Skip to main content

The Structure and Function of the Ferredoxin/Thioredoxin System in Photosynthesis

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 11))

Summary

The demonstration that thioredoxin could function in regulation grew out of CO2 assimilation experiments initiated more than thirty years ago with isolated chloroplasts. This work ultimately led to the description of the ferredoxin/thioredoxin system, whereby the activity of enzymes, key to oxygenic photosynthetic processes, is linked to light. Electrons provided by excited chlorophyll are transferred to ferredoxin and then sequentially to the enzyme ferredoxin: thioredoxin reductase (FTR) and a thioredoxin (f or m in chloroplasts). FTR converts an electron signal to a sulfhydryl (SH) signal that can be recognized by specific enzymes with a complementary disulfide (S-S) site. Through a reversible reduction of regulatory disulfide elements, thioredoxin brings about a structural change that alters the catalytic properties of the target enzymes. By selectively activating and deactivating regulatory enzymes of opposing pathways, the ferredoxin/thioredoxin system makes it possible for the oxygenic photosynthetic system (chloroplast or prokaryote) to house biosynthetic and catabolic processes in a single compartment and separate their activities diurnally—i.e., by the presence or absence of light. In this way autotrophic (photosynthetic) and heterotrophic lifestyles can be accommodated and function in a single organism. We summarize below the recent developments on the structure, mechanism of action and function of the individual thiol components of the ferredoxin/thioredoxin system. As a result of impressive progress made during this decade, we now have a better understanding of the events underlying the regulatory role of thioredoxin in oxygenic photosynthesis and associated processes linked to light. This work will also assist in the understanding of the growing array of heterotrophic plant and animal processes found to be regulated by thioredoxin reduced enzymatically with NADPH.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar F, Brunner B, Gardet-Salvi L, Stutz E and Schürmann P (1992) Biosynthesis of active spinach-chloroplast thioredoxin f in transformed E. coli. Plant Mol Biol 20: 301–306

    Article  CAS  PubMed  Google Scholar 

  • Ashton AR and Hatch MD (1983) Regulation of C4 photosynthesis: Regulation of activation and inactivation of NADP-malate dehydrogenase by NADP and NADPH. Arch Biochem Biophys 227: 416–424

    CAS  PubMed  Google Scholar 

  • Baalmann E, Backhausen JE, Kitzmann C and Scheibe R (1994) Regulation of NADP-Dependent Glyceraldehyde 3-Phosphate Dehydrogenase Activity in Spinach Chloroplasts. Bot Acta 107: 313–320

    CAS  Google Scholar 

  • Baalmann E, Backhausen JE, Rak C, Vetter S and Scheibe R (1995) Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys 324:201–208

    Article  CAS  PubMed  Google Scholar 

  • Baalmann E, Scheibe R, Cerff R and Martin W (1996) Functional studies of chloroplast glyceraldehyde-3-phosphatedehydrogenase subunits A and B expressed in Escherichia coli: Formation of highly active A4 and B4 homotetramers and evidence that aggregation of the B4 complex is mediated by the B subunit carboxy terminus. Plant Mol Biol 32: 505–513

    Article  CAS  PubMed  Google Scholar 

  • Batie CJ and Kamin H (1984) Ferredoxin: NADP+ oxidoreductase. Equilibria in binary and ternary complexes with NADP+ and ferredoxin. J Biol Chem 259: 8832–8839

    CAS  PubMed  Google Scholar 

  • Besse I and Buchanan BB (1997) Thioredoxin-linked plant and animal processes: The new generation. Bot Bull Acad Sin (Taipei) 38: 1–11

    CAS  Google Scholar 

  • Binda C, Coda A, Aliverti A, Zanetti G and Mattevi A (1998) Structure of Mutant E92K of [2Fe-2S] Ferredoxin I from Spinacia oleracea at 1.7 Å Resolution. Acta Cryst D54:1353–1358

    CAS  Google Scholar 

  • Brandes HK, Larimer FW, Geck MK, Stringer CD, Schümann P and Hartman FC (1993) Direct Identification of the Primary Nucleophile of Thioredoxin f. J Biol Chem 268:18411–18414

    CAS  PubMed  Google Scholar 

  • Brandes HK, Larimer FW and Hartman FC (1996) The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f. J Biol Chem 271: 3333–3335

    CAS  PubMed  Google Scholar 

  • Breazeale VD, Buchanan BB and Wolosiuk RA (1978) Chloroplast sedoheptulose 1,7-bisphosphatase: Evidence for regulation by the ferredoxin/thioredoxin system. Z Naturforsch 33c: 521–528

    CAS  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol Plant Mol Biol 31: 341–374

    CAS  Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: The ferredoxin/thioredoxin system: Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288: 1–9

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB (1992) Carbon dioxide assimilation in oxygenic and anoxygenic photosynthesis. Photosynth Res 33: 147–162

    Article  CAS  Google Scholar 

  • Buchanan BB, Kalberer PP and Arnon DI (1967) Ferredoxin-activated fructose diphosphatase in isolated chloroplasts. Biochem Biophys Res Commun 29: 74–79

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Schürmann P and Kalberer PP (1971) Ferredoxin-activated fructose diphosphatase of spinach chloroplasts. J Biol Chem 246:5952–5959

    CAS  PubMed  Google Scholar 

  • Buchanan BB, Wolosiuk RA, Crawford NA and Yee BC (1978) Evidence for three thioredoxins in leaves. Plant Physiol. 61: 38S

    Google Scholar 

  • Buchanan BB, Schürmann P, Decottignies P and Lozano RM (1994a) Thioredoxin: A multifunctional regulatory protein with a bright future in technology and medicine. Arch Biochem Biophys 314: 257–260

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Schürmann P and Jacquot J-P (1994b) Thioredoxin and metabolic regulation. Seminars in Cell Biology 5: 285–293

    Article  CAS  PubMed  Google Scholar 

  • Capitani G, Markovic-Housley Z, Jansonius JN, del Val G, Morris M and Schürmann P (1998) Crystal structures of thioredoxins f and m from spinach chloroplasts. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 3, pp 1939–1942. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Capitani G, Markovic-Housley Z, del Val G, Morris M, Jansonius JN and Schürmann P (2000) Crystal structures of two functionally different thioredoxins in spinach chloroplasts. J Mol Biol 302:135–154

    Article  CAS  PubMed  Google Scholar 

  • Carr PD, Verger D, Ashton AR and Ollis DL (1999) Chloroplast NADP-malate dehydrogenase: Structural basis of light-dependent regulation of activity by thiol oxidation and reduction. Structure 7: 461–475

    Article  CAS  PubMed  Google Scholar 

  • Chiadmi M, Navaza A, Miginiac-Maslow M, Jacquot JP and Cherfils J (1999) Redox signalling in the chloroplast: Structure of oxidized pea fructose-1,6-bisphosphate phosphatase. EMBO J 18: 6809–6815

    Article  CAS  PubMed  Google Scholar 

  • Chow L-P, Iwadate H, Yano K, Kamo M, Tsugita A, Gardet-Salvi L, Stritt-Etter A-L and Schürmann P (1995) Amino acid sequence of spinach ferredoxin:thioredoxin reductase catalytic subunit and identification of thiol groups constituting a redox active disulfide and a [4Fe-4S] cluster. Eur J Biochem 231: 149–156

    Article  CAS  PubMed  Google Scholar 

  • Cossar JD, Rowell P and Stewart WDP (1984) Thioredoxin as a modulator of glucose-6-phosphate dehydrogenase in a N2-fixing cyanobacterium. J Gen Microbiol 130: 991–998

    CAS  Google Scholar 

  • Cozens AL and Walker JE (1987) The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiotic origin of chloroplasts. J Mol Biol 194: 359–383

    Article  CAS  PubMed  Google Scholar 

  • Crawford NA, Droux M, Kosower NS and Buchanan BB (1989) Function of the ferredoxin/thioredoxin system in reductive activation of target enzymes of isolated intact chloroplasts. In: Briggs WR (ed) Plant Biology, pp 425–436. Alan R. Liss, Inc., New York

    Google Scholar 

  • Dai S (1998) Structural and Functional Studies of NADPH and Ferredoxin Dependent Thioredoxin Reductases. PhD Thesis. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Dai S, Schwendtmayer C, Ramaswamy S, Eklund H and Schürmann P (1998) Crystallization and crystallographic investigations of ferredoxin:thioredoxin reductase from Synechocystis sp. PCC6803. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 3, pp 1931–1934. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S and Eklund H (2000) Redox Signaling in Chloroplasts: Cleavage of Disulfides by an Iron-Sulfur Cluster. Science 287: 655–658

    Article  CAS  PubMed  Google Scholar 

  • Danon A and Mayfield SP (1994) Light-regulated translation of chloroplast messenger RNAs through redox potential. Science 266: 1717–1719

    CAS  PubMed  Google Scholar 

  • De La Torre A, Lara C, Yee BC, Malkin R and Buchanan BB (1982) Physiochemical properties of ferralterin, a regulatory iron-sulfur protein functional in oxygenic photosynthesis. Arch Biochem Biophys 213: 545–550

    PubMed  Google Scholar 

  • De Pascalis AR, Schürmann P and Bosshard HR (1994) Comparison of the binding sites of plant ferredoxin for two ferredoxin-dependent enzymes. FEBS Lett 337: 217–220

    PubMed  Google Scholar 

  • Decottignies P, Schmitter J-M, Miginiac-Maslow M, Le Marechal P, Jacquot J-P and Gadal P (1988) Primary structure of the light-dependent regulatory site of corn NADP-malate dehydrogenase J Biol Chem 263: 11780–11785

    CAS  PubMed  Google Scholar 

  • del Val G, Maurer F, Stutz E and Schürmann P (1999) Modification of the reactivity of spinach chloroplast thioredoxin f by site-directed mutagenesis. Plant Sci 149: 183–190

    Google Scholar 

  • Derman AI, Prinz WA, Belin D and Beckwith J (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262: 1744–1747

    CAS  PubMed  Google Scholar 

  • Droux M, Jacquot J-P, Miginiac-Maslow M, Gadal P, Huet JC, Crawford NA, Yee BC and Buchanan BB (1987a) Ferredoxin-thioredoxin reductase, an iron-sulfur enzyme linking light to enzyme regulation in oxygenic photosynthesis: Purification and properties of the enzyme from C3, C4, and cyanobacterial species. Arch Biochem Biophys 252: 426–439

    Article  CAS  PubMed  Google Scholar 

  • Droux M, Miginiac-Maslow M, Jacquot J-P, Gadal P, Crawford NA, Kosower NS and Buchanan BB (1987b) Ferredoxin-thioredoxin reductase: A catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation. Arch Biochem Biophys 256:372–380

    CAS  PubMed  Google Scholar 

  • Dunford RP, Durrant MC, Catley MA and Dyer T (1998) Location of the redox-active cysteines in chloroplast sedoheptulose-1,7-bisphosphatase indicates that its allosteric regulation is similar but not identical to that of fructose-1,6-bisphosphatase. Photosynth Res 58: 221–230

    Article  CAS  Google Scholar 

  • Falkenstein E, von Schaewen A and Scheibe R (1994) Full-length cDNA sequences for both ferredoxin-thioredoxin reductase subunits from spinach (Spinacia oleracea L.). Biochim Biophys Acta 1185: 252–254

    CAS  PubMed  Google Scholar 

  • Faske M, Holtgrefe S, Ocheretina O, Meister M, Backhausen JE and Scheibe R (1995) Redox equilibria between the regulatory thiols of light/dark-modulated chloroplast enzymes and dithiothreitol: Fine-tuning by metabolites. Biochim Biophys Acta 1247: 135–142

    PubMed  Google Scholar 

  • Florencio FJ, Gadal P and Buchanan BB (1993): Thioredoxin-linked activation of the chloroplast and cytosolic forms of Chlamydomonas reinhardtii glutamine synthetase. Plant Physiol Biochem 31: 649–655

    CAS  Google Scholar 

  • Follmann H and Häberlein I (1996): Thioredoxins: Universal, yet specific thiol-disulfide redox cofactors. BioFactors 5: 147–156

    CAS  Google Scholar 

  • Galmiche JM, Girault G, Berger G, Jacquot J-P, Miginiac-Maslow M and Wollman E (1990): Induction by different thioredoxins of ATPase activity in coupling factor 1 from spinach chloroplasts. Biochimie 72: 25–32

    Article  CAS  PubMed  Google Scholar 

  • Gaymard E and Schürmann P (1995): Cloning and expression of cDNAs coding for the spinach ferredoxin: thioredoxin reductase. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol 2, pp 761–764. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Geck MK, Larimer FW and Hartman FC (1996): Identification of residues of spinach thioredoxin f that influence interactions with target enzymes. J Biol Chem 271: 24736–24740

    CAS  PubMed  Google Scholar 

  • Gleason FK (1996): Glucose-6-phosphate dehydrogenase from the cyanobacterium, Anabaena sp PCC 7120: Purification and kinetics of redox modulation. Arch Biochem Biophys 334: 277–283

    Article  CAS  PubMed  Google Scholar 

  • Goyer A, Decottignies P, Lemaire S, Ruelland E, Issakidis-Bourguet E, Jacquot J-P and Miginiac-Maslow M (1999): The internal Cys207 of sorghum leaf NADP-malate dehydrogenase can form mixed disulfides with thioredoxin. FEBS Lett 444: 165–169

    Article  CAS  PubMed  Google Scholar 

  • Hahn D, Kaltenbach C and Kück U (1998): The Calvin cycle enzyme sedoheptulose-l,7-bisphosphatase is encoded by a light-regulated gene in Chlamydomonas reinhardtii. Plant Mol Biol 36: 929–934

    Article  CAS  PubMed  Google Scholar 

  • Hammond ET, Andrews TJ and Woodrow IE (1998): Regulation of ribulose-l,5-bisphosphate carboxylase/oxygenase by carbamylation and 2-carboxyarabinitol 1-phosphate in tobacco: Insights from studies of antisense plants containing reduced amounts of rubisco activase. Plant Physiol 118:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Harrison DH, Runquist JA, Holub A and Miziorko HM (1998): The crystal structure of phosphoribulokinase from Rhodobacter sphaeroides reveals a fold similar to that of adenylate kinase. Biochemistry 37: 5074–5085

    Article  CAS  PubMed  Google Scholar 

  • Hartman H, Syvanen M and Buchanan BB (1990): Contrasting evolutionary histories of chloroplast thioredoxins f and m. Mol Biol Evol 7: 247–254

    CAS  PubMed  Google Scholar 

  • Hatch MD (1987): C4 photosynthesis: A unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895: 81–106

    CAS  Google Scholar 

  • Hatch MD (1992): C4 photosynthesis: An unlikely process full of surprises. Plant Cell Physiol 33: 333–342

    CAS  Google Scholar 

  • Hatch MD and Agostino A (1992): Bilevel disulfide group reduction in the activation of C4 leaf nicotinamide adenine dinucleotide phosphate-malate dehydrogenase. Plant Physiol 100: 360–366

    CAS  Google Scholar 

  • Hirasawa M, Boyer JM, Gray KA, Davis DJ and Knaff DB (1986): The interaction of ferredoxin with chloroplast ferredoxin-linked enzymes. Biochim Biophys Acta 851: 23–28

    CAS  Google Scholar 

  • Hirasawa M, Droux M, Gray KA, Boyer JM, Davis DJ, Buchanan BB and Knaff DB (1988): Ferredoxin-thioredoxin reductase: Properties of its complex with ferredoxin. Biochim Biophys Acta 935: 1–8

    CAS  Google Scholar 

  • Hirasawa M, Brandes HK, Hartman FC and Knaff DB (1998): Oxidation-reduction properties of the regulatory site of spinach phosphoribulokinase. Arch Biochem Biophys 350: 127–131

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa M, Schürmann P, Jacquot J-P, Manieri W, Jacquot P, Keryer E, Hartman FC and Knaff DB (1999): Oxidation-reduction properties of chloroplast thioredoxins, ferredoxin: thioredoxin reductase and thioredoxin f-regulated enzymes. Biochemistry 38: 5200–5205

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa M, Ruelland E, Schepens I, Issakidis-Bourguet E, Miginiac-Maslow M and Knaff DB (2000): Oxidation-reduction properties of the regulatory disulfides of sorghum chloroplast NADP-malate dehydrogenase. Biochemistry 39: 3344–3350

    Article  CAS  PubMed  Google Scholar 

  • Hodges M, Miginiac-Maslow M, Decottignies P, Jacquot J-P, Stein M, Lepiniec L, Crétin C and Gadal P (1994): Purification and characterization of pea thioredoxin f expressed in Escherichia coli. Plant Mol Biol 26: 225–234

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A, Buchanan BB and Wolosiuk RA (1977): Photosynthetic regulatory protein from rabbit liver is identical with thioredoxin. FEBS Lett 82: 351–354

    Article  CAS  PubMed  Google Scholar 

  • Huppe HC and Turpin DH (1994): Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45: 577–607

    Article  CAS  Google Scholar 

  • Huppe HC, Lamotte-Guéry Fd, Jacquot J-P and Buchanan BB (1990): The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii. Identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components. Planta 180: 341–351

    CAS  PubMed  Google Scholar 

  • Hutchison RS, Groom Q and Ort DR (2000): Differential effects oflow temperature induced oxidation on thioredoxin mediated activation of photosynthetic carbon reduction cycle enzymes. Biochemistry 39: 6679–6688

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Kobayashi Y, Shibata K and Heber U (1979): Synthesis and hydrolysis of ATP by intact chloroplasts under flash illumination and in darkness. Biochim Biophys Acta 504: 142–152

    Google Scholar 

  • Ip SM, Rowell P, Aitken A and Stewart WDP (1984): Purification and characterization of thioredoxin from the N2-fixing cyanobacterium Anabaena cylindrica. Eur J Biochem 141: 497–504

    Article  CAS  PubMed  Google Scholar 

  • Issakidis E, Miginiac-Maslow M, Decottignies P, Jacquot J-P, Crétin C and Gadal P (1992): Site-directed mutagenesis reveals the involvement of an additional thioredoxin-dependent regulatory site in the activation of recombinant sorghum leaf NADP-malate dehydrogenase. J Biol Chem 267: 21577–21583

    CAS  PubMed  Google Scholar 

  • Issakidis E, Decottignies P and Miginiac-Maslow M (1993): A thioredoxin-independent fully active NADP-malate dehydrogenase obtained by site-directed mutagenesis. FEBS Lett 321: 55–58

    Article  CAS  PubMed  Google Scholar 

  • Issakidis E, Saarinen M, Decottignies P, Jacquot J-P, Crétin C, Gadal P and Miginiac-Maslow M (1994): Identification and characterization of the second regulatory disulfide bridge of recombinant sorghum leaf NADP-malate dehydrogenase. J Biol Chem 269: 3511–3517

    CAS  PubMed  Google Scholar 

  • Issakidis E, Lemaire M, Decottignies P, Jacquot JP and Miginiac-Maslow M (1996): Direct evidence for the different roles of the N-and C-terminal regulatory disulfides of sorghum leaf NADP-malate dehydrogenase in its activation by reduced thioredoxin. FEBS Lett 392: 121–124

    Article  CAS  PubMed  Google Scholar 

  • Iwadate H, Yano K, Kamo M, Gardet-Salvi L, Schürmann P and Tsugita A (1994): Amino acid sequence of spinach ferredoxin-thioredoxin reductase variable subunit. Eur J Biochem 223: 465–471

    Article  CAS  PubMed  Google Scholar 

  • Iwadate H, Tsugita A, Chow L-P, Kizuki K, Stritt-Etter A-L, Li J and Schürmann P (1996): Amino acid sequence of the maize ferredoxin: thioredoxin reductase variable subunit. Eur J Biochem 241: 121–125

    Article  CAS  PubMed  Google Scholar 

  • Iwadate H, Kizuki K, Stritt-Etter A-L, Li J, Schürmann P and Tsugita A (1998): Primary structure of maize ferredoxin: thioredoxin reductase catalytic subunit. Research Communication in Biochemistry and Cell & Molecular Biology 2: 105–112

    CAS  Google Scholar 

  • Jacquot J-P, Vidal J and Gadal P (1976): Identification of a protein factor involved in dithiothreitol activation of NADP malate dehydrogenase from French bean leaves. FEBS Lett 71: 223–227

    Article  CAS  PubMed  Google Scholar 

  • Jacquot J-P, Vidal J, Gadal P and Schürmann P (1978): Evidence for the existence of several enzyme-specific thioredoxins in plants. FEBS Lett 96: 243–246

    Article  CAS  Google Scholar 

  • Jacquot J-P, López-Jaramillo J, Chueca A, Cherfils J, Lemaire S, Chedozeau B, Miginiac-Maslow M, Decottignies P, Wolosiuk RA and Gorgé JL (1995): High-level expression of recombinant pea chloroplast fructose-1,6-bisphosphatase and mutagenesis of its regulatory site. Eur J Biochem 229: 675–681

    Article  CAS  PubMed  Google Scholar 

  • Jacquot J-P, Lancelin J-M and Meyer Y (1997a): Thioredoxins: Structure and function in plant cells. New Phytol 136: 543–570

    Article  CAS  Google Scholar 

  • Jacquot JP, Stein M, Suzuki K, Liottet S, Sandoz G and Miginiac-Maslow M (1997b): Residue Glu-91 of Chlamydomonas reinhardtii ferredoxin is essential for electron transfer to ferredoxin-thioredoxin reductase. FEBS Lett 400: 293–296

    Article  CAS  PubMed  Google Scholar 

  • Jacquot JP, López-Jaramillo J, Miginiac-Maslow M, Lemaire S, Cherfils J, Chueca A and Lopez-Gorge J (1997c): Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. FEBS Lett 401: 143–147

    Article  CAS  PubMed  Google Scholar 

  • Jeng M-F, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE and Dyson HJ (1994): High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure 2: 853–868

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CLD, Anderson LE and Hatch MD (1986): NADP-malate dehydrogenase from Zea Mays Leaves: Amino acid composition and thiol content of active and inactive forms. Plant Sci 45: 1–7

    Article  CAS  Google Scholar 

  • Johansson K, Ramaswamy S, Saarinen M, Lemaire-Chamley M, Issakidis-Bourguet E, Miginiac-Maslow M and Eklund H (1999): Structural basis for light activation of a chloroplast enzyme. The structure of sorghum NADP-malate dehydrogenase in its oxidized form. Biochemistry 38: 4319–4326

    Article  CAS  PubMed  Google Scholar 

  • Johnson HS (1972): Dithiothreitol: An inhibitor of glucose-6-phosphate dehydrogenase activity in leaf extracts and isolated chloroplasts. Planta 106: 273–277

    Article  CAS  Google Scholar 

  • Kamo M, Tsugita A, Wiessner Ch, Wedel N, Bartling D, Herrmann RG, Aguilar F, Gardet-Salvi L and Schürmann P (1989): Primary structure of spinach-chloroplast thioredoxin f. Protein sequencing and analysis of complete cDNA clones for spinach-chloroplast thioredoxin f. Eur J Biochem 182: 315–322

    Article  CAS  PubMed  Google Scholar 

  • Katti SK, LeMaster DM and Eklund H (1990): Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol 212: 167–184

    Article  CAS  PubMed  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B and Venter JC (1997): The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364–370

    CAS  PubMed  Google Scholar 

  • Knaff DB (1996): Ferredoxin and Ferredoxin-Dependent Enzymes. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 333–361. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kramer DM, Wise RR, Frederick JR, Alm DM, Hesketh JD, Ort DR and Crofts AR (1990): Regulation of coupling factor in field-grown sunflower: A Redox model relating coupling factor activity to the activities of other thioredoxin-dependent chloroplast enzymes. Photosynth Res 26: 213–222

    CAS  Google Scholar 

  • Krimm I, Goyer A, Issakidis-Bourguet E, Miginiac-Maslow M and Lancelin J-M (1999): Direct NMR observation of the thioredoxin-mediated reduction of the chloroplast NADP-malate dehydrogenase provides a structural basis for the relief of autoinhibition. J Biol Chem 274: 34539–34542

    Article  CAS  PubMed  Google Scholar 

  • Lamotte-Guéry Fd, Miginiac-Maslow M, Decottignies P, Stein M, Minard P and Jacquot J-P (1991): Mutation of a negatively charged amino acid in thioredoxin modifies its reactivity with chloroplastic enzymes. Eur J Biochem 196: 287–294

    PubMed  Google Scholar 

  • Lancelin J-M, Stein M and Jacquot J-P (1993): Secondary structure and protein folding of recombinant chloroplastic thioredoxin Ch2 from the green alga Chlamydomonas reinhardtii as determined by 1H NMR. J Biochem (Tokyo) 114: 421–431

    CAS  Google Scholar 

  • Levings CS, III and Siedow JN (1995): Regulation by redox poise in chloroplasts. Science 268: 695–696

    CAS  Google Scholar 

  • Lichter A and Häberlein I (1998): A light-dependent redox signal participates in the regulation of ammonia fixation in chloroplasts of higher plants—Ferredoxin: glutamate synthase is a thioredoxin-dependent enzyme. J Plant Physiol 153: 83–90

    CAS  Google Scholar 

  • Lunn JE, Agostino A and Hatch MD (1995): Regulation of NADP-malate dehydrogenase in C4 plants: Activity and properties of maize thioredoxin m and the significance of nonactive site thiol groups. Aust J Plant Physiol 22: 577–584

    CAS  Google Scholar 

  • Marcus F and Harrsch PB (1990): Amino acid sequence of spinach chloroplast fructose-1,6-bisphosphatase. Arch Biochem Biophys 279: 151–157

    Article  CAS  PubMed  Google Scholar 

  • Marcus F, Moberly L and Latshaw SP (1988): Comparative amino acid sequence of fructose-l,6-bisphosphatases: Identification of a region unique to the light-regulated chloroplast enzyme. Proc Natl Acad Sci USA 85: 5379–5383

    CAS  PubMed  Google Scholar 

  • Marques S, Merida A, Candau P and Florencio FJ (1992): Light-mediated regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechococcus sp. PCC 6301. Planta 187: 247–253

    CAS  Google Scholar 

  • Martin W and Herrmann RG (1998): Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiology 118: 9–17

    CAS  PubMed  Google Scholar 

  • Martin W, Mustafa AZ, Henze K and Schnarrenberger C (1996): Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: Origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol Biol 32: 485–491

    Article  CAS  PubMed  Google Scholar 

  • McCarn DF, Whitaker RA, Alam J, Vrba J and Curtis SE (1988): Genes encoding the alpha, gamma, delta, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 170: 3448–3458

    CAS  PubMed  Google Scholar 

  • McKinney DW, Buchanan BB and Wolosiuk RA (1978) Activation of Chloroplast ATPase by Reduced Thioredoxin. Phytochemistry 17: 794–795

    Article  CAS  Google Scholar 

  • Meyer Y, Verdoucq L and Vignols F (1999) Plant thioredoxins and glutaredoxins: Identity and putative roles. Trends Plant Sci 4: 388–394

    Article  PubMed  Google Scholar 

  • Miginiac-Maslow M, Issakidis E, Lemaire M, Ruelland E, Jacquot JP and Decottignies P (1997) Light-dependent activation of NADP-malate dehydrogenase: A complex process. Aust J Plant Physiol 24: 529–542

    CAS  Google Scholar 

  • Miki J, Maeda M, Mukohata Y and Futai M (1988) The g-subunit of ATP synthase from spinach chloroplasts primary structure deduced from the cloned cDNA sequence. FEBS Lett 232: 221–226

    Article  CAS  PubMed  Google Scholar 

  • Milanez S and Mural RJ (1988) Cloning and sequencing of cDNA encoding the mature form of phorphoribulokinase from spinach. Gene 66: 55–63

    Article  CAS  PubMed  Google Scholar 

  • Milanez S, Mural RJ and Hartman FC (1991) Roles of cysteinyl residues of phosphoribulokinase as examined by site-directed mutagenesis. J Biol Chem 266: 10694–10699

    CAS  PubMed  Google Scholar 

  • Mills JD and Hind G (1979) Light-induced Mg2+ ATPase activity of coupling factor in intact chloroplasts. Biochim Biophys Acta 547: 455–462

    CAS  PubMed  Google Scholar 

  • Mills JD, Mitchell P and Schürmann P (1980) Modulation of coupling factor ATPase activity in intact chloroplasts. The role of the thioredoxin system. FEBS Lett 112: 173–177

    Article  CAS  Google Scholar 

  • Mittard V, Blackledge MJ, Stein M, Jacquot JP, Marion D and Lancelin JM (1997) NMR solution structure of an oxidised thioredoxin h from the eukaryotic green alga Chlamydomonas reinhardtii. Eur J Biochem 243: 374–383

    Article  CAS  PubMed  Google Scholar 

  • Mora-García S, Rodriguez-Suárez RJ and Wolosiuk RA (1998) Role of electrostatic interactions on the affinity of thioredoxin for target proteins. Recognition of chloroplast fructose-1,6-bisphosphatase by mutant Escherichia coli thioredoxins. J Biol Chem 273: 16273–16280

    PubMed  Google Scholar 

  • Nishizawa AN and Buchanan BB (1981) Enzyme regulation in C4 photosynthesis. Purification and properties of thioredoxin-linked fructose bisphosphatase and sedoheptulose bisphos-phatase from corn leaves. J Biol Chem 256: 6119–6126

    CAS  PubMed  Google Scholar 

  • Ort DR and Oxborough K (1992) In situ regulation of chloroplast coupling factor activity. Annu Rev Plant Physiol Plant Mol Biol 43: 269–291

    Article  CAS  Google Scholar 

  • Pancic PG and Strotmann H (1993) Structure of the nuclear encoded g-subunit of CF0CF1 of the diatom Odontella sinensis including its presequence. FEBS Lett 320: 61–66

    Article  CAS  PubMed  Google Scholar 

  • Papen H and Bothe H (1984) The activation of glutamine synthetase from the cyanobacterium Anabaena cylindrica by thioredoxin. FEMS Microbiol Lett 23: 41–46

    Article  CAS  Google Scholar 

  • Parry MA, Andralojc PJ, Lowe HM and Keys AJ (1999) The localisation of 2-carboxy-D-arabinitol 1-phosphate and inhibition of Rubisco in leaves of Phaseolus vulgaris L. FEBS Lett 444: 106–110

    Article  CAS  PubMed  Google Scholar 

  • Porter MA and Hartman FC (1990) Exploration of the function of a regulatory sulfhydryl of phosphoribulokinase from spinach. Arch Biochem Biophys 281: 330–334

    Article  CAS  PubMed  Google Scholar 

  • Porter MA, Stringer CD and Hartman FC (1988) Characterization of the regulatory thioredoxin site of phosphoribulokinase. J Biol Chem 263: 123–129

    CAS  PubMed  Google Scholar 

  • Porter MA, Potter MD and Hartman FC (1990) Affinity labeling of spinach phosphoribulokinase subsequent to S-methylation at Cys16. J Protein Chem 9: 445–452

    Article  CAS  PubMed  Google Scholar 

  • Portis Jr AR (1995) The regulation of Rubisco by Rubisco activase. J Exp Bot 46: 1285–1291

    CAS  Google Scholar 

  • Qin J, Clore GM, Poindexter Kennedy WM, Huth JR and Gronenborn AM (1995) Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NFkappaB. Structure 3: 289–297

    Article  CAS  PubMed  Google Scholar 

  • Raines CA, Lloyd JC, Willingham NM, Potts S and Dyer TA (1992) cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-1,6-bisphosphatases. Eur J Biochem 205:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Raines CA, Lloyd JC and Dyer TA (1999) New insights into the structure and function of sedoheptulose-1,7-bisphosphatase; an important but neglected Calvin cycle enzyme. J Exp Bot 50: 1–8

    CAS  Google Scholar 

  • Rebeille F and Hatch MD (1986) Regulation of NADP-malate dehydrogenase in C4 plants: effect of varying NADPH to NADP ratios and thioredoxin redox state on enzyme activity in reconstituted systems. Arch Biochem Biophys 249: 164–170

    CAS  PubMed  Google Scholar 

  • Reith M and Munholland J (1997) Complete Nucleotide Sequence of the Porphyra purpurea Chloroplast Genome. Plant Mol Biol Reptr 13: 333–335

    Google Scholar 

  • Reng W, Riessland R, Scheibe R and Jaenicke R (1993) Cloning, site-specific mutagenesis, expression and characterization of full-length chloroplast NADP-malate dehydrogenase from Pisum sativum. Eur J Biochem 217: 189–197

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AE, Chesnick JM, Woolford J and Cattolico RA (1994) Chloroplast encoded thioredoxin genes in the red algae Porphyra yezoensis and Griffithsia pacifica: Evolutionary implications. Plant Mol Biol 25: 13–21

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Suárez RJ, Mora-García S and Wolosiuk RA (1997) Characterization of cysteine residues involved in the reductive activation and the structural stability of rapeseed (Brassica napus) chloroplast fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 232: 388–393

    PubMed  Google Scholar 

  • Roesler KR and Ogren WL (1990) Chlamydomonas reinhardtii phosphoribulokinase. Sequence, purification, and kinetics. Plant Physiol 93: 188–193

    CAS  Google Scholar 

  • Ruelland E and Miginiac-Maslow M (1999) Regulation of chloroplast enzyme activities by thioredoxins: Activation or relief from inhibition? Trends Plant Sci 4: 136–141

    Article  PubMed  Google Scholar 

  • Ruelland E, Lemaire-Chamley M, Le Maréchal P, Issakidis-Bourguet E, Djukic N and Miginiac-Maslow M (1997) An internal cysteine is involved in the thioredoxin-dependent activation of sorghum leaf NADP-malate dehydrogenase. J Biol Chem 272: 19851–19857

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Johansson K, Decottignies P, Djukic N and Miginiac-Maslow M (1998) The autoinhibition of sorghum NADP malate dehydrogenase is mediated by a C-terminal negative charge. J Biol Chem 273: 33482–33488

    Article  CAS  PubMed  Google Scholar 

  • Saarinen M, Gleason FK and Eklund H (1995) Crystal structure of thioredoxin-2 from Anabaena. Structure 3: 1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Sahrawy M, Hecht V, López-Jaramillo J, Chueca A, Chartier Y and Meyer Y (1996) Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. J Mol Evol 42: 422–431

    Article  CAS  PubMed  Google Scholar 

  • Salamon Z, Tollin G, Hirasawa M, Knaff DB and Schürmann P (1995) The oxidation-reduction properties of spinach thioredoxins f and m and of ferredoxin:thioredoxin reductase. Biochim Biophys Acta 1230: 114–118

    PubMed  Google Scholar 

  • Sasaki Y, Kozaki A and Hatano M (1997) Link between light and fatty acid synthesis: Thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc Natl Acad Sci USA 94:11096–11101

    CAS  PubMed  Google Scholar 

  • Sauer A and Heise K-P (1983) On the light dependence of fatty acid synthesis in spinach chloroplasts. Plant Physiol 73: 11–15

    CAS  Google Scholar 

  • Scheibe R (1987) NADP+-malate dehydrogenase in C3-plants Regulation and role of a light-activated enzyme. Physiol Plant 71:393–400

    CAS  Google Scholar 

  • Scheibe R (1991) Redox-modulation of chloroplast enzymes. A common principle for individual control. Plant Physiol 96: 1–3

    CAS  Google Scholar 

  • Scheibe R (1994) Lichtregulation von Chloroplastenenzymen. Naturwissenschaften 81: 443–448

    CAS  PubMed  Google Scholar 

  • Scheibe R and Anderson LE (1981) Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast. Biochim Biophys Acta 636: 58–64

    CAS  PubMed  Google Scholar 

  • Scheibe R and Jacquot J-P (1983) NADP regulates the light activation of NADP-dependent malate dehydrogenase. Planta 157: 548–553

    Article  CAS  Google Scholar 

  • Scheibe R, Geissler A and Fickenscher K (1989) Chloroplast glucose-6-phosphate dehydrogenase: Km shift upon light modulation and reduction. Arch Biochem Biophys 274: 290–297

    Article  CAS  PubMed  Google Scholar 

  • Scheibe R, Kampfenkel K, Wessels R and Tripier D (1991) Primary structure and analysis of the location of the regulatory disulflde bond of pea chloroplast NADP-malate dehydrogenase. Biochim Biophys Acta 1076: 1–8

    CAS  PubMed  Google Scholar 

  • Schimkat D, Heineke D and Heldt HW (1990) Regulation of sedoheptulose-l,7-bisphosphatase by sedoheptulose-7-phosphate and glycerate, and of fructose-1,6-bisphosphatase by glycerate in spinach chloroplasts. Planta 181: 97–103

    Article  CAS  Google Scholar 

  • Schmidt A (1981) A thioredoxin activated glutamine synthetase in Chlorella. Z Naturforsch 36c: 396–399

    CAS  Google Scholar 

  • Schürmann P (1981) The ferredoxin/thioredoxin system of spinach chloroplasts. Purification and characterization of its components. In: Akoyunoglou G (ed) Photosynthesis IV. Regulation of Carbon Metabolism, Vol 4, pp 273–280. Balaban Intern. Sci. Services, Philadelphia

    Google Scholar 

  • Schürmann P and Jacquot J-P (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51: 371–400

    PubMed  Google Scholar 

  • Schürmann P, Wolosiuk RA, Breazeale VD and Buchanan BB (1976) Two proteins function in the regulation of photosynthetic assimilation in chloroplasts. Nature 263: 257–258

    Article  Google Scholar 

  • Schürmann P, Maeda K and Tsugita A (1981) Isomers in thioredoxins of spinach chloroplasts. Eur J Biochem 116: 37–45

    PubMed  Google Scholar 

  • Schwarz O, Schürmann P and Strotmann H (1997) Kinetics and thioredoxin specificity of thiol modulation of the chloroplast H+-ATPase. J Biol Chem 272: 16924–16927

    CAS  PubMed  Google Scholar 

  • Schwendtmayer C, Manieri W, Hirasawa M, Knaff DB and Schürmann P (1998) Cloning, expression and characterization of ferredoxin:thioredoxin reductase from Synechocystis sp. PCC6803. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 3, pp 1927–1930. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D and Reeve JN (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: Functional analysis and comparative genomics. J Bacteriol 179: 7135–7155

    CAS  PubMed  Google Scholar 

  • Staples CR, Ameyibor E, Fu W, Gardet-Salvi L, Stritt-Etter A-L, Schürmann P, Knaff DB and Johnson MK (1996) The nature and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: A new biological role for iron-sulfur clusters. Biochemistry 35: 11425–11434

    Article  CAS  PubMed  Google Scholar 

  • Staples CR, Gaymard E, Stritt-Etter AL, Telser J, Hoffman BM, Schürmann P, Knaff DB and Johnson MK (1998) Role of the Fe4S4 cluster in mediating disulfide reduction in spinach ferredoxin:thioredoxin reductase. Biochemistry 37:4612–4620

    Article  CAS  PubMed  Google Scholar 

  • Szekeres M, Droux M and Buchanan BB (1991) The ferredoxin-thioredoxin reductase variable subunit gene from Anacystis nidulans. J Bacteriol 173: 1821–1823

    CAS  PubMed  Google Scholar 

  • Tamoi M, Murakami A, Takeda T and Shigeoka S (1998) Acquisition of a new type of fructose-1,6-bisphosphatase with resistance to hydrogen peroxide in cyanobacteria: Molecular characterization of the enzyme from Synechocystis PCC 6803. Biochim Biophys Acta 1383: 232–244

    CAS  PubMed  Google Scholar 

  • Thompson JD, Plewniak F, Jeanmougin F and Higgins DG (1997) The ClustalX windows interface: Flexible strategies for multiple sequencealignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Tischner R and Schmidt A (1982) A thioredoxin-mediated activation of glutamine synthetase and glutamate synthase in synchronous Chlorella sorokiniana. Plant Physiol 70: 113–116

    CAS  Google Scholar 

  • Tsugita A, Yano K, Gardet-Salvi L and Schürmann P (1991) Characterization of spinach ferredoxin-thioredoxin reductase. Protein Seq Data Anal 4: 9–13

    CAS  PubMed  Google Scholar 

  • Villeret V, Huang S, Zhang Y, Xue Y and Lipscomb WN (1995) Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase at 2.8 A resolution. Biochemistry 34: 4299–4306

    CAS  PubMed  Google Scholar 

  • Weichsel A, Gasdaska JR, Powis G and Montfort WR (1996) Crystal structures of reduced, oxidized, and mutated human thioredoxins: Evidence for a regulatory homodimer. Structure 4: 735–751

    Article  CAS  PubMed  Google Scholar 

  • Wenderoth I, Scheibe R and von Schaewen A (1997) Identification of the cysteine residues involved in redox modification of plant plastidic glucose-6-phosphate dehydrogenase. J Biol Chem 272: 26985–26990

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Schumann J and Strotmann H (1990) The primary structure of the g-subunit of the ATPase from Synechocystis 6803. FEBS Lett 261: 204–208

    Article  CAS  PubMed  Google Scholar 

  • Willingham NM, Lloyd JC and Raines CA (1994) Molecular cloning of the Arabidopsis thaliana sedoheptulose-1,7-biphosphatase gene and expression studies in wheat and Arabidopsis thaliana. Plant Mol Biol 26: 1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Wolosiuk RA and Buchanan BB (1977) Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266: 565–567

    Article  CAS  Google Scholar 

  • Wolosiuk RA and Buchanan BB (1978a) Regulation of chloroplast phosphoribulokinase by the ferredoxin/thioredoxin system. Arch Biochem Biophys 189: 97–101

    Article  CAS  PubMed  Google Scholar 

  • Wolosiuk RA and Buchanan BB (1978b) Activation of Chloroplast NADP-linked Glyceraldehyde-3-Phosphate Dehydrogenase by the Ferredoxin/thioredoxin System. Plant Physiol 61: 669–671

    CAS  Google Scholar 

  • Wolosiuk RA, Buchanan BB and Crawford NA (1977) Regulation of NADP-malate dehydrogenase by the light-actuated ferredoxin/thioredoxin system of chloroplasts. FEBS Lett 81: 253–258

    Article  CAS  Google Scholar 

  • Wolosiuk RA, Crawford NA, Yee BC and Buchanan BB (1979) Isolation of three thioredoxins from spinach leaves. J Biol Chem 254: 1627–1632

    CAS  PubMed  Google Scholar 

  • Wolosiuk RA, Hertig CM, Nishizawa AN and Buchanan BB (1982) Enzyme regulation in C4 photosynthesis. Role of Ca+ in thioredoxin-linked activation of sedoheptulose bisphos-phatase from corn leaves. FEBS Lett 140: 31–35

    Article  CAS  Google Scholar 

  • Wolosiuk RA, Hertig CM and Busconi L (1986) Activation of spinach chloroplast NADP-linked glyceraldehyde-3-phosphate dehydrogenase by concerted hysteresis. Arch Biochem Biophys 246: 1–8

    Article  CAS  PubMed  Google Scholar 

  • Yu LM and Selman BR (1988) cDNA sequence and predicted primary structure of the gamma subunit from the ATP synthase from Chlamydomonas reinhardtii. J Biol Chem 263: 19342–19345

    CAS  PubMed  Google Scholar 

  • Zhang N and Portis Jr AR (1999) Mechanism of light regulation of Rubisco: A unique role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f Proc Natl Acad Sci USA 96: 9438–9443

    CAS  PubMed  Google Scholar 

  • Ziegler H and Ziegler I (1965) The influence of light on the NADP+-dependent glyceraldehyde-3-phosphate dehydro-genase. Planta 65: 369–380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schürmann, P., Buchanan, B.B. (2001). The Structure and Function of the Ferredoxin/Thioredoxin System in Photosynthesis. In: Aro, EM., Andersson, B. (eds) Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, vol 11. Springer, Dordrecht. https://doi.org/10.1007/0-306-48148-0_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-48148-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6332-3

  • Online ISBN: 978-0-306-48148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics