Skip to main content

Pigment Assembly—Transport and Ligation

  • Chapter
Regulation of Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 11))

Summary

The ligation of pigments to proteins involved in photosynthesis appears to be strictly regulated and, in turn, to have an important regulatory impact on the biogenesis of the photosynthetic apparatus. Even so, the molecular mechanism of pigment-protein assembly is largely unknown. However, data are now accumulating on the co-translational transport of chlorophyll a proteins and the post-translational transport of chlorophyll a/b proteins into the thylakoid membrane. The molecular apparatus in the thylakoid membrane presumably occupied with protein insertion may also be involved in pigment ligation. Similarly, the last steps of pigment biosynthesis, whose location has not been fully established yet, will probably also provide a lead to the mechanism of pigment-protein assembly. Reconstitution studies with recombinant chlorophyll a/b proteins in vitro showed that the specificity of pigment binding varies—some, but not all, chlorophyll binding sites can be occupied with chlorophyll a or chlorophyll b almost equally well, and carotenoids can be structurally replaced with some other carotenoids, such as lutein with zeaxanthin. Finally, the possibility needs to be considered that pigments are assembled with proteins not only during the biogenesis of monomeric complexes but also during the assembly of multi-protein complexes of the photosynthetic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamska I (1997) Elips: light induced stress proteins. Physiol Plant 100: 794–805

    Article  CAS  Google Scholar 

  • Adamska I, Roobol-Bóza M, Lindahl M and Andersson B (1999) Isolation of pigment-binding early light-inducible proteins from pea. Eur J Biochem 260: 453–460

    Article  CAS  PubMed  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B: A branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  CAS  PubMed  Google Scholar 

  • Armstrong GA, Apel K and Rüdiger W (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci 5:40–44

    Article  CAS  PubMed  Google Scholar 

  • Barber J and Kühlbrandt V (1999) Photosystem II. Curr Opin Struct Biol 9: 469–475

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandonà D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    Article  CAS  PubMed  Google Scholar 

  • Bishop, NI (1996) The β,ε carotenoid, lutein, is specifically required for the formation of the oligomeric forms of the light harvesting complex in the green alga, Scenedesmus obliquus. J Photochem Photobiol B Biol 36: 279–283

    CAS  Google Scholar 

  • Block MA, Dorne AJ, Joyard J and Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes of spinach chloroplasts. J Biol Chem 258: 13281–86

    CAS  PubMed  Google Scholar 

  • Boekema EJ, van Roon H, van Breemen JFL and Dekker JP (1999a) Supramolecular organization of Photosystem II and its light-harvesting antenna in partially solubilized Photosystem II membranes. Eur J Biochem 266: 444–452

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, van Roon H, Calkoen F, Bassi R and Dekker JP (1999b) Multiple types of association of Photosystem II and its light-harvesting antenna in partially solubilized Photosystem II membranes. Biochemistry 38: 2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Bossmann B, Knötzel J and Jansson S (1997) Screening of chlorinamutants of barley (Hordeum vulgare L.)with antibodies against light harvesting proteins of PS I and PS II: Absence of specific antenna proteins. Photosynth Res 52: 127–136

    Article  CAS  Google Scholar 

  • Bossmann B, Grimme LH and Knötzel J (1999) Protease-stable integration of Lhcb1 into thylakoid membranes is dependent on chlorophyll b in allelic chlorina-f2 mutants of barley (Hordeum vulgare L.). Planta 207: 551–558

    Article  CAS  Google Scholar 

  • Brand M and Drews G (1997) The role of pigments in the assembly of photosynthetic complexes in Rhodobacter capsulatus. J Basic Microbiol 37: 235–244

    CAS  Google Scholar 

  • Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P and Scholes JD (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 96: 1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Cline K and Henry R (1996) Import and routing of nucleus encoded chloroplast proteins. Ann Rev Cell Develop Biol 12: 1–26

    CAS  Google Scholar 

  • Croce R, Remelli R, Varotto C, Breton J and Bassi R (1999a) The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Lett 456: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Croce R, Weiss S and Bassi R (1999b) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274: 29613–29623

    CAS  PubMed  Google Scholar 

  • Cunningham FX and Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol 49: 557–583

    CAS  Google Scholar 

  • DeLille J, Peterson EC, Johnson T, Moore M, Kight A and Henry R (2000) A novel precursor recognition element facilitates posttranslational binding to the signal recognition particle in chloroplasts. Proc Natl Acad Sci USA 97: 1926–1931

    Google Scholar 

  • Douce R and Joyard J (1996) Biosynthesis of thylakoid membrane lipids. In: Ort DR and Yokum CF (eds) Oxygenic Photosynthesis: The Light Reactions, Vol. 4, pp 69–101. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Edhofer I, Mühlbauer SK and Eichacker LA (1998) Light regulates the rate of translation elongation of chloroplast reaction center protein D1. Eur J Biochem 257: 78–84

    Article  CAS  PubMed  Google Scholar 

  • Eggink LL and Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275: 9087–9090

    Article  CAS  PubMed  Google Scholar 

  • Eichacker LA, Helfrich M, Rüdiger W and Müller B (1996a) Stabilization of chlorophyll a-binding apoproteins P700, CP47, CP43, D2, and D1 by chlorophyll a or Zn-pheophytin a. J Biol Chem 271: 32174–32179

    CAS  PubMed  Google Scholar 

  • Eichacker LA, Müller B and Helfrich M (1996b) Stabilization of the chlorophyll-binding apoproteins, P700, CP47, CP43, D2, and D1, by synthesis of Zn-pheophytin a in intact etioplasts from barley. FEBS Lett 395: 251–256

    Article  CAS  PubMed  Google Scholar 

  • Eskling M, Arvidsson PO and Akerlund HE (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100: 806–816

    Article  CAS  Google Scholar 

  • Frank HA, Bautista JA, Josua JS and Young AJ (2000) Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39: 2831–2837

    CAS  PubMed  Google Scholar 

  • Funk C, Adamska I, Green BR, Andersson B and Renger G (1995a) The nuclear-encoded chlorophyll-binding Photosystem II-S protein is stable in the absence of pigments. J Biol Chem 270: 30141–30147

    CAS  PubMed  Google Scholar 

  • Funk C, Schröder WP, Napiwotzki A, Tjus SE, Renger G and Andersson B (1995b) The PS II-S protein of higher plants: A new type of pigment-binding protein. Biochemistry 34: 11133–11141

    Article  CAS  PubMed  Google Scholar 

  • Funk, C and Vermaas, W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 9397–9404

    Article  CAS  PubMed  Google Scholar 

  • Gal A, Zer H and Ohad I (1997) Redox controlled thylakoid protein phosphorylation: News and views. Physiol Plant 100: 869–885

    Article  CAS  Google Scholar 

  • Giuffra E, Cugini D, Croce R and Bassi R (1996) Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem 238: 112–120

    Article  CAS  PubMed  Google Scholar 

  • Giuffra E, Zucchelli G, Sandoná D, Croce R, Cugini D, Garlaschi FM, Bassi R and Jennings RC (1997) Analysis ofsome optical properties of a native and reconstituted Photosystem II antenna complex, CP29: Pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. Biochemistry 36: 12984–12993

    Article  CAS  PubMed  Google Scholar 

  • Heddad M and Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci USA 97: 3741–3746

    Article  CAS  PubMed  Google Scholar 

  • High S, Henry R, Mould RM, Valent Q, Meacock S, Cline K, Gray JC and Luirink J (1997) Chloroplast SRP54 interacts with a specific subset of thylakoid precursor proteins. J Biol Chem 272: 11622–11628

    Article  CAS  PubMed  Google Scholar 

  • Hobe S, Niemeier H, Bender A and Paulsen H (2000) Carotenoid binding sites in LHCIIb–Relative affinities towards major xanthophylls of higher plants. Eur J Biochem 267: 616–624

    Article  CAS  PubMed  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B and Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92: 3254–3258

    CAS  PubMed  Google Scholar 

  • Hoober JK and Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. Photosynth Res 61: 197–215

    CAS  Google Scholar 

  • Hoober JK, White RA, Marks DB and Gabriel JL (1994) Biogenesis of thylakoid membranes with emphasis on the process in Chlamydomonas. Photosynth Res 39: 15–31

    Article  CAS  Google Scholar 

  • Hoober JK, Park H, Wolfe GR, Komine Y and Eggink LL (1998) Assembly of light-harvesting systems. In: Rochaix JD, Goldschmidt-Clermont M and Merchant S (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, pp 363–376. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hörtensteiner S, Wüthrich KL, Matile P, Ongania KH and Kräutler B (1998) The key step in chlorophyll breakdown in higher plants—Cleavage of pheophorbide a macrocycle by a monooxygenase. J Biol Chem 273: 15335–15339

    PubMed  Google Scholar 

  • Ito H, Takaichi S, Tsuji H and Tanaka A (1994) Properties of synthesis of chlorophyll a from chlorophyll b in cucumber etioplasts. J Biol Chem 269: 22034–22038

    CAS  PubMed  Google Scholar 

  • Ito H, Ohtsuka T and Tanaka A (1996) Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. J Biol Chem 271: 1475–1479

    CAS  PubMed  Google Scholar 

  • Jansson S, Andersson J, Jung Kim S and Jackowski G (2000) An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol Biol 42: 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Klein PG and Mullet JE (1991) Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. J Biol Chem 266: 14931–14938

    CAS  PubMed  Google Scholar 

  • Kim J, Klein PG and Mullet JE (1994) Synthesis and turnover of Photosystem II reaction center protein D1–Ribosome pausing increases during chloroplast development. J Biol Chem 269: 17918–17923

    CAS  PubMed  Google Scholar 

  • Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, van Grondelle R, Paulsen H and van Amerongen H (1999) Decreasing the Chl a/b ratio in reconstituted LHCII: Structural and functional consequences. Biochemistry 38: 6587–6596

    Article  CAS  PubMed  Google Scholar 

  • Klimyuk VI, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones JDG, Hoffman NE and Nussaume L (1999) A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11: 87–99

    Article  CAS  PubMed  Google Scholar 

  • Klukas O, Schubert WD, Jordan P, Krauss N, Fromme P, Witt HT and Saenger W (1999) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351–7360

    CAS  PubMed  Google Scholar 

  • Kosemund K, Geiger I and Paulsen H (2000) Insertion of light-harvesting chlorophyll a/b protein into the thylakoid—Topographical studies. Eur J Biochem 267: 1138–1145

    Article  CAS  PubMed  Google Scholar 

  • Kruse O, Zheleva D and Barber J (1997) Stabilization of Photosystem II dimers by phosphorylation: Implication for the regulation of the turnover of D1 protein. FEBS Lett 408: 276–280

    Article  CAS  PubMed  Google Scholar 

  • Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH and Barber J (2000) Phosphatidylglycerol is involved in the dimerization of Photosystem II. J Biol Chem 275: 6509–6514

    Article  CAS  PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kumagai MH, Keller Y, Bouvier F, Clary D and Camara B (1998) Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana. Plant J 14: 305–315

    Article  CAS  PubMed  Google Scholar 

  • Kuttkat A, Edhofer I, Eichacker LA and Paulsen H (1997) Light harvesting chlorophyll a/b binding protein stably inserts into etioplast membranes supplemented with Zn pheophytin a/b. J Biol Chem 272: 20451–20455

    Article  CAS  PubMed  Google Scholar 

  • Li X, Henry R, Yuan JG, Cline K and Hoffman NE (1995) A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc Natl Acad Sci USA 92: 3789–3793

    CAS  PubMed  Google Scholar 

  • Lindsten A, Wiktorsson B, Ryberg M and Sundqvist C (1993) Chlorophyll synthetase activity is relocated from transforming prolamellar bodies to developing thylakoids during irradiation of dark-grown wheat. Physiol Plant 88: 29–36

    Article  CAS  Google Scholar 

  • Meyer M and Wilhelm C (1993) Reconstitution of light-harvesting complexes from Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). Z Naturforsch C 48: 461–473

    CAS  Google Scholar 

  • Miroshnichenko-Dolganov NAM, Bhaya D and Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b-binding proteins of higher plants: Evolution and regulation. Proc Natl Acad Sci USA 92: 636–640

    Google Scholar 

  • Moore M, Harrison MS, Peterson EC and Henry R (2000) Chloroplast Oxalp homolog albino3 is required for post-translational integration off the light harvesting chlorophyll-binding protein into thylakoid membranes. J Biol Chem 275: 1529–1532

    CAS  PubMed  Google Scholar 

  • Mühlbauer SK and Eichacker LA (1998) Light-dependent formation of the photosynthetic proton gradient regulates translation elongation in chloroplasts. J Biol Chem 273: 20935–20940

    PubMed  Google Scholar 

  • Müller B and Eichacker LA (1999) Assembly of the D1 precursor in monomeric Photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell 11: 2365–2377

    PubMed  Google Scholar 

  • Nechushtai R, Cohen Y and Chitnis PR (1995) Assembly of the chlorophyll-protein complexes. Photosynth Res 44: 165–181

    Article  CAS  Google Scholar 

  • Nilsson R, Brunner J, Hoffman NE and van Wijk KJ (1999) Interactions of ribosome nascent chain complexes of the chloroplast-encoded D1 thylakoid membrane protein with cpSRP54. EMBO J 18: 733–742

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. 50: 333–359

    CAS  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94: 14162–14167

    Article  PubMed  Google Scholar 

  • Nußberger S, Dörr K, Wang DN and Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356

    Article  PubMed  Google Scholar 

  • Oster U, Bauer CE and Rüdiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 272: 9671–9676

    CAS  PubMed  Google Scholar 

  • Oster U, Tanaka R, Tanaka A and Rüdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21: 305–310

    Article  CAS  PubMed  Google Scholar 

  • Owens TG, Shreve AP and Albrecht AC (1992) Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: light harvesting and non-photochemical fluorescence quenching. In: Murata N (ed) Research in Photosynthesis, pp 179–186. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pagano A, Cinque G and Bassi R (1998) In vitro reconstitution of the recombinant Photosystem II light-harvesting complex CP24 and its spectroscopic characterization. J Biol Chem 273: 17154–17165

    Article  CAS  PubMed  Google Scholar 

  • Park H and Hoober JK (1997) Chlorophyll synthesis modulates retention of apoproteins of light-harvesting complex II by the chloroplast in Chlamydomonas reinhardtii. Physiol Plant 101: 135–142

    Article  CAS  Google Scholar 

  • Park H, Eggink LL, Roberson RW and Hoober JK (1999) Transfer of proteins from the chloroplast to vacuoles in Chlamydomonas reinhardtii (Chlorophyta): A pathway for degradation. J Phycol 35: 528–538

    Article  CAS  Google Scholar 

  • Paulsen H (1995) Chlorophyll a/b-binding proteins. Photochem Photobiol 62: 367–382

    CAS  Google Scholar 

  • Paulsen H (1997) Pigment ligation to proteins of the photosynthetic apparatus in higher plants. Physiol Plant 100: 760–768

    Article  CAS  Google Scholar 

  • Paulsen H, Rümler U and Rüdiger W (1990) Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in E. coli. Planta 81: 204–211

    Google Scholar 

  • Paulsen H, Finkenzeller B and Kühlein N (1993) Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem 215: 809–816

    Article  CAS  PubMed  Google Scholar 

  • Phillip D and Young AJ (1995) Occurrence of the carotenoid lactucaxanthin in higher plant LHC II. Photosynth Res 43: 273–282

    Article  CAS  Google Scholar 

  • Pilgrim ML, vanWijk KJ, Parry DH, Sy DAC and Hoffman NE (1998) Expression of a dominant negative form of cpSRP54 inhibits chloroplast biogenesis in Arabidopsis. Plant J 13: 177–186

    Article  CAS  PubMed  Google Scholar 

  • Plumley FG and Schmidt GW (1995) Light-harvesting chlorophyll a/b complexes: Interdependent pigment synthesis and protein assembly. Plant Cell 7: 689–704

    Article  CAS  PubMed  Google Scholar 

  • Pogson B, McDonald KA, Truong M, Britton G and DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8: 1627–1639

    Article  CAS  PubMed  Google Scholar 

  • Pogson BJ, Niyogi KK, Björkman O and DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95: 13324–13329

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Schäfer W, Cmiel E, Katheder I and Scheer H (1994) The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen—achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves. Eur J Biochem 219: 671–679

    Article  CAS  PubMed  Google Scholar 

  • Reed JE, Cline K, Stephens LC, Bacot KO and Viitanen PV (1990) Early events in the import assembly pathway of an integral thylakoid protein. Eur J Biochem 194: 33–42

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe C, Lebedev N and Reinbothe S (1999) A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397: 80–84

    Article  CAS  Google Scholar 

  • Remelli R, Varotto C, Sandonà D, Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex — A mutation analysis of chromophore-binding residues. J Biol Chem 274: 33510–33521

    Article  CAS  PubMed  Google Scholar 

  • Rhee KH, Morris EP, Zheleva D, Hankamer B, Kühlbrandt W and Barber J (1997) Two dimensional structure of plant Photosystem II at 8 Å resolution. Nature 389: 522–526

    CAS  Google Scholar 

  • Rhee KH, Morris EP, Barber J and Kühlbrandt W (1998) Three-dimensional structure of the plant Photosystem II reaction centre at 8 Å resolution. Nature 396: 283–286

    CAS  PubMed  Google Scholar 

  • Rogl H and Kühlbrandt W (1999) Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 38: 16214–16222

    Article  CAS  PubMed  Google Scholar 

  • Rogl H, Lamborghini M and Kühlbrandt W (1998) Chlorophyll exchange on reconstituted LHCII: Chlorophyll a is essential fortrimerisation. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol 1, pp 361–364. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  • Ros F, Bassi R and Paulsen H (1998) Pigment-binding properties of the recombinant Photosystem II subunit CP26 reconstituted in vitro. Eur J Biochem 253: 653–658

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Phillip D, Young AJ and Horton P (1997) Carotenoid dependent oligomerization of the major chlorophyll a/b light harvesting complex of Photosystem II of plants. Biochemistry 36: 7855–7859

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Phillip D, Young AJ and Horton P (1998) Excited-state energy level does not determine the differential effect of violaxanthin and zeaxanthin on chlorophyll fluorescence quenching in the isolated light-harvesting complex of Photosystem II. Photochem Photobiol 68: 829–834

    Article  CAS  Google Scholar 

  • Sandoná D, Croce R, Pagano A, Crimi M and Bassi R (1998) Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta 1365: 207–214

    PubMed  Google Scholar 

  • Scheumann V, Schoch S and Rüdiger W (1998) Chlorophyll a formation in the chlorophyll b reductase reaction requires reduced ferredoxin. J Biol Chem 273: 35102–35108

    Article  CAS  PubMed  Google Scholar 

  • Scheumann V, Klement H, Helfrich M, Oster U, Schoch S and Rüdiger W (1999) Protochlorophyllide b does not occur in barley etioplasts. FEBS Lett 445: 445–448

    Article  CAS  PubMed  Google Scholar 

  • Schmid VHR, Cammarata KV, Bruns BU and Schmidt GW (1997) In vitro reconstitution of the Photosystem I light-harvesting complex LHCI-730: Heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci USA 94: 7667–7672

    CAS  PubMed  Google Scholar 

  • Schmid V, Beutelmann P, Schmidt GW and Paulsen H (1998) Ligand requirement for LHCI reconstitution. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol I, pp 425–428. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Schnell DJ (1998) Protein targeting to the thylakoid membrane. Annu Rev Plant Physiol Plant Mol Biol 49: 97–126

    Article  CAS  PubMed  Google Scholar 

  • Schubert WD, Klukas O, Krauss N, Saenger W, Fromme P and Witt HT (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: Comprehensive structure analysis. J Mol Biol 272: 741–769

    Article  CAS  PubMed  Google Scholar 

  • Schuenemann D, Gupta S, PerselloCartieaux F, Klimyuk VI, Jones JDG, Nussaume L and Hoffman NE (1998) A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes. Proc Natl Acad Sci USA 95: 10312–10316

    Article  CAS  PubMed  Google Scholar 

  • Siefermann-Harms D (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim Biophys Acta 811: 325–355

    CAS  Google Scholar 

  • Simonetto R, Crimi M, Sandonà D, Croce R, Cinque G, Breton J and Bassi R (1999) Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Biochemistry 38: 12974–12983

    Article  CAS  PubMed  Google Scholar 

  • Soll J, Schultz G, Rüdiger W and Benz J (1983) Hydrogenation of geranylgeraniol. Two pathways exist in spinach chloroplasts. Plant Physiol 71: 849–854

    CAS  Google Scholar 

  • Takaichi S and Mimuro M (1998) Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs: 9′-cis, a sole molecular form. Plant Cell Physiol 39: 968–977

    CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a, Proc Natl Acad Sci USA 95: 12719–12723

    CAS  PubMed  Google Scholar 

  • Tu CJ, Schuenemann D and Hoffman NE (1999) Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconstitute the soluble phase of light-harvesting chlorophyll protein transport into thylakoid membranes. J Biol Chem 274: 27219–27224

    CAS  PubMed  Google Scholar 

  • Tu CJ, Peterson EC, Henry R and Hoffman NE (2000) The L18 domain of light-harvesting chlorophyll proteins binds to chloroplast signal recognition particle 43. J Biol Chem 275: 13187–13190

    CAS  PubMed  Google Scholar 

  • van Wijk KJ and Eichacker L (1996) Light is required for efficient translation elongation and subsequent integration of the D1-protein into Photosystem II. FEBS Lett 388: 89–93

    PubMed  Google Scholar 

  • White RA, Wolfe GR, Komine Y and Hoober JK (1996) Localization of light-harvesting complex apoproteins in the chloroplast and cytoplasm during greening of Chlamydomonas reinhardtii at 38 °C. Photosynth Res 47: 267–280

    Article  CAS  Google Scholar 

  • Yang CH, Kosemund K, Cornet C and Paulsen H (1999) Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. Biochemistry 38: 16205–16213

    CAS  PubMed  Google Scholar 

  • Yuan JG, Henry R and Cline K (1993) Stromal factor plays an essential role in protein integration into thylakoids that cannot be replaced by unfolding or by heat shock protein Hsp70. Proc Natl Acad Sci USA 90: 8552–8556

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Paulsen, H. (2001). Pigment Assembly—Transport and Ligation. In: Aro, EM., Andersson, B. (eds) Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, vol 11. Springer, Dordrecht. https://doi.org/10.1007/0-306-48148-0_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-48148-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6332-3

  • Online ISBN: 978-0-306-48148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics