Article  Google Scholar 

  • Legates, D.R., and C.J. Willmott, Mean seasonal and spatial variability in gauge-corrected, global precipitation, IntemationalJournal of Climatology, 10, 111–127, 1990b.

    Article  Google Scholar 

  • Leprieur, C., M.M. Verstraete, and B. Pinty, Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data, Remote Sens. Rev., 10, 265–284, 1994.

    Article  Google Scholar 

  • Los, S.O., C.O. Justice, and C.J. Tucker, A global 1° by 1° NDVI data set for climate studies derived from the GIMMS continental NDVI data, International Journal of RemoteSensing, 15, 3493–3518, 1994.

    Article  Google Scholar 

  • Manabe, S., Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the earth’s surface, Monthly Weather Review, 97, 739–774, 1969.

    Article  Google Scholar 

  • McNider, R.T., A.J. Song, D.M. Casey, P.J. Wetzel, W.L. Crosson, and R.M. Rabin, Towards a dynamic-thermodynamic assimilation of satellite surface temperature in numerical atmospheric models, Monthly Weather Review, 122, 2784–2803, 1994.

    Article  Google Scholar 

  • Meyer, D., M.M. Verstraete, and B. Pinty, The effect of surface anisotropy and viewing geometry on the estimation of NDVI from AVHRR, Remote Sensing Reviews, 12, 3–27, 1995.

    Article  Google Scholar 

  • Milly, P.C.D., and K.A. Dunne, Sensitivity of the global water cycle to the water-holding capacity of land, Journal of Climate, 7, 506–526, 1994.

    Article  Google Scholar 

  • Mintz, Y., The sensitivity of numerically simulated climates to land-surface boundary conditions, in The Global Climate, edited by J.T. Houghton, pp. 79–105, Cambridge University Press, Cambridge, U.K., 1984.

    Google Scholar 

  • Monteith, J.L., Evaporation and environment, Symposium of the Society for ExperimentalBiology, 19, 205–234, 1965.

    Google Scholar 

  • Millier, M.J., Selected climatic data for a global set of standard stations for vegetationscience, Junk, Den Haag, The Netherlands, 1982.

    Book  Google Scholar 

  • Nepstad, D.C., C.R. de Carvalho, E.A. Davidson, P.H. Jipp, P.A. Lefebvre, G.H. Negeiros, E.D. da Silva, T.A. Stone, S.E. Trumbore, and S. Vieira, The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures, Nature, 372, 666–669, 1994.

    Article  Google Scholar 

  • Olson, J.S., J.A. Watts, and L.J. Allison, Carbon in live vegetation of major world ecosystems, Oak Ridge National Laboratory, Oak Ridge, 1983.

    Google Scholar 

  • Ottle, C., and D. Vijal-Madjar, Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the Hapex-Mobilhy region, Journal ofHydrology, 158, 241–264, 1994.

    Article  Google Scholar 

  • Patterson, K.A., Global distributions of total and total-available soilwater-holding capacities, M.S. thesis, 119 pp., University of Delaware, Newark DE, 1990.

    Google Scholar 

  • Pinker, R.T., and I. Laszlo, Global distribution of photosynthetically active radiaton as observed from satellites, Journal Climate, 5, 56–65, 1992.

    Article  Google Scholar 

  • Pinty, B., and M.M. Verstraete, GEMI: A non-linear index to monitor global vegetation from satellites, Vegetatio, 101, 1335–1372, 1992.

    Article  Google Scholar 

  • Polcher, J., and K. Laval, The impact of African and Amazonian deforestation on tropical climate, Journal of Hydrology, 155, 389–405, 1994.

    Article  Google Scholar 

  • Potter, S.C., J.T. Randerson, C.B. Field, P.A. Matson, P.M. Vitousek, H.A. Mooney, and S.A. Klooster, Terrestrial ecosystem production: a process model based on global satellite and surface data, Global Biogeochemical Cycles, 7, 811–841, 1993.

    Article  Google Scholar 

  • Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, in Numerical Recipes inFortran, pp. 402–406, Cambridge University Press, Cambridge, U.K., 1992.

    Google Scholar 

  • Prince, S.D., A model of regional primary productivity for use with coarse resolution satellite data, International Journal of Remote Sensing, 12, 1313–1330, 1991.

    Article  Google Scholar 

  • Rahman, H., and G. Dedieu, SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum, International Journal of Remote Sensing, 15, 123–143, 1994.

    Article  Google Scholar 

  • Ritchie, J.T., Model for predicting evaporation from a row crop with incomplete cover, WaterResourcers Research, 8, 1204–1213, 1972.

    Article  Google Scholar 

  • Roeckner, E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Dümenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1996.

    Google Scholar 

  • Rosenberg, N.J., Microclimate: The Biological Environment, 315 pp., Wiley, New York, 1974.

    Google Scholar 

  • Ruimy, A., G. Dedieu, and B. Saugier, TURC: A diagnostic model of continental gross primary productivity and net primary productivity, Global Biogeochemical Cycles, 10, 269–285, 1996.

    Article  Google Scholar 

  • Ryan, M.G., Effects of climate change on plant respiration, Ecological Applications, 1, 157–167, 1991.

    Article  Google Scholar 

  • Schulz, J.-P., Dümenil, L., J. Polcher, C.A. Schlosser, and Y. Xue, Land surface energy and moisture fluxes: Comparing three models, Journal of Applied Meteorology, 37, 288–307, 1998.

    Article  Google Scholar 

  • Schulze, E.-D., F.M. Kelliher, C. Körner, J. Lloyd, and R. Leuning, Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise, Ann. Rev. Ecol. Syst., 25, 629–660, 1994.

    Article  Google Scholar 

  • Sellers, P.J., Canopy reflectance, photosynthesis and transpiration, International Journal ofRemote Sensing, 6, 1335–1372, 1985.

    Article  Google Scholar 

  • Sellers, P.J., Bounoua, L., G.J. Collate, D.A. Randall, D.A. Dazlich, S.O. Los, J.A. Berry, I. Fung, C.J. Tucker, C.B. Field, and T.G. Jensen, Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate, Science, 271, 1402–1406, 1996.

    Article  Google Scholar 

  • Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher, A Simple Biosphere Model (SiB) for use within general circulation models, Journal of Atmospheric Science, 43, 505–53, 1986.

    Article  Google Scholar 

  • Shukla, J., and Y. Mintz, Influence of land-surface evapotranspiration on the earth’s climate, Science, 215, 1498–1501, 1982.

    Article  Google Scholar 

  • Shukla, J., C. Nobre, and P.J. Sellers, Amazon deforestation and climate change, Science, 247, 1322–1325, 1990.

    Article  Google Scholar 

  • Smith, W.L., H.M. Woolf, C.M. Hayden, D.Q. Wark, and L.M. McMillin, The TIROS-N Operational Vertical Sounder, Bulletin of the American Meteorological Society, 60, 1177–1187, 1979.

    Google Scholar 

  • Sud, Y.C., J. Shukla, and Y. Mintz, Influence of land surface roughness on atmospheric circulation and precipitation: A sensitivity study with a general circulation model, Journalof Applied Meteorology, 27, 1036–1054, 1988.

    Article  Google Scholar 

  • van den Hurk, B.J., W. Bastiaanssen, H. Pelgrum, and E. Meijgaard, A new methodology for assimilation of initial soil moisture fields in weather prediction models using Meteosat and NOAAdata, Journal of Applied Meteorology, 36, 1271–1283, 1997.

    Article  Google Scholar 

  • Verma, S.B., D.D. Baldocchi, D.E. Anderson, D.R. Matt, and R.J. Clement, Eddy fluxes of CO2, water vapor and sensible heat over a deciduous forest, Boundary Layer Meteorology, 36, 71–91, 1986.

    Article  Google Scholar 

  • Verstraete, M.M., Land surface processes in climate models: status and prospects, in Climateand Geo-Sciences, edited by A. Berger, S. Schneider, and J.C. Duplessy, pp. 321–340, Kluwer, Dordrecht, The Netherlands, 1989.

    Google Scholar 

  • Verstraete, M.M., Retrieving canopy properties from remote sensing measurements, in Imaging Spectrometry — a tool for Environmental Observations, edited by J. Hill, and J. Mégier, pp. 109–123, ECSC, EEC, EAEC, Brussels and Luxemburg, 1994.

    Chapter  Google Scholar 

  • Verstraete, M.M., and B. Pinty, Designing optimal spectral vegetation indices for remote sensing applications, IEEE Transactions in Geoscience and RemoteSensing, 34, 1254–1265, 1996.

    Article  Google Scholar 

  • Verstraete, M.M., and B. Pinty, Environmental information extraction from satellite remote sending data, in Inverse Methods in Global Biogeochemical Cycles, edited by P. Kasibhatla et al., pp. 125–137, American Geophysical Union, Washington D.C., 2000.

    Chapter  Google Scholar 

  • Verstraete, M.M., B. Pinty, and R.E. Dickinson, A physical model of the bidirectional reflectance of vegetation canopies. 1. Theory, Journal of Geophysical Research, 95, 11775–11765, 1990.

    Article  Google Scholar 

  • Viterbo, P., and A.C.M. Beljaars, An improved land surface parameterization scheme in the ECMWF model and its validation, Journal of Climate, 8, 2716–2748, 1995.

    Article  Google Scholar 

  • Weiss, A., and J.A. Norman, Partitioning solar radiation into direct and diffuse, visible and near-infrared components, Agricultural and Forestry Meteorology, 34, 205–213, 1985.

    Article  Google Scholar 

  • Wilson, M.F., and A. Henderson-Sellers, A global archive of land cover and soils data for use in general circulation models, Journal of Climate, 5, 119–143, 1985.

    Article  Google Scholar 

  • Zeng, N., Seasonal cycle and interannual variability in the Amazon hydrologic cycle, Journalof Geophysical Research, 104 (D8), 9097–9106, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Knorr, W., Schulz, JP. (2001). Using Satellite Data Assimilation to Infer Global Soil Moisture Status and Vegetation Feedback to Climate. In: Beniston, M., Verstraete, M.M. (eds) Remote Sensing and Climate Modeling: Synergies and Limitations. Advances in Global Change Research, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48149-9_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-48149-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5648-1

  • Online ISBN: 978-0-306-48149-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics