Skip to main content

Diffusion Monte-Carlo Calculations of Quasi-Bound States of Rare Gas-Halogen Clusters: a Diabatic Approach

  • Chapter
Quantum Systems in Chemistry and Physics Volume 2

Abstract

A variational method within a diabatic scheme as well as a Diffusion Monte Carlo (DMC) method are applied to study the quasibound states of Cl2-He and Cl2-He2 van der Waals (vdW) clusters. The ground energy levels and the corresponding probability density distributions for all relevant vdW modes are calculated for both clusters with the two methods. From the comparison of the results numerically obtained we conclude that the DMC method is a good way to determine the ground energy and the corresponding distributions of these complexes, in order to use them as initial states for a dynamical calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Levy, Adv. Chem. Phys. 47, 323 (1981).

    CAS  Google Scholar 

  2. K.C. Janda, Adv. Chem. Phys. 60, 201 (1985), and references therein.

    CAS  Google Scholar 

  3. Structure and Dynamics of Weakly Bound Molecular Complexes, NATO ASI Series C: Mathematical and Physical Sciences, Vol. 212, edited by A. Weber (Reidel, Dordrecht, 1987).

    Google Scholar 

  4. Dynamics of Polyatomic van der Waals Complexes, NATO ASI Series B: Physics, Vol. 227, edited by N. Halberstadt and K.C. Janda (Plenum Press, New York, 1990).

    Google Scholar 

  5. (a) D.M. Willberg, M. Gutmann, J.J. Breen, and A.H. Zewail, J. Chem. Phys. 96, 198 (1992); (b) M. Gutmann, D.M. Willberg, and A.H. Zewail, ibid. 97, 8037 (1992); (c) 97, 8048 (1992).

    Article  CAS  Google Scholar 

  6. (a) Y. Yan, R.M. Whitnell, K.R. Wilson, and A.H. Zewail, Chem. Phys. Lett. 193, 402 (1992); (b) E.D. Potter, Q. Liu, and A.H. Zewail, Chem. Phys. Lett. 200, 605 (1992).

    Article  CAS  Google Scholar 

  7. W. Sharfin, K.E. Johnson, L. Warton, and D.H. Levy, J. Chem. Phys. 71, 1292 (1979).

    Article  CAS  Google Scholar 

  8. J.E. Kenny, K.E. Johnson, W. Sharfin, and D.H. Levy, J. Chem. Phys. 72, 1109 (1980).

    Article  CAS  Google Scholar 

  9. B.A. Swartz, D.E. Brinza, C.M. Western, and K.C. Janda, J. Phys. Chem. 88, 6272 (1984).

    Article  CAS  Google Scholar 

  10. J.C. Drobits and M.I. Lester, J. Chem. Phys. 86, 1662 (1987).

    Article  CAS  Google Scholar 

  11. S.R. Hair, J.I. Cline, C.R. Bieler, and K.C. Janda, J. Chem. Phys. 90, 2935 (1989).

    Article  CAS  Google Scholar 

  12. W.D. Sands, C.R. Bieler, and K.C. Janda, J. Chem. Phys. 95, 729 (1991).

    Article  CAS  Google Scholar 

  13. J.A. Beswick, G. Delgado-Barrio, and J. Jortner, J. Chem. Phys. 70, 3895 (1979).

    CAS  Google Scholar 

  14. O. Roncero, J.A. Beswick, N. Halberstadt, P. Villarreal, and G. Delgado-Barrio, J. Chem. Phys. 92, 3348 (1990).

    Article  CAS  Google Scholar 

  15. A. García-Vela, P. Villarreal, and G. Delgado-Barrio, J. Chem. Phys. 92, 6504 (1990).

    Google Scholar 

  16. A. García-Vela, P. Villarreal, and G. Delgado-Barrio, J. Chem. Phys. 94, 7868 (1991).

    Google Scholar 

  17. P. Villarreal, S. Miret-Artés, O. Roncero, G. Delgado-Barrio, J.A. Beswick, N. Halberstadt, and R.D. Coalson, J. Chem. Phys. 94, 4230 (1991).

    Article  CAS  Google Scholar 

  18. D.H. Zhang and J.Z.H. Zhang, J. Chem. Phys. 95, 6449 (1991).

    CAS  Google Scholar 

  19. S.K. Gray and C.E. Wozny, J. Chem. Phys. 94, 2817 (1991).

    Article  CAS  Google Scholar 

  20. F. Le Quéré and S.K. Gray, J. Chem. Phys. 98, 5396 (1993).

    Google Scholar 

  21. J.-Y. Fang and H. Guo, J. Chem. Phys. 102, 1944 (1995).

    Article  CAS  Google Scholar 

  22. (a) O. Roncero, G. Delgado-Barrio, M.I. Hernández, J. Campos-Martínez, and P. Villarreal, Chem. Phys. Lett 246, 187 (1995); (b) J. Campos-Martínez, M.I. Hernández, O. Roncero, P. Villarreal, and G. Delgado-Barrio, Chem. Phys. Lett. 246, 197 (1995).

    Article  CAS  Google Scholar 

  23. A. García-Vela, J. Chem. Phys. 104, 1047 (1996).

    Google Scholar 

  24. (a) J. Rubayo-Soneira, A. García-Vela, G. Delgado-Barrio, and P. Villarreal, Chem. Phys. Lett. 243, 236 (1995); (b) A. García-Vela, J. Rubayo-Soneira, G. Delgado-Barrio, and P. Villarreal, J. Chem. Phys. 104, 8405 (1996).

    Article  CAS  Google Scholar 

  25. P. Villarreal, O. Roncero, and G. Delgado-Barrio, J. Chem. Phys. 101, 2217 (1994).

    Article  Google Scholar 

  26. M.I. Hernández, A. García-Vela, C. García-Rizo, N. Halberstadt, P. Villarreal and G. Delgado-Barrio, J. Chem. Phys. 108, 1989 (1998).

    Google Scholar 

  27. J.B. Anderson J. Chem. Phys. 63, 1499 (1975); 65, 4121 (1976).

    CAS  Google Scholar 

  28. D.F. Coker and R.O. Watts, Mol. Phys. 58, 1113 (1986).

    CAS  Google Scholar 

  29. Huai Sun and R.O. Watts, J. Chem. Phys. 92, 603 (1990).

    CAS  Google Scholar 

  30. M.A. Suhm, R.O. Watts, Phys. Rep. 204, 293 (1991).

    Article  CAS  Google Scholar 

  31. Z. Bacic, M. Kennedy-Manduziuk, J.W. Moskowitz, and K.E. Schmidt, J. Chem. Phys. 97, 6472 (1992).

    CAS  Google Scholar 

  32. V. Buch, J. Chem. Phys. 97, 726 (1992).

    Article  CAS  Google Scholar 

  33. P. Sandler, J. oh Jung, M.M. Szczesniak and V. Buch, J. Chem. Phys. 101, 1378 (1994).

    CAS  Google Scholar 

  34. P. Sandler, V. Buch and D.C. Clary, J. Chem. Phys. 101, 6353 (1994).

    CAS  Google Scholar 

  35. M.A. McMahon and K.B. Whaley, J. Chem, Phys. 103, 2561 (1995).

    Article  CAS  Google Scholar 

  36. L. Beneventi, P. Casavecchia, G.C. Volpi, C.R. Bieler, and K.C. Janda, J. Chem. Phys. 98, 178 (1993).

    CAS  Google Scholar 

  37. K.P. Huber and G. Herzberg, ‘Molecular Spectra and Molecular Structure’, Vol. IV ‘Constants of Diatomic Molecules’, Ed. Van Nostrand Reinhold Company, New York, 1979.

    Google Scholar 

  38. R.A. Aziz and M.J. Slaman, Chem. Phys. 130, 187 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

García-Rizo, C., Hernández, M.I., García-Vela, A., Halberstadt, N., Villarreal, P., Delgado-Barrio, G. (2000). Diffusion Monte-Carlo Calculations of Quasi-Bound States of Rare Gas-Halogen Clusters: a Diabatic Approach. In: Hernández-Laguna, A., Maruani, J., McWeeny, R., Wilson, S. (eds) Quantum Systems in Chemistry and Physics Volume 2. Progress in Theoretical Chemistry and Physics, vol 2/3. Springer, Dordrecht. https://doi.org/10.1007/0-306-48145-6_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48145-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5970-8

  • Online ISBN: 978-0-306-48145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics