Skip to main content

Reactivity at Silicon Surfaces Si(100) 2×2 and Si(111) 7×7

  • Chapter
  • 294 Accesses

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 2/3))

Abstract

The silicon surfaces formally result from the cleavage of covalent bonds that generate uncoupled orbitals localised on the surface atoms (Dangling Bonds). The surfaces reconstruct to decrease the number of DBs. The two most studied silicon surfaces are Si(100) and Si(111). The former one dimerises; the lowest state is antiferromagnetic; buckling is not favorable on perfect surfaces and should only appear close to defects and terraces. Dioxygen is adsorbed on the dimers leading to structures that are reminiscent of peroxo compounds; the dissociation of O2 on the surface is exothermic but requires very high activation barriers; at saturation, the atomic adsorption removes the dimerisation.

The Si(111) surface reconstructs by dimerisation and capping. The unit cell for the reconstructed Si(111) 7×7 contains 49 atoms per layer implying for a reasonable model to consider at least 249 atoms. 19 DBs remain that can be classified into 7 sets (12 adatoms A, A′, B and B′, 6 restatoms R and R′ and one corner atom). They are characterised by crystal orbitals of different energies. Some of them are occupied and other are vacant. This monitors the adsorption of atoms. The H adsorption, controlled by an electron count, starts by 5 first adsorptions on the most stable adatom levels and continues by pairs implying two different sites (an adatom and a restatom). We have studied the adsorption of several atoms: Ge, Cs, Pb and molecules: H2O and NH3. Each of them corresponds to a new mode (switch of the adsorbed atom with the atoms below for Ge, adsorption on threefold positions for Cs, a tendency to clustering and collective migration within a half cell for Pb, dissociation with a radicalar mechanism for H2O); these modes are analysed and compared with experiment. We finally present preliminary results on O2/Si(111) 7×7 in order to study the influence of a preadsorbed atomic oxygen on the adsorption of molecular oxygen. For this study, we combine several modelisations: cluster models, periodic ab-initio calculations on a simplified slab and EHT on the fully reconstructed slab.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.J. Sofield and A.M. Stoneham, Semiconductor Science and Technology, 10 (1995) 215.

    Article  CAS  Google Scholar 

  2. T. Engel, Surface Science Reports, 18 (1993) 91.

    Article  CAS  Google Scholar 

  3. A. Ramstad, G. Brocks and P.J. Kelly, Phys. Rev. B., 51 (1995) 14504.

    Article  CAS  Google Scholar 

  4. Q. Liu and R. Hoffmann, J. Am. Chem. Soc., 117 (1995) 4082.

    CAS  Google Scholar 

  5. A. Markovits, L. Favaro and C. Minot, J. Mol. Struct. Theo. Chem., 458 (1999) 171.

    CAS  Google Scholar 

  6. N. Roberts and R.J. Needs, Surface Science, 236 (1990) 112.

    Article  CAS  Google Scholar 

  7. R. Dovesi, V.R. Saunders, C. Roetti, M. Causa, N.M. Harrison, R. Orlando and E. Apra Crystal 95, users manual, University of Torino, (Torino, 1996).

    Google Scholar 

  8. J.R Perdew in: Unified Theory of Exchange and Correlation Beyond The Local Density Approximation, Nova Science, New York, 1991.

    Google Scholar 

  9. E. Artacho and F. Ynduráin, Phys. Rev. B, 42 (1990) 11310.

    Article  CAS  Google Scholar 

  10. E. Artacho and F. Ynduráin, Phys. Rev. Lett., 62 (1989) 2491.

    Article  CAS  Google Scholar 

  11. T. Vinchon, A.M. Oles, D. Spanjaard and M.C. Desjonquères, Surf. Sci., 287/288 (1993) 534.

    Article  Google Scholar 

  12. A. Redondo and W.A. Goddard III, J. Vac. Sci. Technol., 21 (1982) 344.

    CAS  Google Scholar 

  13. P.J. Hay, J.C. Thibeault and R. Hoffmann, J. Amer. Chem. Soc., 97 (1981) 4884.

    Google Scholar 

  14. P. deLoth, P. Cassoux, J.P. Daudey and J.P. Malrieu, J. Amer. Chem. Soc., 103 (1981) 4007.

    Google Scholar 

  15. D.J. Chadi, Phys. Rev. Lett., 43 (1979) 43.

    Article  CAS  Google Scholar 

  16. D.J. Chadi, J. Vac. Sci. Technolol., 16 (1979) 1290.

    CAS  Google Scholar 

  17. W.S. Verwoed, Surf. Sci., 99 (1980) 581.

    Google Scholar 

  18. M.T. Yin and M.L. Cohen, Phys. Rev. B, 24 (1981).

    Google Scholar 

  19. J. Dabrowski and M. Scheffler, Applied Surface Science, 56 (1992) 15.

    Article  Google Scholar 

  20. J. Fritsch and P. Pavone, Surf. Sci., 344 (1995) 159.

    Article  CAS  Google Scholar 

  21. F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff and G. Hollinger, Physical review B, 38 (1988) 6084.

    CAS  Google Scholar 

  22. G. Dufour, F. Rochet, H. Roulet and F. Sirotti, Surf. Sci., 304 (1994) 33.

    Article  CAS  Google Scholar 

  23. R. Gunnella, E.L. Bullock, L. Patthey, C.R. Natoli, T. Abukawa, S. Kono and L.S.O. Johansson, Phys. Rev. B, 57(1998) 14739.

    CAS  Google Scholar 

  24. E. Landemark, C.J. Karlsson, Y. Chao and R.I.G. Uhrberg, Phys. Rev. Lett., 69 (1992) 1588.

    Article  CAS  Google Scholar 

  25. R.E. Schlier and H.E. Farnsworth, J. Chem. Phys., 30 (1959) 917.

    Article  CAS  Google Scholar 

  26. M.-H. Whangbo and R. Hoffmann, J. Am. Chem. Soc., 100 (1978) 6093.

    CAS  Google Scholar 

  27. C. Minot, M.A. VanHove and G.A. Somorjai, Surf. Sci., 127 (1983) 441.

    Article  CAS  Google Scholar 

  28. D.R. Alfonso, C. Noguez, D.A. Drabold and S.E. Ulloa, Phys. Rev. B, 54 (1996) 8028.

    Article  CAS  Google Scholar 

  29. M. Fujita, H. Nagayoshi and A. Yoshimori, J. Vac. Sci. Technol., A8 (1990) 166.

    Google Scholar 

  30. M. Fujita, H. Nagayoshi and A. Yoshimori, Surf. Sci., 242 (1991) 229.

    CAS  Google Scholar 

  31. K.D. Brommer, M. Galvàn, A. DalPino and J.D. Joannopoulos, Surf. Sci., 314 (1994) 57.

    Article  CAS  Google Scholar 

  32. K. Takayanagi, Y. Tanishiro, M. Takahashi and S. Takahashi, J. Vac. Sci. Technol., A3 (1981) 1502.

    Google Scholar 

  33. S.Y. Tong, H. Huang, C.M. Wei, W.E. Packard, F.K. Men, G. Glander and M.B. Webb, J. Vac. Sci. Technol., A6 (1988) 615.

    Google Scholar 

  34. J.A. Kubby and J.J. Boland, Surface Science Reports, 26 (1996) 61.

    Article  CAS  Google Scholar 

  35. L. Stauffer, H. Ezzehar, D. Bolmont, R. Chelly, J.J. Koulmann and C. Minot, Surf. Sci., 342 (1995) 206.

    Article  CAS  Google Scholar 

  36. L. Stauffer, S. Van, D. Bolmont, J.J. Koulmann and C. Minot, Sol. State Comm., 85 (1993) 935.

    Article  CAS  Google Scholar 

  37. N. Nishijima, K. Edamoto, Y. Kubota, S. Tanaka and M. Onchi, J. Chem. Phys., 84 (1986) 6458.

    Article  CAS  Google Scholar 

  38. H. Ibach, H. Wagner and D. Bruchman, Solid State Comm., 42 (1982) 457.

    CAS  Google Scholar 

  39. H. Kobayashi, T. Kubota, M. Onchi and M. Nishima, Phys. Lett., 95A (1983) 345.

    CAS  Google Scholar 

  40. J.A. Schäfer, F. Stucki, D.J. Frankel, G.J. Lapeyre and W. Göpel, J. Vac. Sci. Technol., B2 (1984) 359.

    Google Scholar 

  41. Y.J. Chabal and S.B. Christman, Phys. Rev. B, 29 (1984) 6974.

    CAS  Google Scholar 

  42. C. Poncey, F. Rochet, G. Dufour, H. Roulet, F. Sirotti and G. Panaccione, Surf. Sci., 338 (1995) 43.

    Article  Google Scholar 

  43. H. Ezzehar, L. Stauffer, J. Leconte and C. Minot, Surf. Science, 388 (1997) 220.

    Article  CAS  Google Scholar 

  44. A. Fahmi and C. Minot, Surf. Science, 304 (1994) 343.

    Article  CAS  Google Scholar 

  45. A. Markovits, J. Ahdjoudj and C. Minot, Molecular Engineering, 7 (1997) 245.

    Article  CAS  Google Scholar 

  46. A. Markovits, J. Ahdjoudj and C. Minot, Il nuovo cimento, 19D (1997) 1719.

    CAS  Google Scholar 

  47. L. Stauffer and C. Minot, Catal. Lett., 23 (1994) 1.

    Article  CAS  Google Scholar 

  48. L. Stauffer, P. Sonnet and C. Minot, Surf. Sci., 371 (1997) 63.

    Article  CAS  Google Scholar 

  49. L. Stauffer, S. Van, D. Bolmont, J.J. Koulmann and C. Minot, Surf. Sci., 307 (1994) 274.

    Article  Google Scholar 

  50. P. Sonnet, L. Stauffer and C. Minot, Surface Science, 402–404 (1998) 751.

    Google Scholar 

  51. P. Sonnet, L. Stauffer and C. Minot, Surface Science, 416 (1998), 274.

    Article  CAS  Google Scholar 

  52. P. Sonnet, L. Stauffer and C. Minot, Surf. Sci., 407 (1998) 121.

    Article  CAS  Google Scholar 

  53. J.M. Gomez-Rodriguez, J.Y. Veuillen and R.C. Cinti, Phys. Rev. B, 76 (1996) 799.

    CAS  Google Scholar 

  54. L. Stauffer and C. Minot, Surf. Rev. and Lett., 4 (1997) 53.

    CAS  Google Scholar 

  55. L. Stauffer and C. Minot, Surf. Sci., 331–333 (1995) 606.

    Google Scholar 

  56. L. Salem in: The Molecular Orbital theory of Conjugated systems, Benjamin N.Y., 1960, 36.

    Google Scholar 

  57. C.A. Coulson and G.S. Rushbrooke, Proc. Cambridge, Phil. Soc., 36 (1940) 193.

    CAS  Google Scholar 

  58. I.W. Lyo, P. Avouris, B. Schubert and R. Hoffmann, J. Phys. Chem., 94 (1990) 4400.

    Article  CAS  Google Scholar 

  59. B. Schubert, P. Avouris and R. Hoffmann, J. Chem. Phys., 98 (1993) 7593.

    CAS  Google Scholar 

  60. G. Comtet, G. Dujardin, L. Hellner, T. Hiramaya, M. Rose, L. Philippe and M.J. Besnard-Ramage, Surf. Sci., 331–333 (1995) 370.

    Google Scholar 

  61. G. Dujardin, G. Comtet, L. Hellner, T. Hiramaya, M. Rose, L. Philippe and M.J. Besnard-Ramage, Phys. Rev. Lett., 73 (1994) 1727.

    Article  CAS  Google Scholar 

  62. G. Comtet, L. Hellner, G. Dujardin and M.J. Ramage, Surf. Sci., 352–354 (1996) 315.

    Google Scholar 

  63. G. Dujardin, A. Mayne, G. Comtet, L. Hellner, M. Jamet, E. LeGoff and P. Millet, Phys. Rev. Lett., 76 (1996) 3782.

    Article  CAS  Google Scholar 

  64. A. Markovits and C. Minot, J. Mol. Catal. A, 119 (1997) 185.

    CAS  Google Scholar 

  65. Y. Miyamoto and A. Oshiyama, Phys. Rev. B, 41 (1990) 12680.

    Article  CAS  Google Scholar 

  66. Y. Miyamoto and A. Oshiyama, Phys. Rev. B, 43 (1991) 9287.

    Article  CAS  Google Scholar 

  67. X.M. Zheng and P.V Smith, Surf. Sci., 232 (1990) 6.

    Article  CAS  Google Scholar 

  68. T. Hoshino, M. Tsuda, S. Oikawa and I. Ohdomari, Surf. Sci. Letters, 291 (1993) L763.

    CAS  Google Scholar 

  69. T. Hoshino, M. Tsuda, S. Oikawa and I. Ohdomari, Phys. Rev. B, 50 (1994) 14999.

    Article  CAS  Google Scholar 

  70. A. Markovits and C. Minot In: A theoretical model of the Si/SiO2 interface, Fundamental Aspects of Ultrathin Dilectric on Si-based devices: towards an atomic-scale understanding, (NATO ASI Kluwer, St Petersbourg, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Markovits, A., Sonnet, P., Stauffer, L., Minot, C. (2000). Reactivity at Silicon Surfaces Si(100) 2×2 and Si(111) 7×7. In: Hernández-Laguna, A., Maruani, J., McWeeny, R., Wilson, S. (eds) Quantum Systems in Chemistry and Physics Volume 2. Progress in Theoretical Chemistry and Physics, vol 2/3. Springer, Dordrecht. https://doi.org/10.1007/0-306-48145-6_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48145-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5970-8

  • Online ISBN: 978-0-306-48145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics