Skip to main content

Chromosomal deletions and tumor suppressor genes in prostate cancer

  • Chapter
Book cover Prostate Cancer: New Horizons in Research and Treatment

Part of the book series: Developments in Oncology ((DION,volume 81))

  • 138 Accesses

Abstract

Chromosomal deletion appears to be the earliest as well as the most frequent somatic genetic alteration during carcinogenesis. It inactivates a tumor suppressor gene in three ways, that is, revealing a gene mutation through loss of heterozygosity as proposed in the two-hit theory, inducing haploinsufficiency through quantitative hemizygous deletion and associated loss of expression, and truncating a genome by homozygous deletion. Whereas the two-hit theory has guided the isolation of many tumor suppressor genes, the haploinsufficiency hypothesis seems to be also useful in identifying target genes of chromosomal deletions, especially for the deletions detected by comparative genomic hybridization (CGH). At present, a number of chromosomal regions have been identified for their frequent deletions in prostate cancer, including 2q13\2-q33, 5q14\2-q23, 6q16\2-q22, 7q22\2-q32, 8p21\2-p22, 9p21\2-p22, 10q23\2-q24, 12p12\2-13, 13q14\2-q21, 16q22\2-24, and 18q21\2-q24. Strong candidate genes have been identified for some of these regions, including NKX3.1 from 8p21, PTEN from 10q23, p27/Kipl from 12p13, and KLF5 from 13q21. In addition to their location in a region with frequent deletion, there are functional and/or genetic evidence supporting the candidacy of these genes. Thus far PTEN is the most frequently mutated gene in prostate cancer, and KLF5 showed the most frequent hemizygous deletion and loss of expression. A tumor suppressor role has been demonstrated for NKX3.1, PTEN, and p27/Kipl in knockout mice models. Such genes are important targets of investigation for the development of biomarkers and therapeutic regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vogelstein B, Kinzler KW: The genetic basis of human cancer. McGraw-Hill New York, 1998, p731

    Google Scholar 

  2. Harris H, Miller OJ, Klein G, Worst P, Tachibana T: Suppression of malignancy by cell fusion. Nature 223: 363–368, 1969

    PubMed  CAS  Google Scholar 

  3. Knudson AG, Jr: Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823, 1971

    PubMed  Google Scholar 

  4. Knudson AG, Jr: Genetics and etiology of human cancer. Adv Hum Genet 8: 1–66, 1977

    PubMed  CAS  Google Scholar 

  5. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–784, 1983

    Article  PubMed  CAS  Google Scholar 

  6. Mitelman F, Johansson B, Mertens F: Mitelman database of chromosome aberrations in cancer. http://cgap.nci.nih.gov 2001

    Google Scholar 

  7. Deng GR, Lu Y, Zlotnikov G, Thor AD, Smith HS: Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274: 2057–2059, 1996

    Article  PubMed  CAS  Google Scholar 

  8. Knuutila S, Aalto Y, Autio K, Bjorkqvist AM, El-Rifai W, Hemmer S, Huhta T, Kettunen E, Kiuru-Kuhlefelt S, Larramendy ML, Lushnikova T, Monni O, Pere H, Tapper J, Tarkkanen M, Varis A, Wasenius VM, Wolf M, Zhu Y: DNA copy number losses in human neoplasms. Am J Pathol 5: 683–694, 1999

    Google Scholar 

  9. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, Loh M, Felix C, Roy DC, Busque L, Kurnit D, Willman C, Gewirtz AM, Speck NA, Bushweller JH, Li FP, Gardiner K, Poncz M, Maris JM, Gilliland DG: Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23: 166–175, 1999

    PubMed  CAS  Google Scholar 

  10. Sisodiya SM, Free SL, Williamson KA, Mitchell TN, Willis C, Stevens JM, Kendall BE, Shorvon SD, Hanson IM, Moore AT, van Heyningen V: PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat Genet 28: 214–216, 2001

    Article  PubMed  CAS  Google Scholar 

  11. Bay JO, Uhrhammer N, Pernin D, Presneau N, Tchirkov A, Vuillaume M, Laplace V, Grancho M, Verrelle P, Hall J, Bignon YJ: High incidence of cancer in a family segregating a mutation of the ATM gene: Possible role of ATM heterozygosity in cancer. Hum Mutat 14: 485–492, 1999

    Article  PubMed  CAS  Google Scholar 

  12. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP: Pten is essential for embryonic development and tumour suppression. Nat Genet 19: 348–355, 1998

    PubMed  Google Scholar 

  13. Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L, Zhou YX, Weinstein M, Kim SJ, Deng CX: Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19: 1868–1874, 2000

    PubMed  CAS  Google Scholar 

  14. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ: The murine gene p27Kipl is haplo-insufficient for tumour suppression. Nature 396: 177–180, 1998

    PubMed  CAS  Google Scholar 

  15. Chen C, Vessella RL, Dong JT: Defining KLF5 as a tumor suppressor gene at 13q21 in human prostate cancer. Cancer Res submitted: 2002

    Google Scholar 

  16. Nupponen NN, Kakkola L, Koivisto P, Visakorpi T: Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 153: 141–148, 1998

    PubMed  CAS  Google Scholar 

  17. Sattler HP, Rohde V, Bonkhoff H, Zwergel T, Wullich B: Comparative genomic hybridization reveals DNA copy number gains to frequently occur in human prostate cancer. Prostate 39: 79–86, 1999

    Article  PubMed  CAS  Google Scholar 

  18. Alers JC, Rochat J, Krijtenburg PJ, Hop WC, Kranse R, Rosenberg C, Tanke HJ, Schroder FH, van Dekken H: Identification of genetic markers for prostatic cancer progression. Lab Invest 80: 931–942, 2000

    PubMed  CAS  Google Scholar 

  19. Arps S, Rodewald A, Schmalenberger B, Carl P, Bressel M, Kastendieck H: Cytogenetic survey of 32 cancers of the prostate. Cancer Genet Cytogenet 66: 93–99, 1993

    Article  PubMed  CAS  Google Scholar 

  20. Qi H, Dal Cin P, Van de Voorde W, Elgamal AA, Van Poppel H, Baert L, Van Den Berghe H: del(1)(q12) in adenocarcinomas of the prostate. Cancer Genet Cytogenet 87:79–81, 1996

    Article  PubMed  CAS  Google Scholar 

  21. Carvalho-Salles AB, Mesquita JC, Tajara EH: Deletion (1)(q12) and double minutes in a metastatic adenocarcinoma of the prostate. Cancer Genet Cytogenet 116: 50–53, 2000

    Article  PubMed  CAS  Google Scholar 

  22. Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD, Brownstein MJ, Bova GS, Guo H, Bujnovszky P. Nusskern DR, Damber JE, Bergh A, Emanuelsson M, Kallioniemi OP, Walker-Daniels J, Bailey-Wilson JE, Beaty TH, Meyers DA, Walsh PC, Collins FS, Trent JM, Isaacs WB: Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 274: 1371–1374, 1996

    PubMed  CAS  Google Scholar 

  23. Berthon P, Valeri A, Cohen-Akenine A, Drelon E, Paiss T, Wohr G, Latil A, Millasseau P, Mellah I, Cohen N, Blanche H, Bellane-Chantelot C, Demenais F, Teillac P, Le Duc A, de Petriconi R, Hautmann R, Chumakov I, Bachner L, Maitland NJ, Lidereau R, Vogel W, Fournier G, Mangin P, Cohen D, Cussenot O: Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet 62: 1416–1424, 1998

    Article  PubMed  CAS  Google Scholar 

  24. Gibbs M, Stanford JL, McIndoe RA, Jarvik GP, Kolb S, Goode EL, Chakrabarti L, Schuster EF, Buckley VA, Miller EL, Brandzel S, Li S, Hood L, Ostrander EA: Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 64: 776–787, 1999

    PubMed  CAS  Google Scholar 

  25. Xu J, Zheng SL, Chang B, Smith JR, Carpten JD, Stine OC, Isaacs SD, Wiley KE, Henning L, Ewing C, Bujnovszky P, Bleeker ER, Walsh PC, Trent JM, Meyers DA, Isaacs WB: Linkage of prostate cancer susceptibility loci to chromosome 1. Hum Genet 108: 335–345, 2001

    Article  PubMed  CAS  Google Scholar 

  26. Ahman AK, Jonsson BA, Damber JE, Bergh A, Emanuelsson M, Gronberg H: Low frequency of allelic imbalance at the prostate cancer susceptibility loci HPC1 and 1p36 in Swedish men with hereditary prostate cancer. Genes Chromosomes Cancer 29: 292–296, 2000

    PubMed  CAS  Google Scholar 

  27. Dunsmuir WD, Edwards SM, Lakhani SR, Young M, Corbishley C, Kirby RS, Dearnaley DP, Dowe A, Ardern-Jones A, Kelly J, Eeles RA: Allelic imbalance in familial and sporadic prostate cancer at the putative human prostate cancer susceptibility locus, HPC1. CRC/BPG UK Familial Prostate Cancer Study Collaborators. Cancer Research Campaign/British Prostate Group. Br J Cancer 78: 1430–1433, 1998

    PubMed  CAS  Google Scholar 

  28. Webb HD, Hawkins AL, Griffin CA: Cytogenetic abnormalities are frequent in uncultured prostate cancer cells. Cancer Genet Cytogenet 88: 126–132, 1996

    Article  PubMed  CAS  Google Scholar 

  29. Azar GM, DiPillo F, Gogineni SK, Godec CJ, Verma RS: Highly complex chromosomal aberrations in bone marrow of a patient with metastatic prostate neoplasm. Cancer Genet Cytogenet 99: 116–120, 1997

    Article  PubMed  CAS  Google Scholar 

  30. Kochera M, Depinet TW, Pretlow TP, Giaconia JM, Edgehouse NL, Pretlow TG, Schwartz S: Molecular cytogenetic studies of a serially transplanted primary prostatic carcinoma xenograft (CWR22) and four relapsed tumors. Prostate 41: 7–11, 1999

    Article  PubMed  CAS  Google Scholar 

  31. Cher ML, MacGrogan D, Bookstein R, Brown JA, Jenkins RB, Jensen RH: Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosomes Cancer 11: 153–162, 1994

    PubMed  CAS  Google Scholar 

  32. Visakorpi T, Kallioniemi AH, Syvanen AC, Hyytinen ER, Karhu R, Tammela T, Isola JJ, Kallioniemi OP: Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 55: 342–347, 1995

    PubMed  CAS  Google Scholar 

  33. Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, Epstein JI, Isaacs WB, Jensen RH: Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 56:3091–3102, 1996

    PubMed  CAS  Google Scholar 

  34. Koivisto PA, Schleutker J, Helin H, Ehren-van Eekelen C, Kallioniemi OP, Trapman J: Androgen receptor gene alterations and chromosomal gains and losses in prostate carcinomas appearing during finasteride treatment for benign prostatic hyperplasia. Clin Cancer Res 5:3578–3582, 1999

    PubMed  CAS  Google Scholar 

  35. Verhagen PC, Zhu XL, Rohr LR, Cannon-Albright LA, Tavtigian SV, Skolnick MH, Brothman AR: Microdissection, DOP-PCR, and comparative genomic hybridization of paraffin-embedded familial prostate cancers. Cancer Genet Cytogenet 122: 43–48, 2000

    Article  PubMed  CAS  Google Scholar 

  36. El Gedaily A, Bubendorf L, Willi N, Fu W, Richter J, Moch H, Mihatsch MJ, Sauter G, Gasser TC: Discovery of new DNA amplification loci in prostate cancer by comparative genomic hybridization. Prostate 46: 184–190, 2001

    PubMed  Google Scholar 

  37. Zitzelsberger H, Engert D, Walch A, Kulka U, Aubele M, Hofler H, Bauchinger M, Werner M: Chromosomal changes during development and progression of prostate adenocarcinomas. Br J Cancer 84: 202–208, 2001

    Article  PubMed  CAS  Google Scholar 

  38. Elliott K, Sakamuro D, Basu A, Du W, Wunner W, Staller P, Gaubatz S, Zhang H, Prochownik E, Eilers M, Prendergast GC: Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene 18:3564–3573, 1999

    Article  PubMed  CAS  Google Scholar 

  39. Sakamuro D, Prendergast GC: New Myc-interacting proteins: A second Myc network emerges. Oncogene 18: 2942–2954, 1999

    Article  PubMed  CAS  Google Scholar 

  40. Ge K, Minhas F, Duhadaway J, Mao NC, Wilson D, Buccafusca R, Sakamuro D, Nelson P, Malkowicz SB, Tomaszewski J, Prendergast GC: Loss of heterozygosity and tumor suppressor activity of Bin1 in prostate carcinoma. Int. J Cancer 86: 155–161, 2000

    Article  PubMed  CAS  Google Scholar 

  41. Lerman MI, Minna JD: The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: Identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res 60: 6116–6133, 2000

    PubMed  CAS  Google Scholar 

  42. Gibas Z, Pontes JE, Sandberg AA: Chromosome rearrangements in a metastatic adenocarcinoma of the prostate. Cancer Genet Cytogenet 16: 301–304, 1985

    Article  PubMed  CAS  Google Scholar 

  43. Johnson BE, Whang-Peng J, Naylor SL, Zbar B, Brauch H, Lee E, Simmons A, Russell E, Nam MH, Gazdar AF: Retention of chromosome 3 in extrapulmonary small cell cancer shown by molecular and cytogenetic studies. J Natl Cancer Inst 81: 1223–1228, 1989

    PubMed  CAS  Google Scholar 

  44. Jones E, Zhu XL, Rohr LR, Stephenson RA, Brothman AR: Aneusomy of chromosomes 7 and 17 detected by FISH in prostate cancer and the effects of selection in vitro. Genes Chromosomes Cancer 11: 163–170, 1994

    PubMed  CAS  Google Scholar 

  45. Teixeira MR, Waehre H, Lothe RA, Stenwig AE, Pandis N, Giercksky KE, Heim S: High frequency of clonal chromosome abnormalities in prostatic neoplasms sampled by prostatectomy or ultrasound-guided needle biopsy. Genes Chromosomes Cancer 28: 211–219, 2000

    Article  PubMed  CAS  Google Scholar 

  46. Dahiya R, McCarville J, Hu W, Lee C, Chui RM, Kaur G, Deng G: Chromosome 3p24-26 and 3p22-12 loss in human prostatic adenocarcinoma. Int J Cancer 71: 20–25, 1997

    Article  PubMed  CAS  Google Scholar 

  47. Pan Y, Lui WO, Nupponen N, Larsson C, Ji, Visakorpi T, Bergerheim US, Kytola S: 5q11, 8p11, and 10q22 are recurrent chromosomal breakpoints in prostate cancer cell lines. Genes Chromosomes Cancer 30: 187–195, 2001

    Article  PubMed  CAS  Google Scholar 

  48. Ozen M, Navone NM, Multani AS, Troncoso P, Logothetis CJ, Chung LW, von Eschenbach AC, Pathak S: Structural alterations of chromosome 5 in twelve human prostate cancer cell lines. Cancer Genet Cytogenet 106: 105–109, 1998

    Article  PubMed  CAS  Google Scholar 

  49. Cher ML, Lewis PE, Banerjee M, Hurley PM, Sakr W, Grignon DJ, Powell IJ: A similar pattern of chromosomal alterations in prostate cancers from African-Americans and Caucasian Americans. Clin Cancer Res 4: 1273–1278, 1998

    PubMed  CAS  Google Scholar 

  50. Fu W, Bubendorf L, Willi N, Moch H, Mihatsch MJ, Sauter G, Gasser TC: Genetic changes in clinically organ-confined prostate cancer by comparative genomic hybridization. Urology 56: 880–885, 2000

    Article  PubMed  CAS  Google Scholar 

  51. Alers JC, Krijtenburg PJ, Vis AN, Hoedemaeker RF, Wildhagen MF, Hop WC, van Der Kwast TT, Schroder FH, Tanke HJ, van Dekken H: Molecular cytogenetic analysis of prostatic adenocarcinomas from screening studies: Early cancers may contain aggressive genetic features. Am J Pathol 158:399–406, 2001

    PubMed  CAS  Google Scholar 

  52. Phillips SM, Morton DG, Lee SJ, Wallace DM, Neoptolemos JP: Loss of heterozygosity of the retinoblas-toma and adenomatous polyposis susceptibility gene loci and in chromosomes 10p, 10q and 16q in human prostate cancer. Br J Urol 73: 390–395, 1994

    PubMed  CAS  Google Scholar 

  53. Cunningham JM, Shan A, Wick MJ, McDonnell SK, Schaid DJ, Tester DJ, Qian J, Takahashi S, Jenkins RB, Bostwick DG, Thibodeau SN: Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res 56: 4475–4482, 1996

    PubMed  CAS  Google Scholar 

  54. Saric T, Brkanac Z, Troyer DA, Padalecki SS, Sarosdy M, Williams K, Abadesco L, Leach RJ, O’Connell P: Genetic pattern of prostate cancer progression. Int J Cancer 81: 219–224, 1999

    Article  PubMed  CAS  Google Scholar 

  55. Zitzelsberger H, Szucs S, Robens E, Weier HU, Hofler H, Bauchinger M: Combined cytogenetic and molecular genetic analyses of fifty-nine untreated human prostate carcinomas. Cancer Genet Cytogenet 90: 37–44, 1996

    Article  PubMed  CAS  Google Scholar 

  56. Pittman S, Russell PJ, Jelbart ME, Wass J, Raghavan D: Flow cytometric and karyotypic analysis of a primary small cell carcinoma of the prostate: A xenografted cell line. Cancer Genet Cytogenet 26: 165–169, 1987

    Article  PubMed  CAS  Google Scholar 

  57. Joos S, Bergerheim USR, Pan Y, Matsuyama H, Bentz M, Dumanoir S, Lichter P: Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization. Genes Chromosomes Cancer 14: 267–276, 1995

    PubMed  CAS  Google Scholar 

  58. Rokman A, Koivisto PA, Matikainen MP, Kuukasjarvi T, Poutiainen M, Helin HJ, Karhu R, Kallioniemi OP, Schleutker J: Genetic changes in familial prostate cancer by comparative genomic hybridization. Prostate 46: 233–239, 2001

    PubMed  CAS  Google Scholar 

  59. Cooney KA, Wetzel JC, Consolino CM, Wojno KJ: Identification and characterization of proximal 6q deletions in prostate cancer. Cancer Res 56: 4150–4153, 1996

    PubMed  CAS  Google Scholar 

  60. Srikantan V, Sesterhenn IA, Davis L, Hankins GR, Avallone FA, Livezey JR, Connelly R, Mostofi FK, McLeod DG, Moul JW, Chandrasekharappa SC, Srivastava S: Allelic loss on chromosome 6Q in primary prostate cancer. Int J Cancer 84: 331–335, 1999

    Article  PubMed  CAS  Google Scholar 

  61. Hyytinen ER, Saduut R, Chen C, Paull L, Koivisto PA, Vessella RL, Frierson HF, Dong JT: Defining the region(s) of deletion at 6q16-q22 in human prostate cancer. Genes Chromosomes Cancer in press: 2002

    Google Scholar 

  62. Atkin NB, Baker MC: Chromosome study of five cancers of the prostate. Hum Genet 70: 359–364, 1985

    Article  PubMed  CAS  Google Scholar 

  63. Lundgren R, Kristoffersson U, Heim S, Mandahl N, Mitelman F: Multiple structural chromosome rearrangements, including del(7q) and del(10q), in an adenocarcinoma of the prostate. Cancer Genet Cytogenet 35: 103–108, 1988

    Article  PubMed  CAS  Google Scholar 

  64. Lundgren R, Mandahl N, Heim S, Limon J, Henrikson H, Mitelman F: Cytogenetic analysis of 57 primary prostatic adenocarcinomas. Genes Chromosomes Cancer 4: 16–24, 1992

    PubMed  CAS  Google Scholar 

  65. Milasin J, Micic S: Double minute chromosomes in an invasive adenocarcinoma of the prostate. Cancer Genet Cytogenet 72: 157–159, 1994

    Article  PubMed  CAS  Google Scholar 

  66. Bandyk MG, Zhao L, Troncoso P, Pisters LL, Palmer JL, von Eschenbach AC, Chung LW, Liang JC: Trisomy 7: A potential cytogenetic marker of human prostate cancer progression. Genes Chromosomes Cancer 9: 19–27, 1994

    PubMed  CAS  Google Scholar 

  67. Wang R-Y, Troncoso P, Palmer JL, El-Naggar AK, Liang JC: Trisomy 7 by dual-color fluorescence in situ hybridization: A potential biological marker for prostate cancer progression. Clin Cancer Res 2: 1553–1558, 1996

    PubMed  CAS  Google Scholar 

  68. Latil A, Baron JC, Cussenot O, Fournier G, Soussi T, Boccon-Gibod L, Le Duc A, Rouesse J, Lidereau R: Genetic alterations in localized prostate cancer: Identification of a common region of deletion on chromosome arm 18q. Genes Chromosomes Cancer 11: 119–125, 1994

    PubMed  CAS  Google Scholar 

  69. Latil A, Fournier G, Cussenot O, Lidereau R: Differential chromosome allelic imbalance in the progression of human prostate cancer. J Urol 156: 2079–2083, 1996

    PubMed  CAS  Google Scholar 

  70. Zenklusen JC, Thompson JC, Troncoso P, Kagan J, Conti CJ: Loss of heterozygosity in human primary prostate carcinomas: A possible tumor suppressor gene at 7q31.1. Cancer Res 54: 6370–6373, 1994

    PubMed  CAS  Google Scholar 

  71. Latil A, Cussenot O, Fournier G, Baron JC, Lidereau R: Loss of heterozygosity at 7q31 is a frequent and early event in prostate cancer. Clin Cancer Res 1: 1385–1389, 1995

    PubMed  CAS  Google Scholar 

  72. Takahashi S, Shan AL, Ritland SR, Delacey KA, Bostwick DG, Lieber MM, Thibodeau SN, Jenkins RB: Frequent loss of heterozygosity at 7q31.1 in primary prostate cancer is associated with tumor aggressiveness and progression. Cancer Res 55: 4114–4119, 1995

    PubMed  CAS  Google Scholar 

  73. Matturri L, Biondo B, Cazzullo A, Montanari E, Radice F, Timossi R, Turconi P, Lavezzi AM: Detection of trisomy 7 with fluorescence in situ hybridization and its correlation with DNA content and proliferating cell nuclear antigen-positivity in prostate cancer. Am J Clin Oncol 21:253–257, 1998

    Article  PubMed  CAS  Google Scholar 

  74. Cui J, Deubler DA, Rohr LR, Zhu XL, Maxwell TM, Changus JE, Brothman AR: Chromosome 7 abnormalities in prostate cancer detected by dual-color fluorescence in situ hybridization. Cancer Genet Cytogenet 107: 51–60, 1998

    Article  PubMed  CAS  Google Scholar 

  75. Jenkins RB, Qian J, Lee HK, Huang H, Hirasawa K, Bostwick DG, Proffitt J, Wilber K, Lieber MM, Liu W, Smith DI: A molecular cytogenetic analysis of 7q31 in prostate cancer. Cancer Res 58: 759–766, 1998

    PubMed  CAS  Google Scholar 

  76. Ogata T, Ayusawa D, Namba M, Takahashi E, Oshimura M, Oishi M: Chromosome 7 suppresses indefinite division of nontumorigenic immortalized human fibroblast cell lines KMST-6 and SUSM-1.Mol Cell Biol 13: 6036–6043, 1993

    PubMed  CAS  Google Scholar 

  77. Zenklusen JC, Oshimura M, Barrett JC, Conti CJ: Inhibition of tumorigenicity of a murine squamous cell carcinoma (SCC) cell line by a putative tumor suppressor gene on human chromosome 7. Oncogene 9: 2817–2825, 1994

    PubMed  CAS  Google Scholar 

  78. Zenklusen JC, Hodges LC, LaCava M, Green ED, Conti CJ: Definitive functional evidence for a tumor suppressor gene on human chromosome 7q31.1 neighboring the Fra7G site. Oncogene 19: 1729–1733, 2000

    Article  PubMed  CAS  Google Scholar 

  79. Zenklusen JC, Weintraub LA, Green ED: Construction of a high-resolution physical map of the ∼1-Mb region of human chromosome 7q31.1-31.2 harboring a putative tumor suppressor gene. Neoplasia 1: 16–22, 1999

    Article  PubMed  CAS  Google Scholar 

  80. Zenklusen JC, Conti CJ, Green ED: Mutational and functional analyses reveal that ST7 is a highly conserved tumor-suppressor gene on human chromosome 7q31. Nat Genet 27: 392–398, 2001

    Article  PubMed  CAS  Google Scholar 

  81. Macoska JA, Trybus TM, Sakr WA, Wolf MC, Benson PD, Powell IJ, Pontes JE: Fluorescence in situ hybridization analysis of 8p allelic loss and chromosome 8 instability in human prostate cancer. Cancer Res 54: 3824–3830, 1994

    PubMed  CAS  Google Scholar 

  82. Huang SF, Xiao S, Renshaw AA, Loughlin KR, Hudson TJ, Fletcher JA: Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer. Am J Pathol 149: 1565–1573, 1996

    PubMed  CAS  Google Scholar 

  83. Oba K, Matsuyama H, Yoshihiro S, Kishi F, Takahashi M, Tsukamoto M, Kinjo M, Sagiyama K, Naito K: Two putative tumor suppressor genes on chromosome arm 8p may play different roles in prostate cancer. Cancer Genet Cytogenet 124: 20–26, 2001

    Article  PubMed  CAS  Google Scholar 

  84. Kunimi K, Bergerheim US, Larsson IL, Ekman P, Collins VP: Allelotyping of human prostatic adenocarcinoma. Genomics 11: 530–536, 1991

    Article  PubMed  CAS  Google Scholar 

  85. Bova GS, Carter BS, Bussemakers MJ, Emi M, Fujiwara Y, Kyprianou N, Jacobs SC, Robinson JC, Epstein JI, Walsh PC, Isaacs WB: Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 53: 3869–3873, 1993

    PubMed  CAS  Google Scholar 

  86. MacGrogan D, Levy A, Bostwick D, Wagner M, Wells D, Bookstein R: Loss of chromosome arm 8p loci in prostate cancer: Mapping by quantitative allelic imbalance. Genes Chromosomes Cancer 10: 151–159, 1994

    PubMed  CAS  Google Scholar 

  87. Sakr WA, Macoska JA, Benson P, Grignon DJ, Wolman SR, Pontes JE, Crissman JD: Allelic loss in locally metastatic, multisampled prostate cancer. Cancer Res 54: 3273–3277, 1994

    PubMed  CAS  Google Scholar 

  88. Trapman J, Sleddens HF, van der Weiden MM, Dinjens WN, Konig JJ, Schroder FH, Faber PW, Bosman FT: Loss of heterozygosity of chromosome 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S133 in human prostate cancer. Cancer Res 54: 6061–6064, 1994

    PubMed  CAS  Google Scholar 

  89. Macoska JA, Trybus TM, Benson PD, Sakr WA, Grignon DJ, Wojno KD, Pietruk T, Powell IJ: Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res 55: 5390–5395, 1995

    PubMed  CAS  Google Scholar 

  90. Crundwell MC, Chughtai S, Knowles M, Takle L, Luscombe M, Neoptolemos JP, Morton DG, Phillips SM: Allelic loss on chromosomes 8p, 22q and 18q (DCC) in human prostate cancer. Int J Cancer 69: 295–300, 1996

    Article  PubMed  CAS  Google Scholar 

  91. Washburn JG, Wojno KJ, Dey J, Powell IJ, Macoska JA: 8pter-p23 deletion is associated with racial differences in prostate cancer outcome. Clin Cancer Res 6: 4647–4652, 2000

    PubMed  CAS  Google Scholar 

  92. Kagan J, Stein J, Babaian RJ, Joe YS, Pisters LL, Glassman AB, von Eschenbach AC, Troncoso P: Homozygous deletions at 8p22 and 8p21 in prostate cancer implicate these regions as the sites for candidate tumor suppressor genes. Oncogene11:2121–2126, 1995

    PubMed  CAS  Google Scholar 

  93. Emmert-Buck MR, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD, Zhuang Z, Bostwick DG, Liotta LA, Linehan WM: Allelic loss on chromosome 8p 12-21 in microdissected prostatic intraepithelial neoplasia. Cancer Res 55: 2959–2962, 1995

    PubMed  CAS  Google Scholar 

  94. Suzuki H, Emi M, Komiya A, Fujiwara Y, Yatani R, Nakamura Y, Shimazaki J: Localization of a tumor suppressor gene associated with progression of human prostate cancer within a 1.2 Mb region of 8p22-p21.3. Genes Chromosomes Cancer 13: 168–174, 1995

    PubMed  CAS  Google Scholar 

  95. Vocke CD, Pozzatti RO, Bostwick DG, Florence CD, Jennings SB, Strup SE, Duray PH, Liotta LA, Emmert-Buck MR, Linehan WM: Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p 12-21. Cancer Res 56: 2411–2416, 1996

    PubMed  CAS  Google Scholar 

  96. Perinchery G, Bukurov N, Nakajima K, Chang J, Hooda M, Oh BR, Dahiya R: Loss of two new loci on chromosome 8 (8p23 and 8q12-13) in human prostate cancer. Int J Oncol 14:495–500, 1999

    PubMed  CAS  Google Scholar 

  97. Prasad MA, Trybus TM, Wojno KJ, Macoska JA: Homozygous and frequent deletion of proximal 8p sequences in human prostate cancers: Identification of a potential tumor suppressor gene site. Genes Chromosomes Cancer 23: 255–262, 1998

    Article  PubMed  Google Scholar 

  98. Kalapurakal JA, Jacob AN, Kim PY, Najjar DD, Hsieh YC, Ginsberg P, Daskal I, Asbell SO, Kandpal RP: Racial differences in prostate cancer related to loss of heterozygosity on chromosome 8p12-23. Int J Radiat Oncol Biol Phys 45: 835–840, 1999

    PubMed  CAS  Google Scholar 

  99. Van Alewijk DC, Van der Weiden MM, Eussen BJ, Van Den Andel-Thijssen LD, Ehren-van Eekelen CC, Konig JJ, van Steenbrugge GJ, Dinjens WN, Trapman J: Identification of a homozygous deletion at 8p 12-21 in a human prostate cancer xenograft. Genes Chromosomes Cancer 24: 119–126, 1999

    PubMed  Google Scholar 

  100. Qian J, Jenkins RB, Bostwick DG: Genetic and chromosomal alterations in prostatic intraepithelial neoplasia and carcinoma detected by fluorescence in situ hybridization. Eur Urol 35: 479–483, 1999

    Article  PubMed  CAS  Google Scholar 

  101. Haggman MJ, Wojno KJ, Pearsall CP, Macoska JA: Allelic loss of 8p sequences in prostatic intraepithelial neoplasia and carcinoma. Urology 50: 643–647, 1997

    Article  PubMed  CAS  Google Scholar 

  102. Matsuyama H, Pan Y, Oba K, Yoshihiro S, Matsuda K, Hagarth L, Kudren D, Naito K, Bergerheim US, Ekman P: Deletions on chromosome 8p22 may predict disease progression as well as pathological staging in prostate cancer. Clin Cancer Res 7: 3139–3143, 2001

    PubMed  CAS  Google Scholar 

  103. Bova GS, MacGrogan D, Levy A, Pin SS, Bookstein R, Isaacs WB: Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer. Genomics 35: 46–54, 1996

    Article  PubMed  CAS  Google Scholar 

  104. MacGrogan D, Levy A, Bova GS, Isaacs WB, Bookstein R: Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics 35: 55–65, 1996

    Article  PubMed  CAS  Google Scholar 

  105. Bookstein R, Bova GS, MacGrogan D, Levy A, Isaacs WB: Tumour-suppressor genes in prostatic oncogenesis: a positional approach. British J Urol 79: 28–36, 1997

    Google Scholar 

  106. Ishii H, Baffa R, Numata SI, Murakumo Y, Rattan S, Inoue H, Mori M, Fidanza V, Alder H, Croce CM: The FEZ1 gene at chromosome 8p22 encodes a leucine-zipper protein, and its expression is altered in multiple human tumors. Proc Natl Acad Sci USA 96: 3928–3933, 1999

    Article  PubMed  CAS  Google Scholar 

  107. Cabeza-Arvelaiz Y, Sepulveda JL, Lebovitz RM, Thompson TC, Chinault AC: Functional identification of LZTS1 as a candidate prostate tumor suppressor gene on human chromosome 8p22. Oncogene 20: 4169–4179, 2001

    PubMed  CAS  Google Scholar 

  108. Ishii H, Vecchione A, Murakumo Y, Baldassarre G, Numata S, Trapasso F, Alder H, Baffa R, Croce CM: FEZ1/LZTSI gene at 8p22 suppresses cancer-cell growth and regulates mitosis. Proc Natl Acad Sci USA 14: early edition, 200]

    Google Scholar 

  109. Lutchman M, Pack S, Kim AC, Azim A, Emmert-Buck M, van Huffel C, Zhuang Z, Chishti AH: Loss of heterozygosity on 8p in prostate cancer implicates a role for dematin in tumor progression. Cancer Genet Cytogenet 115: 65–69, 1999

    Article  PubMed  CAS  Google Scholar 

  110. He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, Curtis RT, Shell BK, Bostwick DG, Tindall DJ, Gelmann EP, Abate-Shen C, Carter KC: A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43: 69–77, 1997

    Article  PubMed  CAS  Google Scholar 

  111. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, Norton CR, Gridley T, Cardiff RD, Cunha GR, Abate-Shen C, Shen MM: Roles for Nkx3.1 in prostate development and cancer. Genes Dev 13: 966–977, 1999

    PubMed  CAS  Google Scholar 

  112. Tanaka M, Komuro I, Inagaki H, Jenkins NA, Copeland NG, Izumo S: Nkx3.1, a murine homolog of Ddrosophila bagpipe, regulates epithelial ductal branching and proliferation of the prostate and palatine glands. Dev Dyn 219: 248–260, 2000

    Article  PubMed  CAS  Google Scholar 

  113. Voeller HJ, Augustus M, Madike V, Bova GS, Carter KC, Gelmann EP: Coding region of NKX3.1, a prostate-specific homeobox gene on 8p21, is not mutated in human prostate cancers. Cancer Res 57: 4455–4459, 1997

    PubMed  CAS  Google Scholar 

  114. Xu LL, Srikantan V, Sesterhenn IA, Augustus M, Dean R, Moul JW, Carter KC, Srivastava S: Expression profile of an androgen regulated prostate specific homeobox gene NKX3.1 in primary prostate cancer. J Urol 163: 972–979, 2000

    PubMed  CAS  Google Scholar 

  115. Ornstein DK, Cinquanta M, Weiler S, Duray PH, Emmert-Buck MR, Vocke CD, Linehan WM, Ferretti JA: Expression studies and mutational analysis of the androgen regulated homeobox gene NKX3.1 in benign and malignant prostate epithelium. J Urol 165: 1329–1334, 2001

    PubMed  CAS  Google Scholar 

  116. Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G, Gasser TC, Koivisto P, Lack EE, Kononen J, Kallioniemi OP, Gelmann EP: Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res 60: 6111–6115, 2000

    PubMed  CAS  Google Scholar 

  117. Perinchery G, Bukurov N, Nakajima K, Chang J, Li LC, Dahiya R: High frequency of deletion on chromosome 9p21 may harbor several tumor-suppressor genes in human prostate cancer. Int J Cancer 83: 610–614, 1999

    Article  PubMed  CAS  Google Scholar 

  118. Cairns P, Polascik TJ, Eby Y, Tokino K, Califano J, Merlo A, Mao L, Herath J, Jenkins R, Westra W, et al.: Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nat Genet 11: 210–212, 1995

    Article  PubMed  CAS  Google Scholar 

  119. Tamimi Y, Bringuier PP, Smit F, Vanbokhoven A, Debruyne F, Schalken JA: p16 mutations/deletions are not frequent events in prostate cancer. Brit J Cancer 74: 120–122, 1996

    PubMed  CAS  Google Scholar 

  120. Chen W, Weghorst CM, Sabourin CL, Wang Y, Wang D, Bostwick DG, Stoner GD: Absence of p16/MTS1 gene mutations in human prostate cancer. Carcinogenesis 17: 2603–2607, 1996

    PubMed  CAS  Google Scholar 

  121. Jarrard DF, Bova GS, Ewing CM, Pin SS, Nguyen SH, Baylin SB, Cairns P, Sidransky D, Herman JG, Isaacs WB: Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer 19: 90–96, 1997

    Article  PubMed  CAS  Google Scholar 

  122. Trybus TM, Burgess AC, Wojno KJ, Glover TW, Macoska JA: Distinct areas of allelic loss on chromosomal regions 10p and 10q in human prostate cancer. Cancer Res 56:2263–2267, 1996

    PubMed  CAS  Google Scholar 

  123. Ittmann M: Allelic loss on chromosome 10 in prostate adenocarcinoma. Cancer Res 56: 2143–2147, 1996

    PubMed  CAS  Google Scholar 

  124. Komiya A, Suzuki H, Ueda T, Yatani R, Emi M, Shimazaki J: Allelic losses at loci on chromosome 10 are associated with metastasis and progression of human prostate cancer. Genes Chromosomes Cancer 17: 245–253, 1996

    Article  PubMed  CAS  Google Scholar 

  125. Brothman AR, Lesho LJ, Somers KD, Schellhammer PF, Ladaga LE, Merchant DJ: Cytogenetic analysis of four primary prostatic cultures. Cancer Genet Cytogenet 37: 241–248, 1989

    Article  PubMed  CAS  Google Scholar 

  126. Carter BS, Ewing CM, Ward WS, Treiger BF, Aalders TW, Schalken JA, Epstein JI, Isaacs WB: Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 87: 8751–8755, 1990

    PubMed  CAS  Google Scholar 

  127. Gray IC, Phillips SM, Lee SJ, Neoptolemos JP, Weissenbach J, Spurr NK: Loss of the chromosomal region 10q23-25 in prostate cancer. Cancer Res 55: 4800–4803, 1995

    PubMed  CAS  Google Scholar 

  128. Lacombe L, Orlow I, Reuter VE, Fair WR, Dalbagni G, Zhang ZF, Cordoncardo C: Microsatellite instability and deletion analysis of chromosome 10 in human prostate cancer. Int J Cancer 69: 110–113, 1996

    Article  PubMed  CAS  Google Scholar 

  129. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947, 1997

    Article  PubMed  CAS  Google Scholar 

  130. Steck PA, Pershouse MA, Jasser SA, Yung WKA, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DHF, Tavtigian SV: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362, 1997

    Article  PubMed  CAS  Google Scholar 

  131. Srivastava M, Bubendorf L, Srikantan V, Fossom L, Nolan L, Glasman M, Leighton X, Fehrle W, Pittaluga S, Raffeld M, Koivisto P, Willi N, Gasser TC, Kononen J, Sauter G, Kallioniemi OP, Srivastava S, Pollard HB: ANX7, a candidate tumor suppressor gene for prostate cancer. Proc Natl Acad Sci USA 98: 4575–4580, 2001

    Article  PubMed  CAS  Google Scholar 

  132. Eagle LR, Yin X, Brothman AR, Williams BJ, Atkin NB, Prochownik EV: Mutation of the MXI1 gene in prostate cancer. Nat Genet 9: 249–252, 1995

    Article  PubMed  CAS  Google Scholar 

  133. Taj MM, Tawil RJ, Engstrom LD, Zeng Z, Hwang C, Sanda MG, Wechsler DS: MXI1, a Myc antagonist, suppresses proliferation of DU145 human prostate cells. Prostate 47: 194–204, 2001

    Article  PubMed  CAS  Google Scholar 

  134. Kuczyk MA, Serth J, Bokemeyer C, Schwede J, Herrmann R, Machtens S, Grunewald V, Homer K, Jonas U: The MXI1 tumor suppressor gene is not mutated in primary prostate cancer. Oncol Rep 5: 213–216, 1998

    PubMed  CAS  Google Scholar 

  135. Edwards SM, Dearnaley DP, Ardern-Jones A, Hamoudi RA, Easton DF, Ford D, Shearer R, Dowe A, Eeles RA: No germline mutations in the dimerization domain of MXI1 in prostate cancer clusters. The CRC/BPG UK Familial Prostate Cancer Study Collaborators. Cancer Research Campaign/British Prostate Group. Br J Cancer 76: 992–1000, 1997

    PubMed  CAS  Google Scholar 

  136. Li DM, Sun H: TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 57: 2124–2129, 1997

    PubMed  CAS  Google Scholar 

  137. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL: The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 95: 15587–15591, 1998

    PubMed  CAS  Google Scholar 

  138. Davies MA, Koul D, Dhesi H, Berman R, McDonnell TJ, McConkey D, Yung WK, Steck PA: Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells by MMAC/PTEN. Cancer Res 59: 2551–2556, 1999

    PubMed  CAS  Google Scholar 

  139. Persad S, Attwell S, Gray V, Delcommenne M, Troussard A, Sanghera J, Dedhar S: Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTENmutant prostate cancer cells. Proc Natl Acad Sci USA 97: 3207–3212, 2000

    Article  PubMed  CAS  Google Scholar 

  140. Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL: Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 95: 5246–5250, 1998

    Article  PubMed  CAS  Google Scholar 

  141. Ali IU, Schriml LM, Dean M: Mutational spectra of PTEN/MMAC1 gene: A tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst 91: 1922–1932, 1999

    Article  PubMed  CAS  Google Scholar 

  142. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR: Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59: 4291–4296, 1999

    PubMed  CAS  Google Scholar 

  143. Liaw D, Marsh DJ, Li J, Dahia PLM, Wang SI, Zheng ZM, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R: Germline mutations of the PTEN gene in Cowden-disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16:64–67, 1997

    Article  PubMed  CAS  Google Scholar 

  144. Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, Sidransky D, Isaacs WB, Bova GS: Interfocal heterogeneity of PTEN/MMAC 1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58: 204–209, 1998

    PubMed  CAS  Google Scholar 

  145. Vlietstra RJ, van Alewijk DC, Hermans KG, van Steenbrugge GJ, Trapman J: Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res 58: 2720–2723, 1998

    PubMed  CAS  Google Scholar 

  146. Facher EA, Law JC: PTEN and prostate cancer. J Med Genet 35: 790, 1998

    Article  PubMed  CAS  Google Scholar 

  147. Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM: Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 16: 1743–1748, 1998

    Article  PubMed  CAS  Google Scholar 

  148. Dong JT, Sipe TW, Hyytinen ER, Li CL, Heise C, McClintock DE, Grant CD, Chung LW, Frierson HF, Jr: PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene 17:1979–1982, 1998

    PubMed  CAS  Google Scholar 

  149. Orikasa K, Fukushige S, Hoshi S, Orikasa S, Kondo K, Miyoshi Y, Kubota Y, Horii A: Infrequent genetic alterations of the PTEN gene in Japanese patients with sporadic prostate cancer. J Hum Genet 43: 228–230, 1998

    Article  PubMed  CAS  Google Scholar 

  150. Pesche S, Latil A, Muzeau F, Cussenot O, Fournier G, Longy M, Eng C, Lidereau R: PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 16: 2879–2883, 1998

    Article  PubMed  CAS  Google Scholar 

  151. Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Isaacs WB, Bova GS, Sidransky D: Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57: 4997–5000, 1997

    PubMed  CAS  Google Scholar 

  152. Gray IC, Stewart LM, Phillips SM, Hamilton JA, Gray NE, Watson GJ, Spurr NK, Snary D: Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN. Br J Cancer 78: 1296–1300, 1998

    PubMed  CAS  Google Scholar 

  153. Wang SI, Parsons R, Ittmann M: Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 4: 811–815, 1998

    PubMed  CAS  Google Scholar 

  154. Cooney KA, Tsou HC, Petty EM, Miesfeldt S, Ping XL, Gruener AC, Peacocke M: Absence of PTEN germ-line mutations in men with a potential inherited predisposition to prostate cancer. Clin Cancer Res 5: 1387–1391, 1999

    PubMed  CAS  Google Scholar 

  155. Forrest MS, Edwards SM, Hamoudi RA, Dearnaley DP, Arden-Jones A, Dowe A, Murkin A, Kelly J, Teare MD, Easton DF, Knowles MA, Bishop DT, Eeles RA: No evidence of germline PTEN mutations in familial prostate cancer. J Med Genet 37: 210–212, 2000

    Article  PubMed  CAS  Google Scholar 

  156. Dong JT, Li CL, Sipe TW, Frierson HFJ: Mutations of PTEN/MMAC 1 in primary prostate cancers from Chinese patients. Clin Cancer Res 7: 304–308, 2001

    PubMed  CAS  Google Scholar 

  157. Simpson L, Parsons R: PTEN: Life as a tumor suppressor. Exp Cell Res 264: 29–41, 2001

    Article  PubMed  CAS  Google Scholar 

  158. Dahiya R, McCarville J, Lee C, Hu W, Kaur G, Carroll P, Deng G: Deletion of chromosome 11p15, p12, q22, q23–24 loci in human prostate cancer. Int J Cancer 72: 283–288, 1997

    PubMed  CAS  Google Scholar 

  159. Molenaar WM, Stoepker ME, de Ruiter AJ, Hoekstra HJ, van den Berg E: Cytogenetic support for primary prostatic cancer in a patient presenting with a soft tissue mass in the leg. Cancer Genet Cytogenet 86: 147–149, 1996

    Article  PubMed  CAS  Google Scholar 

  160. Brothman AR, Watson MJ, Zhu XL, Williams BJ, Rohr LR: Evaluation of 20 archival prostate tumor specimens by fluorescence in situ hybridization (FISH). Cancer Genet Cytogenet 75: 40–44, 1994

    Article  PubMed  CAS  Google Scholar 

  161. Kibel AS, Schutte M, Kern SE, Isaacs WB, Bova GS: Identification of 12p as a region of frequent deletion in advanced prostate cancer. Cancer Res 58: 5652–5655, 1998

    PubMed  CAS  Google Scholar 

  162. Kibel AS, Freije D, Isaacs WB, Bova GS: Deletion mapping at 12p12-13 in metastatic prostate cancer. Genes Chromosomes Cancer 25: 270–276, 1999

    Article  PubMed  CAS  Google Scholar 

  163. Kibel AS, Faith DA, Bova GS, Isaacs WB: Loss of heterozygosity at 12p12-13 in primary and metastatic prostate adenocarcinoma. J Urol 164: 192–196, 2000

    PubMed  CAS  Google Scholar 

  164. Latil A, Guerard M, Berthon P, Cussenot O: 12p12-13 deletion in prostate tumors and quantitative expression of CDKN1B and ETV6 candidate genes. Genes Chromosomes Cancer 31:199–200, 2001

    Article  PubMed  CAS  Google Scholar 

  165. Cote RJ, Shi Y, Groshen S, Feng AC, Cordon-Cardo C, Skinner D, Lieskovosky G: Association of p27Kip1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst 90: 916–920, 1998

    Article  PubMed  CAS  Google Scholar 

  166. Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J, deKernion JB, Loda M, Reiter RE: Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol 159: 941–945, 1998

    PubMed  CAS  Google Scholar 

  167. Guo Y, Sklar GN, Borkowski A, Kyprianou N: Loss of the cyclin-dependent kinase inhibitor p27(Kip1) protein in human prostate cancer correlates with tumor grade. Clin Cancer Res 3: 2269–2274, 1997

    PubMed  CAS  Google Scholar 

  168. Cheville JC, Lloyd RV, Sebo TJ, Cheng L, Erickson L, Bostwick DG, Lohse CM, Wollan P: Expression of p27kip 1 in prostatic adenocarcinoma. Mod Pathol 11: 324–328, 1998

    PubMed  CAS  Google Scholar 

  169. Macri E, Loda M: Role of p27 in prostate carcinogenesis. Cancer Metastasis Rev 17: 337–344, 1998

    Article  PubMed  CAS  Google Scholar 

  170. Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP: Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27: 222–224, 2001

    PubMed  Google Scholar 

  171. Kibel AS, Christopher M, Faith DA, Bova GS, Goodfellow PJ, Isaacs WB: Methylation and mutational analysis of p27(kip1) in prostate carcinoma. Prostate 48: 248–253, 2001

    Article  PubMed  CAS  Google Scholar 

  172. Gibas Z, Becher R, Kawinski E, Horoszewicz J, Sandberg AA: A high-resolution study of chromosome changes in a human prostatic carcinoma cell line (LNCaP). Cancer Genet Cytogenet 11: 399–404, 1984

    Article  PubMed  CAS  Google Scholar 

  173. Nupponen NN, Hyytinen ER, Kallioniemi AH, Visakorpi T: Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization. Cancer Genet Cytogenet 101: 53–57, 1998

    Article  PubMed  CAS  Google Scholar 

  174. Melamed J, Einhorn JM, Ittmann MM: Allelic loss on chromosome 13q in human prostate carcinoma. Clin Cancer Res 3: 1867–1872, 1997

    PubMed  CAS  Google Scholar 

  175. Dong JT, Chen C, Stultz BG, Isaacs JT, Frierson HF, Jr: Deletion at 13q21 is associated with aggressive prostate cancers. Cancer Res 60: 3880–3883, 2000

    PubMed  CAS  Google Scholar 

  176. Afonso A, Emmert-Buck MR, Duray PH, Bostwick DG, Linehan WM, Vocke CD: Loss of heterozygosity on chromosome 13 is associated with advanced stage prostate cancer. J Urol 162: 922–926, 1999

    Article  PubMed  CAS  Google Scholar 

  177. Dong JT, Boyd JC, Frierson HF, Jr: Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate 49: 166–171, 2001

    Article  PubMed  CAS  Google Scholar 

  178. Hyytinen ER, Frierson HF, Boyd JC, Chung LWK, Dong JT: Three distinct regions of allelic loss at 13q14, 13q21–22, and 13q33 in prostate cancer. Genes Chromosomes Cancer 25: 108–114, 1999

    Article  PubMed  CAS  Google Scholar 

  179. Cooney KA, Wetzel JC, Merajver SD, Macoska JA, Singleton TP, Wojno KJ: Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res 56: 1142–1145, 1996

    PubMed  CAS  Google Scholar 

  180. Ittmann MM, Wieczorek R: Alterations of the retinoblastoma gene in clinically localized, stage B prostate adenocarcinomas. Hum Pathol 27: 28–34, 1996

    Article  PubMed  CAS  Google Scholar 

  181. Latil A, Cussenot O, Fournier G, Lidereau R: The BRCA2 gene is not relevant to sporadic prostate tumours. Int J Cancer 66: 282–283, 1996

    PubMed  CAS  Google Scholar 

  182. Bookstein R, Rio P, Madreperla SA, Hong F, Allred C, Grizzle WE, Lee WH: Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 87: 7762–7766, 1990

    PubMed  CAS  Google Scholar 

  183. Brooks JD, Bova GS, Isaacs WB: Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate 26: 35–39, 1995

    PubMed  CAS  Google Scholar 

  184. Kubota Y, Fujinami K, Uemura H, Dobashi Y, Miyamoto H, Iwasaki Y, Kitamura H, Shuin T: Retinoblastoma gene mutations in primary human prostate cancer. Prostate 27: 314–320, 1995

    PubMed  CAS  Google Scholar 

  185. Li CD, Larsson C, Futreal A, Lancaster J, Phelan C, Aspenblad U, Sundelin B, Liu Y, Ekinan P, Auer G, Bergerheim USR: Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene 16:481–487, 1998

    PubMed  CAS  Google Scholar 

  186. Ueda T, Emi M, Suzuki H, Komiya A, Akakura K, Ichikawa T, Watanabe M, Shiraishi T, Masai M, Igarashi T, Ito H: Identification of a 1-cM region of common deletion on 13q14 associated with human prostate cancer. Genes Chromosomes Cancer 24: 183–190, 1999

    Article  PubMed  CAS  Google Scholar 

  187. Yin Z, Spitz MR, Babaian RJ, Strom SS, Troncoso P, Kagan J: Limiting the location of a putative human prostate cancer tumor suppressor gene at chromosome 13q14.3. Oncogene 18: 7576–7583, 1999

    PubMed  CAS  Google Scholar 

  188. Chen C, Frierson HF, Jr, Haggerty PF, Theodorescu D, Gregory CW, Dong JT: An 800 kb region of deletion at 13q14 in human prostate and other carcinomas. Genomics 77: 135–144, 2001

    PubMed  CAS  Google Scholar 

  189. Schmidt U, Fiedler U, Pilarsky CP, Ehlers W, Fussel S, Haase M, Faller G, Sauter G, Wirth MP: Identification of a novel gene on chromosome 13 between BRCA-2 and RB-1. Prostate 47: 91–101, 2001

    Article  PubMed  CAS  Google Scholar 

  190. Chen C, Brabham WW, Stultz BG, Frierson HFJ, Barrett JC, Sawyers CL, Isaacs JT, Dong JT: Defining a common region of deletion at 13q21 in human cancers. Genes Chromosomes Cancer 31: 333–344, 2001

    PubMed  CAS  Google Scholar 

  191. Li C, Berx G, Larsson C, Auer G, Aspenblad U, Pan Y, Sundelin B, Ekman P, Nordenskjold M, van Roy F, Bergerheim US: Distinct deleted regions on chromosome segment 16q23–24 associated with metastases in prostate cancer. Genes Chromosomes Cancer 24: 175–182, 1999

    Article  PubMed  CAS  Google Scholar 

  192. Suzuki H, Komiya A, Emi M, Kuramochi H, Shiraishi T, Yatani R, Shimazaki J: Three distinct commonly deleted regions of chromosome arm 16q in human primary and metastatic prostate cancers. Genes Chromosomes Cancer 17: 225–233, 1996

    Article  PubMed  CAS  Google Scholar 

  193. Elo JP, Harkonen P, Kyllonen AP, Lukkarinen O, Poutanen M, Vihko R, Vihko P: Loss of heterozygosity at 16q24.1–q24.2 is significantly associated with metastatic and aggressive behavior of prostate cancer. Cancer Res 57: 3356–3359, 1997

    PubMed  CAS  Google Scholar 

  194. Latil A, Cussenot O, Fournier G, Driouch K, Lidereau R: Loss of heterozygosity at chromosome 16q in prostate adenocarcinoma: Identification of three independent regions. Cancer Res 57: 1058–1062, 1997

    PubMed  CAS  Google Scholar 

  195. Elo JP, Harkonen P, Kyllonen AP, Lukkarinen O, Vihko P: Three independently deleted regions at chromosome arm 16q in human prostate cancer: Allelic loss at 16q24.1–q24.2 is associated with aggressive behaviour of the disease, recurrent growth, poor differentiation of the tumour and poor prognosis for the patient. Br J Cancer 79: 156–160, 1999

    Article  PubMed  CAS  Google Scholar 

  196. Strup SE, Pozzatti RO, Florence CD, Emmert-Buck MR, Duray PH, Liotta LA, Bostwick DG, Linehan WM, Vocke CD: Chromosome 16 allelic loss analysis of a large set of microdissected prostate carcinomas. J Urol 162: 590–594, 1999

    PubMed  CAS  Google Scholar 

  197. Godfrey TE, Cher ML, Chhabra V, Jensen RH: Allelic imbalance mapping of chromosome 16 shows two regions of common deletion in prostate adenocarcinoma. Cancer Genet Cytogenet 98: 36–42, 1997

    Article  PubMed  CAS  Google Scholar 

  198. Osman I, Scher H, Dalbagni G, Reuter V, Zhang ZF, Cordon-Cardo C: Chromosome 16 in primary prostate cancer: A microsatellite analysis. Int J Cancer 71:580–584, 1997

    Article  PubMed  CAS  Google Scholar 

  199. Suarez BK, Lin J, Burmester JK, Broman KW, Weber JL, Banerjee TK, Goddard KA, Witte JS, Elston RC, Catalona WJ: A genome screen of multiplex sibships with prostate cancer. Am J Hum Genet 66: 933–944, 2000

    Article  PubMed  CAS  Google Scholar 

  200. Paris PL, Witte JS, Kupelian PA, Levin H, Klein EA, Catalona WJ, Casey G: Identification and fine mapping of a region showing a high frequency of allelic imbalance on chromosome 16q23.2 that corresponds to a prostate cancer susceptibility locus. Cancer Res 60: 3645–3649, 2000

    PubMed  CAS  Google Scholar 

  201. Cher ML, Ito T, Weidner N, Carroll PR, Jensen RH: Mapping of regions of physical deletion on chromosome 16q in prostate cancer cells by fluorescence in situ hybridization (FISH). J Urol 153: 249–254, 1995

    Article  PubMed  CAS  Google Scholar 

  202. Pan Y, Matsuyama H, Wang N, Yoshihiro S, Haggarth L, Li C, Tribukait B, Ekman P, Bergerheim US: Chromosome 16q24 deletion and decreased E-cadherin expression: Possible association with metastatic potential in prostate cancer. Prostate 36: 31–38, 1998

    Article  PubMed  CAS  Google Scholar 

  203. Chin RK, Hawkins AL, Isaacs WB, Griffin CA: E1A transformed normal human prostate epithelial cells contain a 16q deletion. Cancer Genet Cytogenet 103: 155–163, 1998

    Article  PubMed  CAS  Google Scholar 

  204. Paige AJ, Taylor KJ, Stewart A, Sgouros JG, Gabra H, Sellar GC, Smyth JF, Porteous DJ, Watson JE: A 700-kb physical map of a region of 16q23.2 homozygously deleted in multiple cancers and spanning the common fragile site FRA16D. Cancer Res 60: 1690–1697, 2000

    PubMed  CAS  Google Scholar 

  205. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM: WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3–24.1, a region frequently affected in breast cancer. Cancer Res 60: 2140–2145, 2000

    PubMed  CAS  Google Scholar 

  206. Murant SJ, Rolley N, Phillips SM, Stower M, Maitland NJ: Allelic imbalance within the E-cadherin gene is an infrequent event in prostate carcinogenesis. Genes Chromosomes Cancer 27: 104–109, 2000

    Article  PubMed  CAS  Google Scholar 

  207. Konig JJ, Teubel W, Kamst E, Romijn JC, Schroder FH, Hagemeijer A: Cytogenetic analysis of 39 prostate carcinomas and evaluation of short-term tissue culture techniques. Cancer Genet Cytogenet 101: 116–122, 1998

    PubMed  CAS  Google Scholar 

  208. Brothman AR, Steele MR, Williams BJ, Jones E, Odelberg S, Albertsen HM, Jorde LB, Rohr LR, Stephenson RA: Loss of chromosome 17 loci in prostate cancer detected by polymerase chain reaction quantitation of allelic markers. Genes Chromosomes Cancer 13: 278–284, 1995

    PubMed  CAS  Google Scholar 

  209. Gao X, Zacharek A, Salkowski A, Grignon DJ, Sakr W, Porter AT, Honn KV: Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res 55: 1002–1005, 1995

    PubMed  CAS  Google Scholar 

  210. Gao X, Zacharek A, Grignon DJ, Sakr W, Powell IJ, Porter AT, Honn KV: Localization of potential tumor suppressor loci to a <2Mb region on chromosome 17q in human prostate cancer. Oncogene 11: 1241–1247, 1995

    PubMed  CAS  Google Scholar 

  211. Williams BJ, Jones E, Zhu XL, Steele MR, Stephenson RA, Rohr LR, Brothman AR: Evidence for a tumor suppressor gene distal to BRCA1 in prostate cancer. J Urol 155: 720–725, 1996

    PubMed  CAS  Google Scholar 

  212. Ueda T, Komiya A, Emi M, Suzuki H, Shiraishi T, Yatani R, Masai M, Yasuda K, Ito H: Allelic losses on 18q21 are associated with progression and metastasis in human prostate cancer. Genes Chromosomes Cancer 20: 140–147, 1997

    Article  PubMed  CAS  Google Scholar 

  213. Padalecki SS, Troyer DA, Hansen MF, Saric T, Schneider BG, O’Connell P, Leach RJ: Identification of two distinct regions of allelic imbalance on chromosome 18Q in metastatic prostate cancer. Int J Cancer 85: 654–658, 2000

    Article  PubMed  CAS  Google Scholar 

  214. Yin Z, Babaian RJ, Troncoso P, Strom SS, Spitz MR, Caudell JJ, Stein JD, Kagan J: Limiting the location of putative human prostate cancer tumor suppressor genes on chromosome 18q. Oncogene 20: 2273–2280, 2001

    PubMed  CAS  Google Scholar 

  215. Padalecki SS, Johnson-Pais TL, Killary AM, Leach RJ: Chromosome 18 suppresses the tumorigenicity of prostate cancer cells. Genes Chromosomes Cancer 30: 221–229, 2001

    Article  PubMed  CAS  Google Scholar 

  216. Brothman AR, Peehl DM, Patel AM, McNeal JE: Frequency and pattern of karyotypic abnormalities in human prostate cancer. Cancer Res 50: 3795–3803, 1990

    PubMed  CAS  Google Scholar 

  217. Limon J, Lundgren R, Elfving P, Heim S, Kristoffersson U, Mandahl N, Mitelman F: Double minutes in two primary adenocarcinomas of the prostate. Cancer Genet Cytogenet 39: 191–194, 1989

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dong, JT. (2002). Chromosomal deletions and tumor suppressor genes in prostate cancer. In: Cher, M.L., Raz, A., Honn, K.V. (eds) Prostate Cancer: New Horizons in Research and Treatment. Developments in Oncology, vol 81. Springer, Boston, MA. https://doi.org/10.1007/0-306-48143-X_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48143-X_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7352-6

  • Online ISBN: 978-0-306-48143-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics