Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 12))

Summary

Cytosolic nitrate reductase has been the subject of numerous studies because it has long been considered the principal site of the regulation of nitrate assimilation. Recently, specific plasma membrane-bound enzymes have been identified, which are able to reduce nitrate as well as nitrite and which exhibit particularly interesting structural and biochemical properties. Other recent studies have demonstrated that nitrite reductase shares its ability to reduce nitrite with the plasma membrane-bound nitrite:NO oxidoreductase in roots and also with cytosolic nitrate reductase. Nitrite reduction catalysed by these enzymes leads to the production of NO. We assess the physiological significance of these reactions in the detoxification of nitrate and nitrite or in the production of a signaling molecule. We also discuss other enzyme activities that may play significant roles in nitrite detoxification, either by reduction to gaseous species or by oxidation to nitrate. The second reaction of nitrate assimilation, the conversion of nitrite to ammonium, can consume a significant proportion of photosynthetic reducing energy, either directly in chloroplasts or indirectly, via the oxidative pentose phosphate pathway. Evidence is presented that plastidic nitrite reductase, the enzyme that catalyses this conversion, might be as finely regulated as nitrate reductase by endogenous factors. The expression of both reductases appears to respond in a similar fashion to carbon and nitrogen metabolites and also to nitrate, though some differences are discussed. In concert with the regulation of the expression of these components, nitrate also controls expression of the enzymatic machinery needed for the supply of reducing power to nitrite reduction, underscoring the importance of this reaction as a sink for reducing power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aslam M and Huffaker RC (1989) Role of nitrate and nitrite in the induction of nitrite reductase in the leaves of barley seedlings. Plant Physiol 91: 1152–1156

    CAS  PubMed  Google Scholar 

  • Aslam M, Rosichan JL and Huffaker RC (1987) Comparative induction of nitrate reductase by nitrate and nitrite in barley leaves. Plant Physiol 83: 579–584

    CAS  PubMed  Google Scholar 

  • Asard H, Bérczi A and Caubergs RJ (eds) (1998) Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Back E, Dunne W, Schneiderbauer A, de Framond A, Rastogi R and Rosthstein S J (1991) Isolation of a spinach nitrite reductase gene promoter which confers nitrate inducibility on GUS gene expression in transgenic tobacco. Plant Mol Biol 17: 9–18

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yosef B (1996) Root excretion and their environmental effects: Influence on availability of phosphorus. In: Waisel Y, Eshel A and Kafkafi U (eds) Plant Roots. The Hidden Half, pp 581–605. Marcel Dekker Inc., New York

    Google Scholar 

  • Bellissimo DB and Privalle L (1995) Expression of spinach nitrite reductase in Escherichia coli: Site-directed mutagenesis of predicted active site amino acids. Arch Biochem Biophys 323:155–163

    Article  CAS  PubMed  Google Scholar 

  • Botrel A and Kaiser WM (1997) Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201: 496–501

    Article  CAS  PubMed  Google Scholar 

  • Bowsher CG, Hucklesby DP and Emes MJ (1989) Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L. Planta 177: 359–366

    Article  CAS  Google Scholar 

  • Brunswick P and Cresswell CF (1988a) Nitrite uptake into intact pea chloroplasts. I. Kinetics and relationship with nitrite assimilation. Plant Physiol 86: 378–383

    CAS  Google Scholar 

  • Brunswick P and Cresswell CF (1988b) Nitrite uptake into intact pea chloroplasts. II. Influence of electron transport regulators, uncouplers, ATPase and anion uptake inhibitors and protein binding reagents. Plant Physiol 86: 384–389

    CAS  Google Scholar 

  • Bungard RA, Wingler A, Morton JD, Andrews M, Press MC and Scholes JD (1999) Ammonium can stimulate nitrate and nitrite reductase in the absence of nitrate in Clematis vitalba. Plant Cell Environ 22: 859–866

    Article  CAS  Google Scholar 

  • Burhenne N and Tischner R (2000) Isolation and characterization of nitrite-reductase-deficient mutants of Chlorella sorokiniana (strain 21 l-8k). Planta 211: 440–445

    Article  CAS  PubMed  Google Scholar 

  • Cabello P, de la Haba P, Gonzales-Fontes A and Maldonado JM (1998) Induction of nitrate reductase, nitrite reductase and glutamine synthetase isoforms in sunflower cotyledons as affected by nitrate, light, and plastid integrity. Protoplasma 201: 1–7

    Article  CAS  Google Scholar 

  • Crane BR, Siegel LM and Getzoff ED (1995) Sulfite reductase structure at 1.6 Å: Evolution and catalysis for reduction of inorganic anions. Science 270: 59–67

    CAS  PubMed  Google Scholar 

  • Crété P, Caboche M and Meyer C (1997) Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant 111: 625–634

    Google Scholar 

  • Dalling MJ, Tolbert NE and Hageman RH (1972) Intracellular location of nitrate reductase and nitrite reductase. I. Spinach and tobacco leaves. Biochim Biophys Acta 283: 505–512

    CAS  PubMed  Google Scholar 

  • Dean JV and Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88: 389–395

    CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA and Lamb C (1998) Nitric oxide signal functions in plant disease resistance. Nature 394: 585–588

    CAS  PubMed  Google Scholar 

  • Dorbe MF, Truong HN, Crété P and Daniel-Vedéle F (1998) Deletion analysis of the tobacco Nii1 promoter in Arabidopsis thaliana. Plant Sci 139: 71–82

    Article  CAS  Google Scholar 

  • Dose MM, Hirasawa M, Kleis-SanFrancisco S, Lew EL and Knaff DB (1997) The ferredoxin-binding site of ferredoxin:nitrite oxidoreductase. Plant Physiol 114: 1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Duncanson E, Gilkes AF, Kirk DW, Sherman A and Wray JL (1993) nir1, a conditional-lethal mutation in barley causing a defect in nitrite reduction. Mol Gen Genet 236: 275–282

    Article  CAS  PubMed  Google Scholar 

  • Durner J and Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2: 369–374

    Article  CAS  PubMed  Google Scholar 

  • Emes MJ and Neuhaus HE (1997) Metabolism and transport in non-photosynthetic plastids. J Exp Bot 48: 1995–2005

    Article  CAS  Google Scholar 

  • Faure JD, Vincentz M, Kronenberger J and Caboche M (1991) Co-regulated expression of nitrate and nitrite reductases. Plant J 1: 107–113

    Article  CAS  Google Scholar 

  • Friemann A, Brinkmann K and Hachtel W (1992) Sequence of a cDNA encoding nitrite reductase from the tree Betula pendula and identification of conserved protein regions. Mol Gen Genet 231: 411–416

    Article  CAS  PubMed  Google Scholar 

  • Godber BLJ, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R and Harrison R (2000) Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 275: 7757–7763

    Article  CAS  PubMed  Google Scholar 

  • Goshima N, Mukai T, Suemori M, Takahashi M, Caboche M and Morikawa H (1999) Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J 19: 75–80

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Disa S, Saxena IM, Sarin NB, Guha-Mukerjee S and Sopory SK (1983) Role of nitrate in the induction of nitrite reductase activity during wheat seed germination. J Exp Bot 141: 396–404

    Google Scholar 

  • Hoff T, Truong HN and Caboche M (1994) The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ 17: 489–506

    CAS  Google Scholar 

  • Klepper L (1990) Comparison between NOx evolution mechanisms of wild-type and nrl mutant soybean leaves. Plant Physiol 93: 26–32

    CAS  Google Scholar 

  • Knaff DB (1996) Ferredoxin and ferredoxin-dependent enzymes. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 333–361. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kozlov AV, Staniek K and Nohl H (1999) Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Letters 454: 127–130

    Article  CAS  PubMed  Google Scholar 

  • Kronenberger J, Lepingle A, Caboche M and Vaucheret H (1993) Cloning and expression of distinct nitrite reductases in tobacco leaves and roots. Mol Gen Genet 236: 203–208

    Article  CAS  PubMed  Google Scholar 

  • Kunze M, Riedel J, Lange U, Hurwitz R and Tischner R (1997) Evidence for the presence of GPI-anchored PM-NR in leaves of Beta vulgaris and for PM-NR in barley leaves. Plant Physiol Biochem 35: 507–512

    CAS  Google Scholar 

  • Kunze M, Riedel J, Lange U, and Tischner R (2000) Plasma membrane bound nitrate reductase in plants—The current status of research. In: Martins-Loução MA and Lips HS (eds) Nitrogen in a Sustainable Ecosystem—From the Cell to the Plant, pp 19–26. Backhuys, Leiden

    Google Scholar 

  • Lewis CE, Noctor G, Causton DH, Foyer CH (2000) Regulation of assimilate partitioning in leaves. Aust J Plant Physiol (Special issue) 57: 507–519

    Google Scholar 

  • Luque I, Flores E and Herrero A (1993) Nitrite reductase gene from Synechococcus Sp PCC-7942—Homology between cyanobacterial and higher-plant nitrite reductases. Plant Mol Biol 21: 1201–1205

    Article  CAS  PubMed  Google Scholar 

  • Marschner H and Römheld V (1996) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Waisel Y, Eshel A and Kafkafi U (eds) Plant Roots. The Hidden Half, pp 557–579. Marcel Dekker Inc., New York

    Google Scholar 

  • Matsumura T, Sakakibara H, Nakano R, Kimata Y, Sugiyama T and Hase T (1997) A nitrate-inducible ferredoxin in maize roots—Genomic organization and differential expression of two nonphotosynthetic ferredoxin isoproteins. Plant Physiol 114: 653–660

    Article  CAS  PubMed  Google Scholar 

  • Mench M, Morel JL, Guckert A and Guillet B (1988) Metal binding with root exudates of low molecular weight. J Soil Sci 39: 521–527

    CAS  Google Scholar 

  • Mendel RR and Schwarz G (1999) Molybdoenzymes and molybdenum cofactor in plants. Crit Rev Plant Sci 18: 33–69

    CAS  Google Scholar 

  • Meyer C and Caboche M (1998) Manipulation of nitrogen metabolism. In: Lindsey K (ed) Transgenic Plant Research, pp 125–133. Harwood Academic Publishers, London

    Google Scholar 

  • Mikami B and Ida S (1989) Spinach ferredoxin-nitrite reductase: characterization of catalytic activity and interaction of the enzyme with substrates. J Biochem 105: 47–50

    CAS  PubMed  Google Scholar 

  • Navarro MT, Prieto R, Fernández E and Galván A (2000) Nitrite reductase mutants as an approach to understanding nitrate assimilation in Chlamydomonas reinhardtii. Plant Physiol 122: 283–289

    Article  CAS  PubMed  Google Scholar 

  • Neininger A, Kronenberger J and Mohr H (1992) Coaction of light, nitrate and a plastidic factor in controlling nitrite-reductase gene expression in tobacco. Planta 187: 381–387

    Article  CAS  Google Scholar 

  • Neininger A, Back E, Bichler J, Schneiderbauer A and Mohr H (1994) Deletion analysis of a nitrite reductase promoter from spinach in transgenic tobacco. Planta 194: 186–192

    CAS  Google Scholar 

  • Onda Y, Matsumura T, Kimata-Ariga Y, Sakakibara H, Sugiyama T and Hase T (2000) Differential interaction of maize root ferredoxin:NADP+ oxidoreductase with photosynthetic and non-photosynthetic ferredoxin isoproteins. Plant Physiol 123: 1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Rastogi R, Bate NJ, Sivasankar S and Rothstein S (1997) Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Mol Biol 34: 465–476

    Article  CAS  PubMed  Google Scholar 

  • Redinbaugh MG and Campbell WH (1988) Nitrate regulation of the oxidative pentose phosphate pathway in maize (Zea mays L.) root plastids: induction of 6-phosphogluconate dehydrogenase activity, protein and transcript levels. Plant Sci 134: 129–140

    Google Scholar 

  • Rexach J, Montero B, Fernández E and Galván A (1999) Differential regulation of the high affinity nitrite transport systems III and IV in Chlamydomonas reinhardtii. J Biol Chem 274: 27801–27806

    Article  CAS  PubMed  Google Scholar 

  • Rexach J, Fernández E and Galván A (2000) The Chlamydomonas reinhardtii Nar1 gene encodes a chloroplast membrane protein involved in nitrite transport. Plant Cell 12: 1441–1453

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara H, Takei K and Sugiyama T (1996) Isolation and characterization of a cDNA that encodes maize uroporphyrinogen III methyltransferase, an enzyme involved in the synthesis of siroheme, which is a prosthetic group of nitrite reductase. Plant J 10: 883–892

    Article  CAS  PubMed  Google Scholar 

  • Sander L, Jensen PE, Back LF, Stummann BJ and Henningsen KW (1995) Structure and expression of a nitrite reductase gene from bean (Phaseolus vulgaris) and promoter analysis in transgenic tobacco. Plant Mol Biol 27: 165–177

    Article  CAS  PubMed  Google Scholar 

  • Schuster C and Mohr H (1990) Appearance of nitrite reductase mRNA in mustard seedling cotyledons is regulated by phytochrome. Planta 181: 327–334

    CAS  Google Scholar 

  • Seith B, Sherman A, Wray JL and Mohr H (1994) Photocontrol of nitrite reductase gene expression in the barley seedling (Hordeum vulgare L.). Planta 192: 110–117

    CAS  Google Scholar 

  • Sengupta S, Shaila MS and Rao GR (1997) A novel autophosphorylation mediated regulation of nitrite reductase in Candida utilis. FEBS Letters 416: 51–56

    Article  CAS  PubMed  Google Scholar 

  • Shingles R, Roh MH and McCarty RE (1996) Nitrite transport in chloroplast inner envelope vesicles. I. Direct measurement of proton-linked transport. Plant Physiol 112: 1375–1381

    CAS  PubMed  Google Scholar 

  • Siddiqi MY, King BJ and Glass DM (1992) Effects of nitrite, chlorate, and chlorite on nitrate uptake and nitrate reductase activity. Plant Physiol 100: 644–650

    CAS  Google Scholar 

  • Siegel LM, Wilkerson JO (1989) Structure and function of spinach ferredoxin-nitrite reductase. In: Wray JL, Kinghorn JR (eds) Molecular and Genetic Aspects of Nitrate Assimilation, pp 263–283. Oxford Science Publications, Oxford

    Google Scholar 

  • Sinclair J (1987) Changes in spinach thylakoid activity due to nitrite ions. Photosynth Res 12: 255–263

    Article  CAS  Google Scholar 

  • Sivasankar S and Oaks A (1996) Nitrate assimilation in higher plants: the effects of metabolites and light. Plant Physiol Biochem 34: 609–620

    CAS  Google Scholar 

  • Sivasankar S, Rothstein S and Oaks A (1997) Regulation of the accumulation and reduction of nitrate by nitrogen and carbon metabolites in maize seedlings. Plant Physiol 114: 583–589

    CAS  PubMed  Google Scholar 

  • Siverio JM, González V, Mendoza-Riquel A, Pérez MD and González G (1993) Reversible inactivation and binding to mitochondria of nitrate reductase by heat shock in the yeast Hansenula anomala. FEBS Letters 318: 153–156

    Article  CAS  PubMed  Google Scholar 

  • Stöhr C (1998) Plasma membrane-bound nitrate reductase in algae and higher plants. In: Asard H, Bérczi A and Caubergs RJ (eds) Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, pp 103–119. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Stöhr C (1999) Relationship of nitrate supply with growth rate, plasma membrane-bound and cytosolic nitrate reductase, and tissue nitrate content in tobacco plants. Plant Cell Environ 22: 169–177

    Google Scholar 

  • Stöhr C and Mäck G (2001) Diurnal changes in nitrogen metabolism of tobacco roots. J Exp Bot 53: 1–7

    Google Scholar 

  • Stöhr C and Ullrich WR (1997) A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203: 129–132

    Google Scholar 

  • Stöhr C, Tischner R and Ward MR (1993) Characterization of the plasma-membrane-bound nitrate reductase in Chlorella saccharophila (Krüger) Nadson. Planta 191: 79–85

    Google Scholar 

  • Stöhr C, Glogau U, Mätschke M and Tischner R (1995a) Evidence for the involvement of plasma-membrane-bound nitrate reductase in signal transduction during blue-light stimulation of nitrate uptake in Chlorella saccharophila. Planta 197: 613–618

    Google Scholar 

  • Stöhr C, Schuler F and Tischner R (1995b) Glycosyl-phosphatidylinositol-anchored proteins exist in the plasma membrane of Chlorella saccharophila (Krüger) Nadson: Plasma membrane-bound nitrate reductase as an example. Planta 196: 284–287

    Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR and Rockel P (2001) A plasma-membrane-bound enzyme of tobacco roots catalyzes the formation of nitric oxide from nitrite. Planta 212: 835–841

    PubMed  Google Scholar 

  • Truong HN, Vaucheret H, Quilleré I, Morot-Gaudry JF and Caboche M (1994) Utilisation de la transgénçse pour ľanalyse du métabolisme du nitrate. C R Soc Biol 188: 140–149

    Google Scholar 

  • Van Camp W, Van Montagu M and Inzé D (1998) H2O2 and NO: Redox signals in disease resistance. Trends Plant Sci 3: 330–334

    Google Scholar 

  • Vaucheret H, Kronenberger J, Lépingle A, Vilaine F, Boutin JP and Caboche M (1992) Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J 2: 559–569

    CAS  PubMed  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker MT, Vaucheret H and Caboche M (1993) Regulation of nitrate and nitrite reductase expression of Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3: 315–324

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Guegler K, LaBrie ST and Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12: 1491–1509

    CAS  PubMed  Google Scholar 

  • Ward MP, Abbeton MT, Forde BG, Sherman A, Thomas WTB and Wray JL (1995) The Nir1 in barley is tightly linked to the nitrite reductase apoprotein gene Nii. Mol Gen Genet 247: 579–582

    Article  CAS  PubMed  Google Scholar 

  • Wienkoop S, Ullrich WR and Stöhr C (1999) Kinetic characterization of succinate-dependent plasma membrane-bound nitrate reductase in tobacco roots. Physiol Plant 105: 609–614

    Article  CAS  Google Scholar 

  • Wienkoop S, Schlichting R, Ullrich WR and Stöhr C (2001) Inverse diurnal regulation of the expression of two nitrate reductase transcripts in tobacco roots. Protoplasma 217: 15–19

    Article  CAS  PubMed  Google Scholar 

  • Wildt J, Kley D, Rockel A, Rockel P and Segschneider HJ (1997) Emission of NO from higher plant species. J Geophys Res 102: 5919–5927

    Article  CAS  Google Scholar 

  • Wray JL (1993) Molecular biology, genetics and regulation of nitrite reduction in higher plants. Physiol Plant 89: 607–612

    Article  CAS  Google Scholar 

  • Wright DP, Huppe HC and Turpin DH (1997) In vivo and in vitro studies of glucose-6-phosphate dehydrogenase from barley root plastids in relation to reductant supply for NO 2 assimilation. Plant Physiol 114: 1413–1419

    CAS  PubMed  Google Scholar 

  • Yamasaki H and Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: In vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468: 89–92

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y and Takahashi S (1999) An alternative pathway for nitric oxide production: New features of an old enzyme. Trends Plant Sci 4: 128–129

    Article  PubMed  Google Scholar 

  • Zhang Z, Naughton D, Winyard PG, Benjamin N, Blake DR and Symons MC (1998) Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: A potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem Biophys Res Commun 249: 767–772

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Meyer, C., Stöhr, C. (2002). Soluble and Plasma Membrane-bound Enzymes Involved in Nitrate and Nitrite Metabolism. In: Foyer, C.H., Noctor, G. (eds) Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. Advances in Photosynthesis and Respiration, vol 12. Springer, Dordrecht. https://doi.org/10.1007/0-306-48138-3_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48138-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6336-1

  • Online ISBN: 978-0-306-48138-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics