Skip to main content

Prostate carcinoma skeletal metastases: Cross-talk between tumor and bone

  • Chapter
Prostate Cancer: New Horizons in Research and Treatment

Part of the book series: Developments in Oncology ((DION,volume 81))

  • 145 Accesses

Abstract

The majority of men with progressive prostate cancer develop metastases with the skeleton being the most prevalent metastatic site. Unlike many other tumors that metastasize to bone and form osteolytic lesions, prostate carcinomas form osteoblastic lesions. However, histological evaluation of these lesions reveals the presence of underlying osteoclastic activity. These lesions are painful, resulting in diminished quality of life of the patient. There is emerging evidence that prostate carcinomas establish and thrive in the skeleton due to cross-talk between the bone microenvironment and tumor cells. Bone provides chemotactic factors, adhesion factors, and growth factors that allow the prostate carcinoma cells to target and proliferate in the skeleton. The prostate carcinoma cells reciprocate through production of osteoblastic and osteolytic factors that modulate bone remodeling. The prostate carcinoma-induced osteolysis promotes release of the many growth factors within the bone extracellular matrix thus f urther enhancing the progression of the metastases. This review focuses on the interaction between the bone and the prostate carcinoma cells that allow for development and progression of prostate carcinoma skeletal metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landis SH, Murray T, Bohlen S, Wingo PA: Cancer statistics, 1999. CA Cancer J Clin 49: 8–31, 1999

    Article  PubMed  CAS  Google Scholar 

  2. Abrams H, Spiro R, Goldstein N: Metastases in carcinoma. Cancer 3: 74–85, 1950

    PubMed  CAS  Google Scholar 

  3. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC, Mihatsch MJ: Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31: 578–583, 2000

    Article  PubMed  CAS  Google Scholar 

  4. Rana A, Chisholm GD, Khan M, Sekharjit SS, Merrick MV, Elton RA: Patterns of bone metastasis and their prognostic significance in patients with carcinoma of the prostate. Br J Urol 72: 933–936, 1993

    PubMed  CAS  Google Scholar 

  5. Galasko CS: Skeletal metastases. Clin Orthop 1986: 1830, 1986

    Google Scholar 

  6. Coleman RE: Skeletal complications of malignancy. Cancer 80: 1588–1594, 1997

    PubMed  CAS  Google Scholar 

  7. Moul JW, Lipo DR: Prostate cancer in the late 1990s: Hormone refractory disease options. Urol Nurs 19: 125–131; quiz 132–123, 1999

    PubMed  CAS  Google Scholar 

  8. Szostak MJ, Kyprianou N: Radiation-induced apoptosis: predictive and therapeutic significance in radiotherapy of prostate cancer (review). Oncol Rep 7: 699–706, 2000

    PubMed  CAS  Google Scholar 

  9. Papapoulos SE, Hamdy NA, van der Pluijm G: Bisphosphonates in the management of prostate carcinoma metastatic to the skeleton. Cancer 88: 3047–3053, 2000

    Article  PubMed  CAS  Google Scholar 

  10. Paget S: The distribution of secondary growth in cancer of the breast. Lancet 1: 571–573, 1829

    Google Scholar 

  11. Tsingotjidou AS, Zotalis G, Jackson KR, Sawyers C, Puzas JE, Hicks DG, Reiter R, Lieberman JR: Development of an animal model for prostate cancer cell metastasis to adult human bone. Anticancer Res 21: 971–978, 2001

    PubMed  CAS  Google Scholar 

  12. Magro C, Orr FW, Manishen WJ, Sivananthan K, Mokashi SS: Adhesion, chemotaxis, and aggregation of Walker carcinosarcoma cells in response to products of resorbing bone. J Natl Cancer Inst 74: 829–838, 1985

    PubMed  CAS  Google Scholar 

  13. Orr W, Varani J, Gondex MK, Ward PA, Mundy GR: Chemotactic responses of tumor cells to products of resorbing bone. Science 203: 176–179, 1979

    PubMed  CAS  Google Scholar 

  14. Orr FW, Varani J, Gondek MD, Ward PA, Mundy GR: Partial characterization of a bone-derived chemotactic factor for tumor cells. Am J Pathol 99: 43–52, 1980

    PubMed  CAS  Google Scholar 

  15. Wass JA, Varani J, Piontek GE, Ward PA, Orr FW: Responses of normal and malignant cells to collagen, collagen-derived peptides and the C5-related tumor cell chemotactic peptide. Cell Differ 10: 329–332, 1981

    Article  PubMed  CAS  Google Scholar 

  16. Jacob K, Webber M, Benayahu D, Kleinman HK: Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res 59: 4453–4457, 1999

    PubMed  CAS  Google Scholar 

  17. Hullinger TG, McCauley LK, DeJoode ML, Somerman MJ: Effect of bone proteins on human prostate cancer cell lines in vitro. Prostate 36: 14–22, 1998

    Article  PubMed  CAS  Google Scholar 

  18. Rajan R, Vanderslice R, Kapur S, Lynch J, Thompson R, Djakiew D: Epidermal growth factor (EGF) promotes chemomigration of a human prostate tumor cell line, and EGF immunoreactive proteins are present at sites of metastasis in the stroma of lymph nodes and medullary bone. Prostate 28: 1–9, 1996

    Article  PubMed  CAS  Google Scholar 

  19. Somlyo AV, Bradshaw D, Ramos S, Murphy C, Myers CE, Somlyo AP: Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun 269: 652–659, 2000

    Article  PubMed  CAS  Google Scholar 

  20. Baggiolini M: Chemokines and leukocyte traffic. Nature 392: 565–568, 1998

    Article  PubMed  CAS  Google Scholar 

  21. Rossi D, Zlotnik A: The biology of chemokines and their receptors. Annu Rev Immunol 18: 217–242, 2000

    Article  PubMed  CAS  Google Scholar 

  22. Strieter RM: Chemokines: Notjust leukocyte chemoattractants in the promotion of cancer. Nat Immunol 2: 285–286, 2001

    Article  PubMed  CAS  Google Scholar 

  23. Aiuti A, Tavian M, Cipponi A, Ficara F, Zappone E, Hoxie J, Peault B, Bordignon C: Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. Eur J Immunol 29: 1823–1831, 1999

    Article  PubMed  CAS  Google Scholar 

  24. Kim CH, Broxmeyer HE: SLC/exodus2/6Ckine/TCA4 induces chemotaxis of hematopoietic progenitor cells: Differential activity of ligands of CCR7, CXCR3, orCXCR4 in chemotaxis vs. suppression of progenitor proliferation. J Leukoc Biol 66: 455–461, 1999

    PubMed  CAS  Google Scholar 

  25. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T: Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382: 635–638, 1996

    Article  PubMed  CAS  Google Scholar 

  26. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T: Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283: 845–848, 1999

    Article  PubMed  CAS  Google Scholar 

  27. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, Arenzana-Seisdedos F, Magerus A, Caruz A, Fujii N, Nagler A, Lahav M, Szyper-Kravitz M, Zipori D, Lapidot T: Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106: 1331–1339, 2000

    PubMed  CAS  Google Scholar 

  28. Imai K, Kobayashi M, Wang J, Shinobu N, Yoshida H, Hamada J, Shindo M, Higashino F, Tanaka J, Asaka M, Hosokawa M: Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Br J Haematol 106: 905–911, 1999

    Article  PubMed  CAS  Google Scholar 

  29. Moore BB, Arenberg DA, Stoy K, Morgan T, Addison CL, Morris SB, Glass M, Wilke C, Xue YY, Sitterding S, Kunkel SL, Burdick MD, Strieter RM: Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells. Am J Pathol 154: 1503–1512, 1999

    PubMed  CAS  Google Scholar 

  30. Reiland J, Furcht LT, McCarthy JB: CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate 41: 78–88, 1999

    Article  PubMed  CAS  Google Scholar 

  31. Gupta SK, Pillarisetti K: Cutting edge: CXCR4-Lo: Molecular cloning and functional expression of a novel human CXCR4 splice variant. J Immunol 163: 2368–2372, 1999

    PubMed  CAS  Google Scholar 

  32. Sehgal A, Ricks S, Boynton AL, Warrick J, Murphy GP: Molecular characterization of CXCR-4: A potential brain tumor-associated gene. J Surg Oncol 69: 239–248, 1998

    PubMed  CAS  Google Scholar 

  33. Mohle R. Failenschmid C, Bautz F, Kanz L: Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13: 1954–1959, 1999

    PubMed  CAS  Google Scholar 

  34. Taichman R, McCauley L, Taichman N: Use of the SDF-1/CXCR4 pathway in prostate cancer metastasis to bone. Blood 96: 571a, 2000

    Google Scholar 

  35. Muller C, Homey B, Sato H, Ge N, Catron D, Buchanan M, McClanahan T, Murphy E, Yuan W, Wagners S, Barrera J, Mohar A, Verastegui E, Zlotnik A: Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56, 2001

    PubMed  CAS  Google Scholar 

  36. Liotta LA: An attractive force in metastasis. Nature 410: 24–25, 2001

    Article  PubMed  CAS  Google Scholar 

  37. Miyasaka M: Cancer metastasis and adhesion molecules. Clin Orthop 312: 10–18, 1995

    PubMed  Google Scholar 

  38. Orr FW, Wang HH, Lafrenie RM, Scherbarth S, Nance DM: Interactions between cancer cells and the endothelium in metastasis. J Pathol 190: 310–329, 2000

    Article  PubMed  CAS  Google Scholar 

  39. Pauli BU, Augustin-Voss HG, El-Sabban ME, Johnson RC, Hammer DA: Organ-preference of metastasis. Cancer and Metastasis Rev 9: 175–189, 1990

    CAS  Google Scholar 

  40. Deroock IB, Pennington ME, Sroka TC, Lam KS, Bowden GT, Bair EL, Cress AE: Synthetic peptides inhibit adhesion of human tumor cells to extracellular matrix proteins. Cancer Res 61: 3308–3313, 2001

    PubMed  CAS  Google Scholar 

  41. vander Pluijm G, Vloedgraven H, Papapoulos S, Lowik C, Grzesik W, Kerr J, Robey PG: Attachment characteristics and involvement of integrins in adhesion of breast cancer cell lines to extracellular bone matrix components. Lab Inves 77: 665–675, 1997

    Google Scholar 

  42. Lehr JE, Pienta KJ: Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line (sec comments). J Natl Cancer Inst 90: 118–123, 1998

    Article  PubMed  CAS  Google Scholar 

  43. Cooper CR, Pienta KJ: Cell adhesion and chemotaxis in prostate cancer metastasis to bone: a minireview. Prostate Canc Prostatic Dis 3: 6–12, 2000

    CAS  Google Scholar 

  44. Cooper CR, Mclean L, Walsh M, Taylor J, Hayasaka S, Bhatia J, Pienta KJ: Preferential adhesion to prostate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to extracellular matrix components in vitro. Clin Cancer Res 6: 4839–4847, 2000

    PubMed  CAS  Google Scholar 

  45. Scott LJ, Clarke NW, George NJ, Shanks JH, Testa NG, Lang SH: Interactions of human prostatic epithelial cells with bone marrow endothelium: binding and invasion. Br J Cancer 84: 1417–1423, 2001

    Article  PubMed  CAS  Google Scholar 

  46. Pienta KJ, Naik H, Akhtar A, Yamazaki K, Replogle TS, Lehr J, Donat TL, Tait L, Hogan V, Raz A: Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J Natl Cancer Inst 87: 348–353, 1995

    PubMed  CAS  Google Scholar 

  47. Romanov VI, Goligorsky MS: RGD-recognizing integrins mediate interactions of human prostate carcinoma cells with endothelial cells in vitro. Prostate 39: 108–118, 1999

    Article  PubMed  CAS  Google Scholar 

  48. Cooper CR, McLean L, Mucci NR, Poncza P, Pienta KJ: Prostate cancer cell adhesion to quiescent endothelial cells is not mediated by beta-1 integrin subunit. Anticancer Res 20: 4159–4162, 2000

    PubMed  CAS  Google Scholar 

  49. Simpson MA, Reiland J, Burger SR, Furch LT, Spice AP, Theodore R. Oegema J, McCarthy JB: Hyaluronan synthase elevation in metastatic prostate carcinoma cells correlates with hyaluronan surface retention, a prerequisite-for rapid adhesion to bone marrow endothelial cells. J Biol Chem 276: 17949–17957, 2001

    PubMed  CAS  Google Scholar 

  50. Kierszenbaum AL, Rivkin E, Chang PL, Tres LL, Olsson CA: Galactosyl receptor, acell surface C-type lectin of normal and tumoral prostate epithelial cells withbinding affinity to endothelial cells. Prostate 43: 175–183, 2000

    Article  PubMed  CAS  Google Scholar 

  51. Kostenuik PJ, Sanchez-Sweatman O, Orr FW, Singh G: Bone cell matrix promotes the adhesion of human prostatic carcinoma cells via the alpha 2 beta 1 integrin. Clin Exp Metastasis 14: 19–26, 1996

    PubMed  CAS  Google Scholar 

  52. Festuccia C, Bologna M, Gravina GL, Guerra F, Angelucci A, Villonava I, Millimaggi D, Teti A: Osteoblast conditioned media contained TGF-beta1 and modulat the migration of prostate tumor cells and their interactions with extracellular matrix components. Int J Cancer 81: 395–403, 1999

    Article  PubMed  CAS  Google Scholar 

  53. Kostenuik PJ, Singh G, Orr FW: Transforming growth factor-beta upregulates the integrin-mediated adhesion of human prostatic carcinoma cells to type I collagen. Clin Exp Metastasis 15: 41–52, 1997

    PubMed  CAS  Google Scholar 

  54. Martinez J, Fuentes M, Cambiazo V, Santibanez JF: Bone extracellular matrix stimulates invasiveness of estrogen-responsive human mammary MCF-7 cells. Int J Cancer 83: 278–282, 1999

    PubMed  CAS  Google Scholar 

  55. Linkhart TA, Mohan S, Baylink DJ: Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19: 1S–12S, 1996

    Article  PubMed  CAS  Google Scholar 

  56. Manishen WJ, Sivananthan K, Orr FW: Resorbing bone stimulates tumor cell growth. A role for the host microenvironment in bone metastasis. Am J Pathol 123: 39–45, 1986

    PubMed  CAS  Google Scholar 

  57. Ritchie CK, Andrews LR, Thomas KG, Tindall DJ, Fitzpatrick LA: The effects of growth factors associated with osteoblasts on prostate carcinoma proliferation and chemotaxis: Implications for the development of metastatic disease. Endocrinology 138: 1145–1150, 1997

    Article  PubMed  CAS  Google Scholar 

  58. Song Z, Powell WC, Kasahara N, van Bokhoven A, Miller GJ, Roy-Burman P: The effect of fibroblast growth factor 8, isoform b, on the biology of prostate carcinoma cells and their interaction with stromal cells. Cancer Res 60: 6730–6736, 2000

    PubMed  CAS  Google Scholar 

  59. Desruisseau S, Ghazarossian-Ragni E, Chinot O, Martin PM: Divergent effect of TGFbeta1 on growth and proteolytic modulation of human prostatic-cancer cell lines. Int J Cancer 66: 796–801, 1996

    Article  PubMed  CAS  Google Scholar 

  60. Djavan B, Waldert M, Seitz C, Marberger M: Insulin-like growth factors and prostate cancer. World J Urol 19: 225–233, 2001

    Article  PubMed  CAS  Google Scholar 

  61. Peehl DM, Cohen P, Rosenfeld RG: The insulin-like growth factor system in the prostate. World J Urol 13: 306–311, 1995

    PubMed  CAS  Google Scholar 

  62. Cohen P, Peehl DM, Lamson G, Rosenfeld RG: Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins in primary cultures of prostate epithelial cells. J Clin Endocrinol Metab 73: 401–107, 1991

    PubMed  CAS  Google Scholar 

  63. Festuccia C, Giunciuglio D, Guerra F, Villanova I, Angelucci A, Manduca P, Teti A, Albini A, Bologna M: Osteoblasts modulate secretion of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in human prostate cancer cells promoting migration and matrigel invasion. Oncol Res 11: 17–31, 1999

    PubMed  CAS  Google Scholar 

  64. Lang SH, Clarke NW, George NJ, Allen TD, Testa NG: Interaction of prostate epithelial cells from benign and malignant tumor tissue withbone-marrowstroma. Prostate 34: 203–213, 1998

    Article  PubMed  CAS  Google Scholar 

  65. Gleave ME, Hsieh JT, von Eschenbach AC, Chung LW: Prostate and bone fibroblasts induce human prostate cancer growth in vivo: Implications for bidirectional tumorstromal cell interaction in prostate carcinoma growth and metastasis. J Urol 147: 1151–1159, 1992

    PubMed  CAS  Google Scholar 

  66. Gleave M, Hsieh JT, Gao CA, von Eschenbach AC, Chung LW: Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 51: 3753–3761, 1991

    PubMed  CAS  Google Scholar 

  67. Yamashita K, Aoki Y, Hiroshima K: Metastatic epidural bony tumor causing spinal cord compression: A case report. ClinOrthop 1996: 231–235, 1996

    Google Scholar 

  68. Munk PL, Poon PY, O’Connell JX, Janzen D, Coupland D, Kwong JS, Gelmon K, Worsley D: Osteoblastic metastases from breast carcinoma with false-negative bone scan. Skeletal Radiol 26: 434–437, 1997

    PubMed  CAS  Google Scholar 

  69. Berruti A, Piovesan A, Torta M, Raucci CA, Gorzegno G, Paccotti P. Dogliotti L, Angeli A: Biochemical evaluation of bone turnover in cancer patients with bone metastases: Relationship with radiograph appearances and disease extension. Br J Cancer 73: 1581–1587, 1996

    PubMed  CAS  Google Scholar 

  70. Vinholes J, Coleman R, Eastell R: Effects of bone metastases on bone metabolism: Implications for diagnosis, imaging and assessment of response to cancer treatment. Cancer Treat Rev 22: 289–331, 1996

    Article  PubMed  CAS  Google Scholar 

  71. Urwin GH, Percival RC, Harris S, Beneton MN, Williams JL, Kanis JA: Generalised increase in bone resorption in carcinoma of the prostate. Br J Urol 57: 721–723, 1985

    PubMed  CAS  Google Scholar 

  72. Roudier M, Sherrard D, True L, Ott-Ralp S, Meligro C, MBerrie M, Soo C, Felise D, Quinn JE, Vessella R: Heterogenous bone histomorphometric patterns in metastatic prostate cancer. J Bone Miner Res 15S1: S567, 2000

    Google Scholar 

  73. Clarke NW, McClure J, George NJ: Osteoblast function and osteomalacia in metastatic prostate cancer. Eur Urol 24: 286–290, 1993

    PubMed  CAS  Google Scholar 

  74. Charhon SA, Chapuy MC, Delvin EE, Valentin-Opran A, Edouard CM, Meunier PJ: Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer 51: 918–924, 1983

    PubMed  CAS  Google Scholar 

  75. Carlin BI, Andriole GL: The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer 88: 2989–2994, 2000

    Article  PubMed  CAS  Google Scholar 

  76. Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C, Mizokami A, Fu Z, Westman J, Keller ET: Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107: 1235–1244, 2001

    PubMed  CAS  Google Scholar 

  77. Maeda H, Koizumi M, Yoshimura K, Yamauchi T, Kawai T, Ogata E: Correlation between bone metabolic markers and bone scan in prostatic cancer. J Urol 157: 539–543, 1997

    PubMed  CAS  Google Scholar 

  78. Demers LM, Costa L, Lipton A: Biochemical markers and skeletal metastases. Cancer 88: 2919–2926, 2000

    Article  PubMed  CAS  Google Scholar 

  79. Karsenty G: Bone formation and factors affecting this process. Matrix Biol 19: 85–89, 2000

    Article  PubMed  CAS  Google Scholar 

  80. Parfitt AM: The mechanism of coupling: A role for the vasculature. Bone 26: 319–323, 2000

    Article  PubMed  CAS  Google Scholar 

  81. Boyce BF, Hughes DE, Wright KR, Xing L, Dai A: Recent advances in bone biology provide insight into the pathogenesis of bone diseases. Lab Invest 79: 83–94, 1999

    PubMed  CAS  Google Scholar 

  82. Rosol TJ: Pathogenesis of bone metastases: Role of tumorrelated proteins. J Bone Miner Res 15: 844–850, 2000

    PubMed  CAS  Google Scholar 

  83. Blomme EA, Dougherty KM, Pienta KJ, Capen CC, Rosol TJ, McCauley LK: Skeletal metastasis of prostate adenocarcinoma in rats: Morphometric analysis and role of parathyroid hormone-related protein. Prostate 39: 187–197, 1999

    Article  PubMed  CAS  Google Scholar 

  84. Yang J, Fizazi K, Peleg S, Sikes CR, Raymond AK, Jamal N, Hu M, Olive M, Martinez LA, Wood CG, Logothetis CJ, Karsenty G, Navone NM: Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. Cancer Res 61: 5652–5659, 2001

    PubMed  CAS  Google Scholar 

  85. Lin DL, Tarnowski CP, Zhang J, Dai J, Rohn E, Patel AH, Morris MD, Keller ET: Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate 47: 212–221, 2001

    Article  PubMed  CAS  Google Scholar 

  86. Boyce BF, Yoneda T, Guise TA: Factors regulating the growth of metastatic cancer in bone. Endocr Relat Cancer 6: 333–347, 1999

    Article  PubMed  CAS  Google Scholar 

  87. Deftos LJ: Prostate carcinoma: Production of bioactive factors. Cancer 88: 3002–3008, 2000

    Article  PubMed  CAS  Google Scholar 

  88. Yoneda T: Cellular and molecular mechanisms of breast and prostate cancer metastasis to bone. Eur J Cancer 34: 240–245, 1998

    Article  PubMed  CAS  Google Scholar 

  89. Goltzman D, Bolivar I, Rabbani SA: Studies on the pathogenesis of osteoblastic metastases by prostate cancer. Adv Exp Med Biol 324: 165–171, 1992

    PubMed  CAS  Google Scholar 

  90. Koutsilieris M, Rabbani SA, Goltzman D: Selective osteoblast mitogens can be extracted from prostatic tissue. Prostate 9: 109–115, 1986

    PubMed  CAS  Google Scholar 

  91. Autzen P, Robson CN, Bjartell A, Malcolm AJ, Johnson MI, Neal DE, Hamdy FC: Bone morphogenetic protein 6 in skeletal metastases from prostate cancer and other common human malignancies. Br J Cancer 78: 1219–1223, 1998

    PubMed  CAS  Google Scholar 

  92. Harris SE, Harris MA, Mahy P, Wozney J, Feng JQ, Mundy GR: Expression of bone morphogenetic protein messenger RNAs by normal rat and human prostate and prostate cancer cells. Prostate 24: 204–211, 1994

    PubMed  CAS  Google Scholar 

  93. Hullinger TG, Taichman RS, Linseman DA, Somerman MJ: Secretory products from PC-3 and MCF-7 tumor cell lines upregulate osteopontin in MC3T3-E1 cells. J Cell Biochem 78: 607–616, 2000

    Article  PubMed  CAS  Google Scholar 

  94. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, Simons JW: Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1: 944–949, 1995

    PubMed  CAS  Google Scholar 

  95. Kimura G, Sugisaki Y, Masugi Y, Nakazawa N: Calcification in human osteoblasts cultured in medium conditioned by the prostatic cancer cell line PC-3 and prostatic acid phosphatase. Urol Int 48: 25–30, 1992

    Article  PubMed  CAS  Google Scholar 

  96. Karaplis AC, Vautour L: Parathyroid hormone-related peptide and the parathyroid hormone/parathyroid hormonerelated peptide receptor in skeletal development. Curr Opin Nephrol Hypertens 6: 308–313, 1997

    PubMed  CAS  Google Scholar 

  97. Cornish J, Callon KE, Lin C, Xiao C, Moseley JM, Reid IR: Stimulation of osteoblast proliferation by C-terminal fragments of parathyroid hormone-related protein. J Bone Miner Res 14: 915–922, 1999

    PubMed  CAS  Google Scholar 

  98. Rabbani SA, Gladu J, Mazar AP, Henkin J, Goltzman D: Induction in human osteoblastic cells (SaOS2) of the early response genes fos, jun, and myc by the amino terminal fragment (ATF) of urokinase. J Cell Physiol 172: 137–145, 1997

    Article  PubMed  CAS  Google Scholar 

  99. Killian CS, Corral DA, Kawinski E, Constantine RI: Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-beta and aproteolytic modulation of cell adhesion receptors. Biochem Biophys Res Commun 192: 940–947, 1993

    Article  PubMed  CAS  Google Scholar 

  100. Honore P, Luger NM, Sabino MA, Schwei MJ, Rogers SD, Mach DB, O’Keefe PF, Ramnaraine ML, Clohisy DR, Mantyh PW: Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 6: 521–528, 2000

    PubMed  CAS  Google Scholar 

  101. Guise TA: Molecular mechanisms of osteolytic bone metastases. Cancer 88: 2892–2898, 2000

    Article  PubMed  CAS  Google Scholar 

  102. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Boyle WJ: Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 89: 309–319, 1997

    Article  PubMed  CAS  Google Scholar 

  103. Chiao JW, Moonga BS, Yang YM, Kancherla R, Mittelman A, Wu-Wong JR, Ahmed T: Endothelin-1 from prostate cancer cells is enhanced by bone contact which blocks osteoclastic bone resorption. Br J Cancer 83: 360–365, 2000

    Article  PubMed  CAS  Google Scholar 

  104. Laitinen M, Marttinen A, Aho AJ, Lindholm TS: Bone morphogenetic protein in bone neoplasms: Comparison of different detection methods. Eur Surg Res 30: 168–174, 1998

    Article  PubMed  CAS  Google Scholar 

  105. Raval P, Hsu HH, Schneider DJ, Sarras MP Jr., Masuhara K, Bonewald LF, Anderson HC: Expression of bone morphogenetic proteins by osteoinductive and non-osteoinductive human osteosarcoma cells. J Dent Res 75: 1518–1523, 1996

    PubMed  CAS  Google Scholar 

  106. Wlosarski K, Reddi AH: Tumor cells stimulate in vivo periosteal bone formation. Bone Miner 2: 185–192, 1987

    Google Scholar 

  107. Strewler GJ: The physiology of parathyroid hormone-related protein. N Engl J Med 342: 177–185, 2000

    Article  PubMed  CAS  Google Scholar 

  108. Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg HM: Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest 104: 399–407, 1999

    PubMed  CAS  Google Scholar 

  109. Amizuka N, Henderson JE, White JH, Karaplis AC, Goltzman D, Sasaki T, Ozawa H: Recent studies on the biological action of parathyroid hormone (PTH)-related peptide (PTHrP) and PTH/PTHrP receptor in cartilage and bone. Histol Histopathol 15: 957–970, 2000

    PubMed  CAS  Google Scholar 

  110. Iwamura M, Abrahamsson PA, Schoen S, Cockett AT, Deftos LJ: Immunoreactive parathyroid hormone-related protein is present in human seminal plasma and is of prostate origin. J Androl 15: 410–414, 1994

    PubMed  CAS  Google Scholar 

  111. Iwamura M, di Sant’Agnese PA, Wu G, Benning CM, Cockett AT, Deftos LJ, Abrahamsson PA: Immunohistochemical localization of parathyroid hormone-related protein in human prostate cancer. Cancer Res 53: 1724–1726, 1993

    PubMed  CAS  Google Scholar 

  112. Asadi F, Farraj M, Sharifi R, Malakouti S, Antar S, Kukreja S: Enhanced expression of parathyroid hormonerelated protein in prostate cancer as compared with benign prostatic hyperplasia. Hum Pathol 27: 1319–1323, 1996

    Article  PubMed  CAS  Google Scholar 

  113. Iwamura M, Gershagen S, Lapets O, Moynes R, Abrahamsson PA, Cockett AT, Deftos LJ, di Sant’Agnese PA: Immunohistochemical localization of parathyroid hormone-related protein in prostatic intraepithelial neoplasia. Hum Pathol 26: 797–801, 1995

    Article  PubMed  CAS  Google Scholar 

  114. Dougherty KM, Blomme EA, Koh AJ, Henderson JE, Pienta KJ, Rosol TJ, McCauley LK: Parathyroid hormone-related protein as a growth regulator of prostate carcinoma. Cancer Res 59: 6015–6022, 1999

    PubMed  CAS  Google Scholar 

  115. Burton PB, Moniz C, Knight DE: Parathyroid hormone related peptide can function as an autocrine growth factor in human renal cell carcinoma. Biochem Biophys Res Commun 167: 1134–1138, 1990

    Article  PubMed  CAS  Google Scholar 

  116. Bouizar Z, Spyratos F, De vernejoul MC: The parathyroid hormone-related protein (PTHrP) gene: use of downstream TATA promotor and PTHrP 1-139 coding pathways in primary breast cancers vary with the occurrence of bone metastasis. J Bone Miner Res 14: 406–414, 1999

    PubMed  CAS  Google Scholar 

  117. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA: TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103: 197–206, 1999

    PubMed  CAS  Google Scholar 

  118. Iwamura M, Abrahamsson PA, Foss KA, Wu G, Cockett AT, Deftos LJ: Parathyroid hormone-related protein: a potential autocrine growth regulator in human prostate cancer cell lines. Urology 43: 675–679, 1994

    PubMed  CAS  Google Scholar 

  119. Henderson JE, Amizuka N, Warshawsky H, Biasotto D, Lanske BM, Goltzman D, Karaplis AC: Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death. Mol Cell Biol 15: 4064–4075, 1995

    PubMed  CAS  Google Scholar 

  120. Aarts MM, Levy D, He B, Stregger S, Chen T, Richard S, Henderson JE: Parathyroid hormone-related protein interacts with RNA. J Biol Chem 274: 4832–4838, 1999

    Article  PubMed  CAS  Google Scholar 

  121. Ye Y, Falzon M, Seitz PK, Cooper CW: Overexpression of parathyroid hormone-related protein promotes cell growth in the rat intestinal cell line IEC-6. Regul Pept 99: 169–174, 2001

    Article  PubMed  CAS  Google Scholar 

  122. Massfelder T, Dann P, Wu TL, Vasavada R, Helwig JJ, Stewart AF: Opposing mitogenic and anti-mitogenic actions of parathyroid hormone-related protein in vascular smooth muscle cells: a critical role for nuclear targeting. Proc Natl Acad Sci USA 94: 13630–13635, 1997

    Article  PubMed  CAS  Google Scholar 

  123. Cramer SD, Chen Z, Peehl DM: Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: Inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts. J Urol 156: 526–531, 1996

    PubMed  CAS  Google Scholar 

  124. Ye Y, Seitz PK, Cooper CW: Parathyroid hormone-related protein overexpression in the human colon cancer cell line HT-29 enhances adhesion of the cells to collagen type I. Regul Pept 101: 19–23, 2001

    Article  PubMed  CAS  Google Scholar 

  125. Stjernquist M: Endothelins-vasoactive peptides and growth factors. Cell Tissue Res 292: 1–9, 1998

    Article  PubMed  CAS  Google Scholar 

  126. Takuwa Y, Ohue Y, Takuwa N, Yamashita K: Endothelin-1 activates phospholipase C and mobilizes Ca2+ from extra-and intracellular pools in osteoblastic cells. Am J Physiol 257: E797–803, 1989

    PubMed  CAS  Google Scholar 

  127. Hiruma Y, Inoue A, Shiohama A, Otsuka E, Hirose S, Yamaguchi A, Hagiwara H: Endothelins inhibit the mineralization of osteoblastic MC3T3-E1 cells through the A-type endothelin receptor. Am J Physiol 275: R1099–1105, 1998

    PubMed  CAS  Google Scholar 

  128. Zaidi M, Alam AS, Bax BE, Shankar VS, Bax CM, Gill JS, Pazianas M, Huang CL, Sahinoglu T, Moonga BS, et al.: Role of the endothelial cell in osteoclast control: New perspectives. Bone 14: 97–102, 1993

    Article  PubMed  CAS  Google Scholar 

  129. Tatrai A, Foster S, Lakatos P, Shankar G, Stern PH: Endothelin-1 actions on resorption, collagen and noncollagen protein synthesis, and phosphatidylinositol turnover in bone organ cultures. Endocrinology 131: 603–607, 1992

    Article  PubMed  CAS  Google Scholar 

  130. Shioide M, Noda M: Endothelin modulates osteopontin and osteocalcin messenger ribonucleic acid expression in rat osteoblastic osteosarcoma cells. J Cell Biochem 53: 176–180, 1993

    Article  PubMed  CAS  Google Scholar 

  131. Kasperk CH, Borcsok I, Schairer HU, Schneider U, Nawroth PP, Niethard FU, Ziegler R: Endothelin-1 is a potent regulator of human bone cell metabolism in vitro. Calcif Tissue Int 60: 368–374, 1997

    Article  PubMed  CAS  Google Scholar 

  132. Tsukahara H, Hori C, Hiraoka M, Yamamoto K, Ishii Y, Mayumi M: Endothelin subtype A receptor antagonist induces osteopenia in growing rats. Metabolism 47: 1403–1407, 1998

    PubMed  CAS  Google Scholar 

  133. Langenstroer P, Tang R, Shapiro E, Divish B, Opgenorth T, Lepor H: Endothelin-1 in the human prostate: Tissue levels, source of production and isometric tension studies. J Urol 150: 495–499, 1993

    PubMed  CAS  Google Scholar 

  134. Walden PD, Ittmann M, Monaco ME, Lepor H: Endothelin-1 production and agonist activities in cultured prostate-derived cells: Implications for regulation of endothelin bioactivity and bioavailability in prostatic hyperplasia. Prostate 34: 241–250, 1998

    Article  PubMed  CAS  Google Scholar 

  135. Casey ML, Byrd W, MacDonald PC: Massive amounts of immunoreactive endothelin in human seminal fluid. J Clin Endocrinol Metab 74: 223–225, 1992

    PubMed  CAS  Google Scholar 

  136. Nelson JB, Carducci MA: The role of endothelin-1 and endothelin receptor antagonists in prostate cancer. BJU Int 85(Suppl 2): 45–48, 2000

    PubMed  CAS  Google Scholar 

  137. Nelson JB, Nguyen SH, Wu-Wong JR, Opgenorth TJ, Dixon DB, Chung LW, Inoue N: New bone formation in an osteoblastic tumor model is increased by endothelin-1 overexpression and decreased by endothelin A receptor blockade. Urology 53: 1063–1069, 1999

    Article  PubMed  CAS  Google Scholar 

  138. Yin J, Grubbs B, Cui Y, Weu-Wong J, Wessale J, Padley R, Guise T: Endothelin A receptor blockade inhibits osteoblastic metastases. J Bone Miner Res 15: S201, 2000

    Google Scholar 

  139. Tarquini R, Perfetto F, Tarquini B: Endothelin-1 and Paget’s bone disease: Is there a link? Calcif Tissue Int 63: 118–120, 1998

    Article  PubMed  CAS  Google Scholar 

  140. Ducy P, Karsenty G: The family of bone morphogenetic proteins. Kidney Int 57: 2207–2214, 2000

    Article  PubMed  CAS  Google Scholar 

  141. Reddi AH: Bone morphogenetic proteins: An unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev 8: 11–20, 1997

    Article  PubMed  CAS  Google Scholar 

  142. Hogan BL: Bone morphogenetic proteins in development. Curr Opin Genet Dev 6: 432–438, 1996

    Article  PubMed  CAS  Google Scholar 

  143. Hall BK, Miyake T: All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22: 138–147, 2000

    Article  PubMed  CAS  Google Scholar 

  144. Wozney JM: The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32: 160–167, 1992

    Article  PubMed  CAS  Google Scholar 

  145. Suzuki A, Kaneko E, Maeda J, Ueno N: Mesoderm induction by BMP-4 and-7 heterodimers. Biochem Biophys Res Commun 232: 153–156, 1997

    PubMed  CAS  Google Scholar 

  146. Wrana JL: Regulation of Smad activity. Cell 100: 189–192, 2000

    Article  PubMed  CAS  Google Scholar 

  147. Wan M, Shi X, Feng X, Cao X: Transcriptional mechanisms of bone morphogenetic protein induced osteoprotegrin gene expression. J Biol Chem 276: 10119–10125, 2001

    PubMed  CAS  Google Scholar 

  148. Tsuji K, Ito Y, Noda M: Expression of the PEBP2alphaA/AML3/CBFA1 gene is regulated by BMP4/7 heterodimer and its overexpression suppresses type I collagen and osteocalcin gene expression in osteoblastic and nonosteoblastic mesenchymal cells. Bone 22: 87–92, 1998

    Article  PubMed  CAS  Google Scholar 

  149. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL: Differentiation of human marrow stromal precursor cells: Bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14: 1522–1535, 1999

    PubMed  CAS  Google Scholar 

  150. Abe E, Yamamoto M, Taguchi Y, Lecka-Czernik B, O’Brien CA, Economides AN, Stahl N, Jilka RL, Manolagas SC: Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. J Bone Miner Res 15: 663–673, 2000

    PubMed  CAS  Google Scholar 

  151. Zimmerman LB, De Jesus-Escobar JM, Harland RM: The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599–606, 1996

    Article  PubMed  CAS  Google Scholar 

  152. Merino R, Rodriguez-Leon J, Macias D, Ganan Y, Economides AN, Hurle JM: The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126: 5515–5522, 1999

    PubMed  CAS  Google Scholar 

  153. Nifuji A, Noda M: Coordinated expression of noggin and bone morphogenetic proteins (BMPs) during early skeletogenesis and induction of noggin expression by BMP-7. J Bone Miner Res 14: 2057–2066, 1999

    PubMed  CAS  Google Scholar 

  154. Nifuji A, Kellermann O, Noda M: Noggin expression in a mesodermal pluripotent cell line C1 and its regulation by BMP. J Cell Biochem 73: 437–444, 1999

    Article  PubMed  CAS  Google Scholar 

  155. Li IW, Cheifetz S, McCulloch CA, Sampath KT, Sodek J: Effects of osteogenic protein-1 (OP-1, BMP-7) on bone matrix protein expression by fetal rat calvarial cells are differentiation stage specific. J Cell Physiol 169: 115–125, 1996

    Article  PubMed  CAS  Google Scholar 

  156. Asahina I, Sampath TK, Nishimura I, Hauschka PV: Human osteogenic protein-1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria. J Cell Biol 123: 921–933, 1993

    Article  PubMed  CAS  Google Scholar 

  157. Maliakal JC, Asahina I, Hauschka PV, Sampath TK: Osteogenic protein-1 (BMP-7) inhibits cell proliferation and stimulates the expression of markers characteristic of osteoblast phenotype in rat osteosarcoma (17/2.8) cells. Growth Factors 11: 227–234, 1994

    PubMed  CAS  Google Scholar 

  158. Yamaguchi A, Ishizuya T, Kintou N, Wada Y, Katagiri T, Wozney JM, Rosen V, Yoshiki S: Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3G2/PA6. Biochem Biophys Res Commun 220: 366–371, 1996

    PubMed  CAS  Google Scholar 

  159. Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, Wang EA, Tanaka H, Omura S, Suda T: The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172: 295–299, 1990

    Article  PubMed  CAS  Google Scholar 

  160. Katagiri T, Akiyama S, Namiki M, Komaki M, Yamaguchi A, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T: Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp Cell Res 230: 342–351, 1997

    Article  PubMed  CAS  Google Scholar 

  161. Ducy P, Schinke T, Karsenty G: The osteoblast: A sophisticated fibroblast under central surveillance. Science 289: 1501–1504, 2000

    Article  PubMed  CAS  Google Scholar 

  162. Knutsen R, Wergedal JE, Sampath TK, Bay link DJ, Mohan S: Osteogenic protein-1 stimulates proliferation and differentiation of human bone cells in vitro, Biochem Biophys Res Commun 194: 1352–1358, 1993

    Article  PubMed  CAS  Google Scholar 

  163. Kim KJ, Itoh T, Kotake S: Effects of recombinant human bone morphogenetic protein-2 on human bone marrow cells cultured with various biomaterials. J Biomed Mater Res 35: 279–285, 1997

    Article  PubMed  CAS  Google Scholar 

  164. Groeneveld EH, Burger EH: Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 142: 9–21, 2000

    Article  PubMed  CAS  Google Scholar 

  165. Jena N, Martin-Seisdedos C, McCue P, Croce CM: BMP7 null mutation in mice: Developmental defects in skeleton, kidney, and eye. Exp Cell Res 230: 28–37, 1997

    Article  PubMed  CAS  Google Scholar 

  166. Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL, Robertson EJ: Mice lacking Bmp6 function. Dev Genet 22: 321–339, 1998

    Article  PubMed  CAS  Google Scholar 

  167. Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins NA: The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 71: 399–410, 1992

    Article  PubMed  CAS  Google Scholar 

  168. Weber KL, Bolander ME, Rock MG, Pritchard D, Sarkar G: Evidence for the upregulation of osteogenic protein-1 mRNA expression in musculoskeletal neoplasms. J Orthop Res 16: 8–14, 1998

    Article  PubMed  CAS  Google Scholar 

  169. Bentley H, Hamdy FC, Hart KA, Seid JM, Williams JL, Johnstone D, Russell RG: Expression of bone morphogenetic proteins in human prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer 66: 1159–1163, 1992

    PubMed  CAS  Google Scholar 

  170. Barnes J, Anthony CT, Wall N, Steiner MS: Bone morphogenetic protein-6 expression in normal and malignant prostate. World J Urol 13: 337–343, 1995

    Article  PubMed  CAS  Google Scholar 

  171. Hamdy FC, Autzen P, Robinson MC, Home CH, Neal DE, Robson CN: Immunolocalization and messenger RNA expression of bone morphogenetic protein-6 in human benign and malignant prostatic tissue. Cancer Res 57: 4427–4431, 1997

    PubMed  CAS  Google Scholar 

  172. Kim IY, Lee DH, Ann HJ, Tokunaga H, Song W, Devereaux LM, Jin D, Sampath TK, Morton RA: Expression of bone morphogenetic protein receptors type-IA,-IB and-II correlates with tumor grade in human prostate cancer tissues. Cancer Res 60: 2840–2844, 2000

    PubMed  CAS  Google Scholar 

  173. Ide H, Katoh M, Sasaki H, Yoshida T, Aoki K, Nawa Y, Osada Y, Sugimura T, Terada M: Cloning of human bone morphogenetic protein type IB receptor (BMPR-IB) and its expression in prostate cancer in comparison with other BMPRs (published erratum appears in Oncogene 1997 Aug 28;15(9):1121). Oncogene 14: 1377–1382, 1997

    Article  PubMed  CAS  Google Scholar 

  174. Ide H, Yoshida T, Matsumoto N, Aoki K, Osada Y, Sugimura T, Terada M: Growth regulation of human prostate cancer cells by bone morphogenetic protein-2. Cancer Res 57: 5022–5027, 1997

    PubMed  CAS  Google Scholar 

  175. Mundy GR, Yoneda T, Hiraga T: Preclinical studies with zoledronic acid and other bisphosphonates: Impact on the bone microenvironment. Semin Oncol 28: 35–44, 2001

    PubMed  CAS  Google Scholar 

  176. Theriault RL, Hortobagyi GN: The evolving role of bisphosphonates. Semin Oncol 28: 284–290, 2001

    Article  PubMed  CAS  Google Scholar 

  177. Pelger RC, Hamdy NA, Zwinderman AH, Lycklama a Nijeholt AA, Papapoulos SE: Effects of the bisphosphonate olpadronate in patients with carcinoma of the prostate metastatic to the skeleton. Bone 22: 403–408, 1998

    Article  PubMed  Google Scholar 

  178. Garnero P, Buchs N, Zekri J, Rizzoli R, Coleman RE, Delmas PD: Markers of bone turnover for the management of patients with bone metastases from prostate cancer. Br J Cancer 82: 858–864, 2000

    Article  PubMed  CAS  Google Scholar 

  179. Heidenreich A, Hofmann R, Engelmann UH: The use of bisphosphonate for the palliative treatment of painful bone metastasis due to hormone refractory prostate cancer (In Process Citation). J Urol 165: 136–140, 2001

    Article  PubMed  CAS  Google Scholar 

  180. Stearns ME, Wang M: Effects of alendronate and taxol on PC-3 ML cell bone metastases in SCID mice. Inv Met 16: 116–131, 1996

    CAS  Google Scholar 

  181. Sun YC, Geldof AA, Newling DW, Rao BR: Progression delay of prostate tumor skeletal metastasis effects by bisphosphonates. J Urol 148: 1270–1273, 1992

    PubMed  CAS  Google Scholar 

  182. Wang M, Stearns ME: Isolation and characterization of PC-3 human prostatic tumor sublines which preferentially metastasize to select organs in S.C.I.D. mice. Differentiation 48: 115–125, 1991

    PubMed  CAS  Google Scholar 

  183. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, Delmas P, Delaisse JM, Clezardin P: Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 60: 2949–2954, 2000

    PubMed  CAS  Google Scholar 

  184. Boissier S, Magnetto S, Frappart L, Cuzin B, Ebetino FH, Delmas PD, Clezardin P: Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res 57: 3890–3894, 1997

    PubMed  CAS  Google Scholar 

  185. Lee MV, Fong EM, Singer FR, Guenette RS: Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res 61: 2602–2608, 2001

    PubMed  CAS  Google Scholar 

  186. Diel IJ: Antitumour effects of bisphosphonates: first evidence and possible mechanisms. Drugs 59: 391–399, 2000

    PubMed  CAS  Google Scholar 

  187. Hiraga T, Williams PJ, Mundy GR, Yoneda T: The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Res 61: 4418–4424, 2001

    PubMed  CAS  Google Scholar 

  188. Smith PC, Hobish A, Lin D, Culig Z, Keller ET: Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev 12: 33–40, 2001

    Article  PubMed  CAS  Google Scholar 

  189. Lum L, Wong BR, Josien R, Becherer JD, ErdjumentBromage H, Schlondorff J, Tempst P, Choi Y, Blobel CP: Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem 274: 13613–13618, 1999

    PubMed  CAS  Google Scholar 

  190. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93: 165–176, 1998

    Article  PubMed  CAS  Google Scholar 

  191. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397: 315–323, 1999

    PubMed  CAS  Google Scholar 

  192. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95: 3597–3602, 1998

    Article  PubMed  CAS  Google Scholar 

  193. Fuller K, Wong B, Fox S, Choi Y, Chambers TJ: TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188: 997–1001, 1998

    Article  PubMed  CAS  Google Scholar 

  194. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K: Isolation of a novel cytokinefrom human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234: 137–142, 1997

    Article  PubMed  CAS  Google Scholar 

  195. Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, Moore G, Truneh A: Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene 204: 35–46, 1997

    Article  PubMed  CAS  Google Scholar 

  196. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K: Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139: 1329–1337, 1998

    Article  PubMed  Google Scholar 

  197. Kwon BS, Wang S, Udagawa N, Haridas V, Lee ZH, Kim KK, Oh KO, Greene J, Li Y, Su J, Gentz R, Aggarwal BB, Ni J: TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. FASEB J 12: 845–854, 1998

    PubMed  CAS  Google Scholar 

  198. Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewings MK, Schwartz SM, Pascual V, Hood LE, Clark EA: OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 161:6113–6121, 1998

    PubMed  CAS  Google Scholar 

  199. Hofbauer LC, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S: Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem Biophys Res Commun 250: 776–781, 1998

    Article  PubMed  CAS  Google Scholar 

  200. Hofbauer LC, Heufelder AE: Osteoprotegerin and its cognate ligand: a new paradigm of osteoclastogenesis. Eur JEndocrinol 139: 152–154, 1998

    CAS  Google Scholar 

  201. Vidal NO, Brandstrom H, Jonsson KB, Ohlsson C: Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. J Endocrinol 159: 191–195, 1998

    Article  PubMed  CAS  Google Scholar 

  202. Kartsogiannis V, Zhou H, Horwood NJ, Thomas RJ, Hards DK, Quinn JM, Niforas P, Ng KW, Martin TJ, Gillespie MT: Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 25: 525–534, 1999

    Article  PubMed  CAS  Google Scholar 

  203. Nagai M, Sato N: Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun 257: 719–723, 1999

    Article  PubMed  CAS  Google Scholar 

  204. Thomas GP, Baker SU, Eisman JA, Gardiner EM: Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J Endocrinol 170: 451–460, 2001

    Article  PubMed  CAS  Google Scholar 

  205. Hofbauer LC, Heufelder AE, Erben RG: Osteoprotegerin, RANK, and RANK ligand: the good, the bad, and the ugly in rheumatoid arthritis. J Rheumatol 28: 685–687, 2001

    PubMed  CAS  Google Scholar 

  206. Fazzalari NL, Kuliwaba JS, Atkins GJ, Forwood MR, Findlay DM: The ratio of messenger RNA levels of receptor activator of nuclear factor kappaB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J Bone Miner Res 16: 1015–1027, 2001

    PubMed  CAS  Google Scholar 

  207. Yoneda T, Sasaki A, Mundy GR: Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat 32: 73–84, 1994

    Article  PubMed  CAS  Google Scholar 

  208. Akatsu T, Ono K, Katayama Y, Tamura T, Nishikawa M, Kugai N, Yamamoto M, Nagata N: The mouse mammary tumor cell line, MMT060562, produces prostaglandin E2 and leukemia inhibitory factor and supports osteoclast formation in vitro via a stromal cell-dependent pathway. J Bone Miner Res 13: 400–408, 1998

    PubMed  CAS  Google Scholar 

  209. Mundy GR: Pathophysiology of cancer-associated hypercalcemia. Semin Oncol 17: 10–15, 1990

    PubMed  CAS  Google Scholar 

  210. Roodman GD: Mechanisms of bone lesions in multiple myeloma and lymphoma. Cancer 80: 1557–1563, 1997

    Article  PubMed  CAS  Google Scholar 

  211. Thomas T, Lafage-Proust MH: Contribution of genetically modified mouse models to the elucidation of bone physiology. Rev Rhum Engl Ed 66: 728–735, 1999

    PubMed  CAS  Google Scholar 

  212. Atkins GJ, Bouralexis S, Haynes DR, Graves SE, Geary SM, Evdokiou A, Zannettino AC, Hay S, Findlay DM: Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone 28: 370–377, 2001

    Article  PubMed  CAS  Google Scholar 

  213. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD: Macrophage inflammatory protein-1 alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 97: 3349–3353, 2001

    Article  PubMed  CAS  Google Scholar 

  214. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR: Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98: 1544–1549, 1996

    PubMed  CAS  Google Scholar 

  215. Sasaki A, Boyce BF, Story B, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T: Bisphosphonate rise-dronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55: 3551–3557, 1995

    PubMed  CAS  Google Scholar 

  216. Michigami T, Ihara-Watanabe M, Yamazaki M, Ozono K: Receptor activator of nuclear factor kappaB ligand (RANKL) is a key molecule of osteoclast formation for bone metastasis in a newly developed model of human neuroblastoma. Cancer Res 61: 1637–1644, 2001

    PubMed  CAS  Google Scholar 

  217. Oyajobi BO, Anderson DM, Traianedes K, Williams PJ, Yoneda T, Mundy GR: Therapeutic efficacy of a soluble receptor activator of nuclear factor kappaB-IgG Fc fusion protein in suppressing bone resorption andhypercalcemia in a model of humoral hypercalcemia of malignancy. Cancer Res 61: 2572–2578, 2001

    PubMed  CAS  Google Scholar 

  218. John A, Tuszynski G: The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7: 14–23, 2001

    Article  PubMed  CAS  Google Scholar 

  219. Boag AH, Young ID: Immunohistochemical analysis of type IV collagenase expression in prostatic hyperplasia and adenocarcinoma. Mod Pathol 6: 65–68, 1993

    PubMed  CAS  Google Scholar 

  220. Bodey B, Bodey B, Jr., Siegel SE, Kaiser HE: Immunocytochemical detection of matrix metalloproteinase expression in prostate cancer. In vivo 15: 65–70, 2001

    PubMed  CAS  Google Scholar 

  221. Festuccia C, Bologna M, Vicentini C, Tacconelli A, Miano R, Violini S, Mackay AR: Increased matrix metalloproteinase-9 secretion in short-term tissue cultures of prostatic tumor cells. Int J Cancer 69: 386–393, 1996

    Article  PubMed  CAS  Google Scholar 

  222. Hamdy FC, Fadlon EJ, Cottam D, Lawry J, Thurrell W, Silcocks PB, Anderson JB, Williams JL, Rees RC: Matrix metalloproteinase 9 expression in primary human prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer 69: 177–182, 1994

    PubMed  CAS  Google Scholar 

  223. Hashimoto K, Kihira Y, Matuo Y, Usui T: Expression of matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-1 in human prostate. J Urol 160: 1872–1876, 1998

    PubMed  CAS  Google Scholar 

  224. Montironi R, Fabris G, Lucarini G, Biagini G: Location of 72-kd metalloproteinase (type IV collagenase) in untreated prostatic adenocarcinoma. Pathol Res Pract 191: 1140–1146, 1995

    PubMed  CAS  Google Scholar 

  225. Montironi R, Lucarini G, Castaldini C, Galluzzi CM, Biagini G, Fabris G: Immunohistochemical evaluation of type IV collagenase (72-kd metalloproteinase) in prostatic intraepithelial neoplasia. Anticancer Res 16: 2057–2062, 1996

    PubMed  CAS  Google Scholar 

  226. Pajouh MS, Nagle RB, Breathnach R, Finch JS, Brawer MK, Bowden GT: Expression of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Oncol 117: 144–150, 1991

    Article  PubMed  CAS  Google Scholar 

  227. Duivenvoorden WC, Hirte HW, Singh G: Use of tetracycline as an inhibitor of matrix metalloproteinase activity secreted by human bone-metastasizing cancer cells. Invasion Metastasis 17: 312–322, 1997

    PubMed  CAS  Google Scholar 

  228. Sanchez-Sweatman OH, Orr FW, Singh G: Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases. Invasion Metastasis 18: 297–305, 1998

    Article  PubMed  CAS  Google Scholar 

  229. Lee J, Weber M, Mejia S, Bone E, Watson P, Orr W: A matrix metalloproteinase inhibitor, batimastat, retards the development of osteolytic bone metastases by MDA-MB-231 human breast cancer cells in Balb C nu/nu mice. Eur J Cancer 37: 106–113, 2001

    Article  PubMed  CAS  Google Scholar 

  230. Nemeth JA, Yousif R, Herzog M, Che M, Upadhyay J, Shekarriz B, Bhagat S, Mullins C, Fridman R, Cher ML: Matrix metalloproteinases activity, bone matrix turnover and tumor cell proliferation in prostate cancer bone metastasis. J Natl Cancer Inst 94: 17–25, 2002

    PubMed  CAS  Google Scholar 

  231. Pirtskhalaishvili G, Nelson JB: Endothelium-derived factors as paracrine mediators of prostate cancer progression. Prostate 44: 77–87, 2000

    Article  PubMed  CAS  Google Scholar 

  232. Perkel VS, Mohan S, Baylink DJ, Linkhart TA: An inhibitory insulin-like growth factor binding protein (In-IGFBP) from human prostatic cell conditioned medium reveals N-terminal sequence identity with bone derived In-IGFBP. J Clin Endocrinol Metab 71: 533–535, 1990

    Article  PubMed  CAS  Google Scholar 

  233. Taguchi Y, Yamamoto M, Yamate T, Lin SC, Mocharla H, DeTogni P, Nakayama N, Boyce BF, Abe E, Manolagas SC: Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians 110: 559574, 1998

    Google Scholar 

  234. Le Brun G, Aubin P, Soliman H, Ropiquet F, Villette JM, Berthon P, Creminon C, Cussenot O, Fiet J: Upregulation ofendothelin 1 and its precursor by IL-1beta, TNF-alpha, and TGF-beta in the PC3 human prostate cancer cell line. Cytokine 11: 157–162, 1999

    PubMed  Google Scholar 

  235. Goltzman D, Karaplis AC, Kremer R, Rabbani SA: Molecular basis of the spectrum of skeletal complications of neoplasia. Cancer 88: 2903–2908, 2000

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Keller, E.T. et al. (2002). Prostate carcinoma skeletal metastases: Cross-talk between tumor and bone. In: Cher, M.L., Raz, A., Honn, K.V. (eds) Prostate Cancer: New Horizons in Research and Treatment. Developments in Oncology, vol 81. Springer, Boston, MA. https://doi.org/10.1007/0-306-48143-X_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48143-X_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7352-6

  • Online ISBN: 978-0-306-48143-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics