Skip to main content

Phytochrome and Regulation of Photosynthetic Gene Expression

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 11))

Summary

Phytochromes are the best characterized plant photoreceptors. They are responsible for a wide range of photomorphogenic events ranging from seed germination, de-etiolation, and shade-avoidance responses to flowering. Many of these responses include the induction and subsequent regulation of genes encoding the photosynthetic components. The availability of mutants defective in individual phytochromes has now revealed which phytochromes are responsible for specific physiological responses. New molecular methods have revolutionized our understanding of the precise mode of action of the phytochromes, which have shattered many of the traditional dogmas. For example, phytochrome has now been demonstrated to have serine/ threonine (Ser/Thr) protein kinase activity and to be translocated from the cytoplasm to the nucleus in a light-regulated manner. Several phytochrome-interacting proteins have now been identified, most of which are nuclear localized. Integration of these new downstream-interacting proteins into the signaling pathways, previously proposed by biochemical and genetic studies, reveals a highly sophisticated signal transduction circuitry that can allow the parallel function of both cytoplasmic- and nuclear-localized components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M and Cashmore AR (1996) Seeing blue: The discovery of cryptochrome. Plant Mol Biol 30: 851–861

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Jarillo JA, Smirnova O and Cashmore AR (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1: 939–948

    Article  CAS  PubMed  Google Scholar 

  • Anderson, JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol 37: 93–136

    Article  CAS  Google Scholar 

  • Ang LH and Deng XW (1994) Regulatory hierarchy of photomorphogenic loci: Allele specific and light dependent interaction between HY5 and COP1 loci. Plant Cell 6: 613–628

    Article  CAS  PubMed  Google Scholar 

  • Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A and Deng XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1: 213–222

    Article  CAS  PubMed  Google Scholar 

  • Barnes SA, Quaggio RB, Whitelam GC and Chua NH (1996a) fhy1 defines a branch point in phytochrome A signal transduction pathways for gene expression. Plant J 10: 1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Barnes SA, Nishizawa NK, Quaggio RB, Whitelam GC and Chua NH (1996b) Far red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell 8: 601–615

    Article  CAS  PubMed  Google Scholar 

  • Bartholomew DM, Bartley GE and Scolnik PA (1991) Abscisic acid control of RBCS and Cab transcription in tomato leaves. Plant Physiol 96: 291–296

    CAS  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H and Chua NH (1994a) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77: 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Yamagata H, Neuhaus G and Chua NH (1994b) Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev 8: 2188–2202

    CAS  PubMed  Google Scholar 

  • Castle LA and Meinke DW (1994) A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell 6: 25–41

    Article  CAS  PubMed  Google Scholar 

  • Chamovitz DA and Deng XW (1996) Light signaling in plants. Crit Rev Plant Sci 15: 455–478

    CAS  Google Scholar 

  • Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M and Deng XW (1996) The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 86: 115–121

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Ang LH, Puente P, Deng XW and Wei N (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10: 673–683

    Article  CAS  PubMed  Google Scholar 

  • Choi G, Yi H, Lee J, Kwon Y-K, Soh MS, Shin B, Luka Z, Hahn T-R, Song P-S (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401: 610–613

    Article  CAS  PubMed  Google Scholar 

  • Chory J (1997) Light modulation of vegetative development. Plant Cell 9: 1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Chory J and Peto CA (1990) Mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and chloroplast development in Arabidopsis. Proc Natl Acad Sci USA 87: 8776–8780

    CAS  PubMed  Google Scholar 

  • Chory J, Peto C, Feinbaum R, Pratt L and Ausubel F (1989) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58: 991–999

    Article  CAS  PubMed  Google Scholar 

  • Chory J, Chattergee M, Cook RK, Elich T, Fankhauser C, Li J, Nagpal P, Neff M, Pepper A, Poole D, Reed J and Vitart V (1996) From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc Natl Acad Sci USA 93: 12066–12071

    Article  CAS  PubMed  Google Scholar 

  • Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E and Briggs WR (1998) Arabidopsis NPH1: A flavoprotein with the properties of a photoreceptor for phototropism. Science 282: 1698–1701

    Article  CAS  PubMed  Google Scholar 

  • Clough RC and Vierstra RD (1997) Phytochrome degradation. Plant Cell Environ 20: 713–721

    Article  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dickson RA and Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588

    CAS  PubMed  Google Scholar 

  • Deng XW, Caspar T and Quail PH (1991) cop1: A regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5: 1172–1182

    CAS  PubMed  Google Scholar 

  • Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldman KA and Quail PH (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell 71: 791–801

    Article  CAS  PubMed  Google Scholar 

  • Dijkwel PP, Huijser C, Weisbeek PJ, Chua NH and Smeekens SC (1997) Sucrose control of phytochrome A signaling in Arabidopsis. Plant Cell 9: 583–595

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D and Klessig DF (1998) Defence gene induction in tobacco by nitric oxide, cyclic-GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95: 10328–10333

    Article  CAS  PubMed  Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10241

    CAS  PubMed  Google Scholar 

  • Fankhauser C and Chory J (1999) Photomorphogenesis: Light receptor kinases in plants! Curr Biol 9: R123–R126

    Article  CAS  PubMed  Google Scholar 

  • Fankhauser C, Yeh K-C, Lagarias JC, Zhang H, Elich TD and Chory J (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539–1541

    Article  CAS  PubMed  Google Scholar 

  • Flores S and Tobin EM (1986) Cytokinin modulation of LHCP messenger-RNA levels—the involvement of post-transcriptional regulation. Plant Mol Biol 11: 409–415

    Google Scholar 

  • Furuya M and Schäfer E (1996) Photoperception and signalling of induction reactions by different phytochromes. Trends Plant Sci 9: 301–307

    Google Scholar 

  • Genoud T, Millar AJ, Nishizawa N, Kay SA, Schäfer E, Nagatani A and Chua NH (1998) An Arabidopsis mutant hypersensitive to red and far red light signals. Plant Cell 10: 889–904

    Article  CAS  PubMed  Google Scholar 

  • Green RM and Tobin EM (1999) Loss of the Circadian Clock-Associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA 96: 4176–4179

    Article  CAS  PubMed  Google Scholar 

  • Halliday KJ, Hudson M, Ni M, Qin M and Quail PH (1999) pocl: An Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proc Natl Acad Sci USA 96: 5832–5837

    Article  CAS  PubMed  Google Scholar 

  • Hoecker U, Xu Y and Quail PH (1998) SPA1: A new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10: 19–33

    Article  CAS  PubMed  Google Scholar 

  • Hoecker U, Tepperman JM and Quail PH (1999) SPA1 a WD-repeat protein specific to phytochrome signal transduction. Science 284: 496–499

    Article  CAS  PubMed  Google Scholar 

  • Hudson M, Ringli C, Boylan MT and Quail PH (1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13: 2017–2027

    CAS  PubMed  Google Scholar 

  • Huner NPA, Öquist G and Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3: 224–230

    Article  Google Scholar 

  • Jang JC, Leon P, Zhou L and Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19

    Article  CAS  PubMed  Google Scholar 

  • Jarillo JA and Cashmore AR (1998) Enlightenment of the COP1-HY5 complex in photomorphogenesis. Trends in Plant Sci 3: 161–163

    Google Scholar 

  • Jarvis P, Chen L-J, Li H-M, Peto CA, Fankhauser C and Chory J (1998) An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282: 100–103

    Article  CAS  PubMed  Google Scholar 

  • Karniol B, Yahalom A, Kwok S, Tsuge T, Matsui M, Deng XW and Chamovitz DA (1998) The Arabidopsis homologue of an eIF3 complex subunit associates with the COP9 complex. FEBS Lett 439: 173–179

    Article  CAS  PubMed  Google Scholar 

  • Karniol B, Malec P and Chamovitz DA (1999) Arabidopsis FUSCA5 encodes a novel phosphoprotein that is a component of the COP9 complex. Plant Cell 11: 839–848

    Article  CAS  PubMed  Google Scholar 

  • Kendrick RE and Kronenberg GHM (1994) Photomorphogenesis in Plants. 2nd ed. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kehoe DM and Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273: 1409–1412

    CAS  PubMed  Google Scholar 

  • Kerckhoffs LHJ, Schreuder MEL, Van Tuinen A, Koornneef M and Kendrick RE (1997) Phytochrome control of anthocyanin synthesis in tomato seedlings: Analysis using photomorphogenic mutants. Photochem Photobiol 65: 374–381

    CAS  Google Scholar 

  • Kim BC, Soh MC, Kang BJ, Furuya M and Nam HG (1996) Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J 9: 441–456

    Article  CAS  PubMed  Google Scholar 

  • Kim BC, Soh MS, Hong SH, Furuya M and Nam HG (1998) Photomorphogenic development of the Arabidopsis shy2-1D mutation and its interaction with phytochromes in darkness. Plant J 15: 61–68

    CAS  PubMed  Google Scholar 

  • Kircher S, Kozma-Berger L, Kim L, Adam E, Harter K, Schafer E and Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11: 1445–1456

    Article  CAS  PubMed  Google Scholar 

  • Köhler C, Merkle T and Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18: 97–104

    PubMed  Google Scholar 

  • Kwok SF, Peikos B, Misera S and Deng X-W (1996) A complement of ten essential and pleiotropic Arabidopsis COP/ DET/FUS genes is necessary for repression of photomorphogenesis in darkness. Plant Physiol 110, 731–741

    Article  CAS  PubMed  Google Scholar 

  • Kwok SF, Solano R, Tsuge T, Chamovitz DA, Ecker JR, Matsui M and Deng XW (1998) Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell 10: 1779–1790

    Article  CAS  PubMed  Google Scholar 

  • Kwok SF, Staub JM and Deng XW (1999) Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex. J Mol Biol 285: 85–95

    Article  CAS  PubMed  Google Scholar 

  • Lalonde S, Boles E, Hellman H, Barker L, Patrick JW, Frommer WB and Ward JM (1999) The dual function of sugar carriers. Transport and sugar sensing. Plant Cell 11: 707–726

    Article  CAS  PubMed  Google Scholar 

  • Lapko VN, Jiang XY, Smith DL and Song PS (1997) Posttranslational modification of oat phytochrome A: Phosphorylation of a specific serine in a multiple serine cluster. Biochemistry 36: 10595–10599

    Article  CAS  PubMed  Google Scholar 

  • Lapko VN, Jiang XY, Smith DL and Song PS (1999) Mass spectrometric characterization of oat phytochrome A: Isoforms and posttranslational modifications. Prot Sci in press

    Google Scholar 

  • Li H-M, Altschmied L and Chory J (1994) Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes Dev 8: 339–349

    CAS  PubMed  Google Scholar 

  • Li H-M, Culligan K, Dixon RA and Chory J (1995) CUE1: A mesophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis. Plant Cell 7: 1599–1610

    CAS  PubMed  Google Scholar 

  • Liscum E and Briggs WR (1996) Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol 112: 291–296

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Juez E, Jarvis RP, Takeuchi A, Page AM and Chory J (1998) New Arabidopsis cue mutants suggest a close connection between plastid-and phytochrome regulation of nuclear gene expression. Plant Physiol 118: 803–815

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie JM Jr, Coleman RA, Briggs WR and Pratt LH (1975) Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc Natl Acad Sci USA 72: 799–803

    PubMed  Google Scholar 

  • Mayer R, Raventos D and Chua N-H (1996) det1, cop1, and cop9 mutations cause inappropriate expression of several gene sets. Plant Cell 8: 1951–1959

    Article  CAS  PubMed  Google Scholar 

  • McClung CR (1998) It’s about time: Putative components of an Arabidopsis circadian clock. Trends Plant Sci 3: 454–456

    Google Scholar 

  • McCurdy DW and Pratt LH (1986) Immunogold electron microscopy of phytochrome in Avena: Identification of intracellular sites responsible for phytochrome sequestering and enhanced pelletability. J Cell Biol 103: 2541–2550

    Article  CAS  PubMed  Google Scholar 

  • McNellis TW, von Arnim AG and Deng XW (1994) Over-expression of Arabidopsis COP1 results in partial suppression of light-mediated development: Evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6: 1391–1400

    CAS  PubMed  Google Scholar 

  • McNellis TW, Torii KU and Deng XW (1996) Expression of an N-terminal fragment of COP1 confers a dominant-negative effect on light-regulated seedling development in Arabidopsis. Plant Cell 8: 1491–1503

    Article  CAS  PubMed  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058: 87–106

    CAS  Google Scholar 

  • Millar AJ and Kay S (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93: 15491–15496

    Article  CAS  PubMed  Google Scholar 

  • Millar AJ, McGrath RB and Chua NH (1994) Phytochrome phototransduction pathways. Annu Rev Genet 28: 325–349

    Article  CAS  PubMed  Google Scholar 

  • Misera S, Muller AJ, Weiland-Heidecker U and Jurgens G (1994) The FUSCA genes of Arabidopsis: Negative regulators of light responses. Mol Gen Genet 244: 242–252

    CAS  PubMed  Google Scholar 

  • Mol J, Jenkins G, Schaefer E and Weiss D (1996) Signal perception, transduction and gene expression involved in anthocyanin biosynthesis. Crit Rev Plant Sci 15: 525–557

    CAS  Google Scholar 

  • Mustilli AC and Bowler C (1997) Tuning in to the signals controlling photoregulated gene expression in plants. EMBO J 16: 5801–5806

    CAS  PubMed  Google Scholar 

  • Mustilli AC, Fenzi F, Ciliento R, Alfano F and Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11: 145–157

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus G, Bowler C, Kern R and Chua NH (1993) Calcium/ calmodulin-dependent and-independent phytochrome signal transduction pathways. Cell 73: 937–952

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus G, Bowler C, Hiratsuka K, Yamagata H and Chua NH (1997) Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J 16:2554–2564

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Tepperman JP and Quail PH (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95: 657–667

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Teppermann JM and Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400: 781–784

    CAS  PubMed  Google Scholar 

  • Oyama T, Shimura Y and Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11: 2983–2995

    CAS  PubMed  Google Scholar 

  • Pepper AE and Chory J (1997) Extragenic suppressors of the Arabidopsis det1 mutant identify elements of flowering-time and light-response regulatory pathways. Genetics 145: 1125–1137

    CAS  PubMed  Google Scholar 

  • Pepper A, Delaney T, Washburn T, Poole D and Chory J (1994) DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein. Cell 78: 109–116

    Article  CAS  PubMed  Google Scholar 

  • Peters JL, Schreuder MEL, Verduin SJW and Kendrick RE (1992) Physiological characterization of a high pigment mutant of tomato. Photochem Photobiol 56: 75–82

    CAS  Google Scholar 

  • Quaedvlieg N, Dockx J, Rook F, Weisbeek P and Smeekens S (1995) The homeobox gene ATH1 of Arabidopsis is derepressed in the photomorphogenic mutants cop1 and det1. Plant Cell 7: 117–129

    Article  CAS  PubMed  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y and Wagner D (1995) Phytochromes: Photosensory perception and signal transduction. Science 268: 675–680

    CAS  PubMed  Google Scholar 

  • Reed JW, Nagatani A, Elich TD, Fagan M and Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104, 1139–1149

    CAS  PubMed  Google Scholar 

  • Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P and Smeekens S (1998a) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J 15: 253–263

    Article  CAS  PubMed  Google Scholar 

  • Rook F, Weisbeek P and Smeekens S (1998b) The light regulated Arabidopsis bZIP transcription factor gene ATB2 encodes a protein with an unusually long leucine zipper domain. Plant Mol Biol 37: 171–178

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K and Nagatani A (1996) Nuclear localization activity of phytochrome B. Plant J 10:859–68

    Article  CAS  PubMed  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre JA and Coupland G (1998) LATE ELONGATED HYPOCOTYL, an Arabidopsis gene encoding a MYB transcription factor, regulates circadian rhythmicity and photoperiodic responses. Cell 93: 1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M and Dubiel W (1998) A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J 12: 469–478

    CAS  PubMed  Google Scholar 

  • Serino G, Tsuge T, Kwok SF, Matsui M, Wei W and Deng X-W (1999) Arabidopsis cop8 and fus4 mutations define the same locus that encodes subunit 4 of the COP9 signalosome. Plant Cell 11: 1967–1979

    Article  CAS  PubMed  Google Scholar 

  • Shinomura T, Nagatani A, Chory J and Furuya M (1994) The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol 104: 363–371

    CAS  PubMed  Google Scholar 

  • Somers DE, Devlin PF and Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282: 1488–1450

    Article  CAS  PubMed  Google Scholar 

  • Stacey MG, Hicks SN and von Arnim AG (1999) Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1. Plant Cell 11: 349–364

    Article  CAS  PubMed  Google Scholar 

  • Staub JM, Wei N and Deng XW (1996) Evidence for FUS6 as a component of the nuclear-localized COP9 complex in Arabidopsis. Plant Cell 8: 2047–2056

    Article  CAS  PubMed  Google Scholar 

  • Susek RE, Ausubel FM and Chory J (1993) Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74: 787–799

    Article  CAS  PubMed  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J and Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171–182

    Article  CAS  PubMed  Google Scholar 

  • Terzaghi WB and Cashmore AR (1995) Light-regulated transcription. Annu RevPlant Physiol Plant Mol Biol 46: 445–474

    CAS  Google Scholar 

  • Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS and Sancar A (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282: 1490–1494

    Article  CAS  PubMed  Google Scholar 

  • Tian Q and Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126: 711–721

    CAS  PubMed  Google Scholar 

  • Torii KU, McNellis TW and Deng XW (1998) Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development. EMBO J 17: 5577–5587

    Article  CAS  PubMed  Google Scholar 

  • Trewavas AJ and Malho R (1998) Ca2+ signaling in plant cells: the big network! Curr Opin Plant Biol 1: 428–433

    Article  CAS  PubMed  Google Scholar 

  • von Arnim AG and Deng XW (1994) Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79: 1035–1045

    Google Scholar 

  • von Arnim AG, Osterlund MT, Kwok SF and Deng XW (1997) Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. Plant Physiol 114: 779–788

    Google Scholar 

  • Wagner D, Hoecker U and Quail PH (1997) RED1 is necessary for phytochrome B-mediated red light-specific signal transduction in Arabidopsis. Plant Cell 9: 731–743

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY and Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207–1217

    CAS  PubMed  Google Scholar 

  • Wei N and Deng XW (1998) Characterization and purification of the mammalian COP9 complex, a conserved nuclear regulator initially identified as a repressor of photomorphogenesis in higher plants. Photochem Photobiol 68: 237–241

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Chamovitz DA and Deng XW (1994) Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78: 117–124

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Tsuge T, Serino G, Dohmae N, Takio K, Matsui M and Deng X-W (1998) The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr Biol 8: 919–922

    Article  CAS  PubMed  Google Scholar 

  • Whitelam GC and Harberd NP (1994) Action and function of phytochrome family members revealed through the study of mutant and transgenic plants. Plant Cell Environ 17: 615–625

    CAS  Google Scholar 

  • Yamaguchi R, Nakamura M, Mochizuki N, Kay, SA and Nagatani A (1999) Light-dependent translocation of a phytochrome BGFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145: 437–445

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto YY, Matsui M, Ang LH and Deng XW (1998) Role of a COP1 interactive protein in mediating light-regulated gene expression in Arabidopsis. Plant Cell 10: 1083–1094

    CAS  PubMed  Google Scholar 

  • Yeh KC and Lagarias JC (1998) Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci USA 95: 13976–13981

    CAS  PubMed  Google Scholar 

  • Yeh KC, Wu SH, Murphy JT and Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505–1508

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Jang JC, Jones TL and Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95: 10294–10299

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Malakhov, M., Bowler, C. (2001). Phytochrome and Regulation of Photosynthetic Gene Expression. In: Aro, EM., Andersson, B. (eds) Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, vol 11. Springer, Dordrecht. https://doi.org/10.1007/0-306-48148-0_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48148-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6332-3

  • Online ISBN: 978-0-306-48148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics