Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 12))

Summary

The leaf is the predominant site of nitrogen assimilation in many crop species, and the stimulation of nitrogen assimilation by light reveals a close dependence on photosynthesis. Light controls the activity of nitrate reductase and, directly or indirectly, provides the reducing power necessary for the reductive incorporation of nitrate into amino groups. Photosynthetic and respiratory carbon metabolism is also required to generate the carbon skeletons necessary for amino acid synthesis. Amino acids represent the hub around which revolve the processes of nitrogen assimilation, associated carbon metabolism, photorespiration, export of organic nitrogen from the leaf, and the synthesis of nitrogenous end-products. Specific major amino acids are modulated differentially by photorespiration and nitrogen assimilation, even though these processes are tightly intermeshed. Minor amino acids show marked diurnal rhythms and their contents fluctuate in a co-ordinated manner. We discuss how regulation of the expression and activity of key enzymes allows co-ordination of carbon and nitrogen assimilation, and we assess the relative roles of key ‘sensors’ of Carbon-Nitrogen status. Analysis reveals a complex network of controls brokered by an interplay of signals emanating from nitrate, carbohydrates, key metabolites such as glutamine, and plant hormones. In particular, abscisic acid is clearly implicated in the sensing of sugars and nitrate and associated signaling in higher plants. These controls act not only to orchestrate the activities of carbon and nitrogen assimilation at the intracellular level, but also influence plant development. The integrated perception of signals from hormones, nitrate, sugars, organic acids, and amino acids permits the plant to tailor its capacity for nitrogen assimilation to nutrient availability and requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J and Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin 5 and gin 6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes and Development 14: 2085–2096

    CAS  PubMed  Google Scholar 

  • Aslam M, Huffaker RC, Rains DW and Rao KP (1979) Influence of light and ambient carbon dioxide concentration on nitrate assimilation by intact barley seedlings. Plant Physiol 63: 1205–1209

    CAS  Google Scholar 

  • Bachmann M, Huber J, Liao PC, Gage DA and Huber SC (1996) The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein. FEBS Lett 387: 127–131

    Article  CAS  PubMed  Google Scholar 

  • Boxall SF, Martin TR, Regad F and Graham IA (1997) Arabidopsis thaliana mutants that are carbohydrate insensitive. Plant Physiol 114: 1266

    Google Scholar 

  • Brechlin P, Unterhalt A, Tischner R and Mäck G (2000) Cytosolic and chloroplastic glutamine synthetase of sugarbeet (Beta vulgaris) respond differently to organ ontogeny and nitrogen source. Physiol Plant 108: 263–269

    Article  CAS  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50: 277–303

    Article  CAS  PubMed  Google Scholar 

  • Champigny ML and Foyer CH (1992) Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis. Basis for a new concept. Plant Physiol 100: 7–12

    CAS  Google Scholar 

  • Chen RD and Gadal P (1990) Do the mitochondria provide 2-oxoglutarate needed for glutamate synthesis in higher plant chloroplasts? Plant Physiol Biochem 28: 141–145

    CAS  Google Scholar 

  • Coschigano KT, Melo-Olivieira R, Lim J and Coruzzi GM (1998) Arabidopsis gls mutants and distinct ferredoxin-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation. Plant Cell 10: 741–752

    Article  CAS  PubMed  Google Scholar 

  • Dijkwel PP, Kock PAM, Bezemer R, Weisbeek PJ and Smeekens SCM (1996) Sucrose represses the developmentally controlled transient activation of the plastocyanin gene in Arabidopsis thaliana seedlings. Plant Physiol 110: 455–463

    CAS  PubMed  Google Scholar 

  • Dijkwel PP, Huijser C, Weisbeek PJ, Chua NH and Smeekens SCM (1997) Sucrose control of phytochrome A signaling in Arabidopsis. Plant Cell 9: 583–595

    Article  CAS  PubMed  Google Scholar 

  • Dzuibany C, Haupt S, Fock H, Biehler K, Migge A and Becker T (1998) Regulation of nitrate reductase transcript level by glutamine accumulating in the leaves of a ferredoxin-dependent glutamate synthase-deficient gluS mutant of Arabidopsis thaliana, and by glutamine provided via the roots. Planta 20: 515–522

    Google Scholar 

  • Elrifi IR and Turpin DH (1986) Nitrate and ammonium induced photosynthetic suppression in N-limited Selenastrum minutum. Plant Physiol 81: 273–279

    CAS  Google Scholar 

  • Ferrario S, Valadier MH, Morot-Gaudry JF and Foyer CH (1995) Effects of constitutive expression of nitrate reductase in transgenic Nicotiana plumbaginifolia L. in response to varying nitrogen supply. Planta 196: 288–294

    Article  CAS  Google Scholar 

  • Ferrario S, Valadier MH and Foyer CH (1996) Short-term modulation of nitrate reductase activity by exogenous nitrate in Nicotiana plumbaginifolia and Zea mays leaves. Planta 199: 366–371

    Article  CAS  Google Scholar 

  • Ferrario S, Valadier MH and Foyer CH (1998) Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiol 117: 293–302

    Google Scholar 

  • Ferrario-Méry S, Suzuki A, Kunz C, Valadier MH, Roux Y, Hirel B and Foyer CH (2000) Modulation of amino acid metabolism in transformed tobacco plants deficient in Fd-GOGAT. Plant and Soil 221: 67–79

    Google Scholar 

  • Ferrario-Méry S, Masclaux C, Suzuki A, Valadier MH, Hirel B and Foyer CH (2001) Glutamine and a-ketoglutarate are metabolite signals involved in nitrate reductase gene transcription in untransformed and transformed tobacco plants deficient in ferredoxin-glutamine-α-ketoglutarate aminotransferase. Planta 213: 265–271

    PubMed  Google Scholar 

  • Ferrario-Méry S, Valadier MH, Godefroy N, Miallier D, Hirel B, Foyer CH and Suzuki A (2002a) Diurnal changes in ammonia assimilation in transformed tobacco plants expressing ferredoxin-dependent glutamate synthase mRNA in the antisense orientation. Plant Sci 163: 59–67

    Google Scholar 

  • Ferrario-Méry S, Valadier MH, Hodges M, Hirel B and Foyer CH (2002b) Photorespiration-dependent increases in phosphoenolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutamine α-ketoglutarate aminotransferase. Planta 214: 877–886

    PubMed  Google Scholar 

  • Finkelstein RR and Lynch TJ (2000) Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol 122: 1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S and Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10: 1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G, Lelandais M, Lescure JC, Valadier MH, Boutin JP and Horton P (1994a) Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. Planta 192: 211–220

    CAS  Google Scholar 

  • Foyer CH, Lescure JC, Lefebvre C, Morot-Gaudry JF, Vincentz M and Vaucheret H (1994b) Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity. Plant Physiol 104: 171–178

    CAS  PubMed  Google Scholar 

  • Foyer CH, Ferrario-Méry S and Noctor G (2001) Interactions between carbon and nitrogen assimilation. In Lea PJ and Morot-Gaudry JF (eds) Plant Nitrogen, pp. 237–254. Springer, Berlin

    Google Scholar 

  • Gastal F and Saugier B (1989) Relationships between nitrogen uptake and carbon assimilation in whole plants of tall fescue. Plant Cell Environ 12: 407–418

    Google Scholar 

  • Gesch RW, Boote KJ, Vu JCV, Allen LH and Bowes G (1998) Changes in growth CO2 result in rapid adjustments of ribulose-1,5-bisphosphate carboxylase oxygenase small subunit gene expression in expanding and mature leaves of rice. Plant Physiol 118: 521–529

    Article  CAS  PubMed  Google Scholar 

  • Graham IA, Denby KJ and Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene-expression in cucumber. Plant Cell 6: 761–772

    Article  CAS  PubMed  Google Scholar 

  • Guyer D, Patton D and Ward E (1995) Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc Natl Acad Sci USA 92: 4997–5000

    CAS  PubMed  Google Scholar 

  • Halford N and Hardie D (1998) SNF1-related protein kinases: Global regulators of carbon metabolism in plants? Plant Mol Biol 37: 735–748

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch AG (1994) Translational control of GCN4—An In Vivo Barometer of initiation-factor activity. Trends Biochem Sci 19: 409–414

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch AG (1997) Translational regulation of yeast GCN4—A window on factors that control initiator-tRNA binding to the ribosome. J Biol Chem 272: 21661–21664

    Article  CAS  PubMed  Google Scholar 

  • Hoff T, Truong HN and Caboche M (1994) The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ 17: 489–506

    CAS  Google Scholar 

  • Huber JL, Huber SC, Campbell WH and Redinbaugh MG (1992) Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch Biochem Biophys 296: 58–65

    Article  CAS  PubMed  Google Scholar 

  • Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E and Smeekens S (2000) The Arabidopsis sucrose-uncoupled 6 gene is identical to abscisic acid-insensitive 4: In volvement of abscisic acid in sugar responses. Plant J 23: 577–585

    Article  CAS  PubMed  Google Scholar 

  • Huppe HC and Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45: 577–607

    Article  CAS  Google Scholar 

  • Jang JC and Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2: 208–214

    Article  Google Scholar 

  • Jang JC, Leon P, Zhou L and Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19

    Article  CAS  PubMed  Google Scholar 

  • Kaiser WM and Förster J (1989) Low CO2 prevents nitrate reduction in leaves. Plant Physiol 91: 970–974

    CAS  Google Scholar 

  • Kaiser WM and Huber SC (1994) Post-translational regulation of nitrate reductase in higher plants. Plant Physiol 106: 817–821

    CAS  PubMed  Google Scholar 

  • Keys AJ (1999) Biochemistry of photorespiration and the consequences for plant performance. In Bryant JA, Burrell MM and Kruger NJ (eds) Plant Carbohydrate Biochemistry, pp. 147–161. BIOS Scientific, Oxford

    Google Scholar 

  • Keys AJ, Bird IF, Cornelius MJ, Lea PJ, Miflin BJ and Wallsgrove RM (1978) Photorespiratory nitrogen cycle. Nature 275: 741–743

    Article  Google Scholar 

  • Khamis S, Lamaze T, Lemoine Y and Foyer CH (1990) Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation. Relationships between electron transport and carbon assimilation. Plant Physiol 94: 1436–1443

    CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 509–540

    Article  CAS  PubMed  Google Scholar 

  • Lancien M., Gadal P and Hodges M (2000) Enzyme redundancy and the importance of 2-oxoglutarate in higher plant ammonium assimilation. Plant Physiol 123: 817–824

    Article  CAS  PubMed  Google Scholar 

  • Larsen PO, Cornwell KL, Gee SL and Bassham JA (1981) Amino acid synthesis in photosynthesizing spinach cells. Effects of ammonia on pool sizes and rates of labeling from 14CO2. Plant Physiol 68: 292–299

    CAS  Google Scholar 

  • Lewis E Noctor G, Causton D and Foyer CH (2000) Regulation of assimilate partitioning in leaves. Aust J Plant Physiol 27: 507–517

    Google Scholar 

  • Martin T, Hellmann H, Schmidt R, Willmitzer L and Frommer WB (1997) Identification of mutants in metabolically regulated gene expression. Plant J 11: 53–62

    CAS  PubMed  Google Scholar 

  • Masclaux C, Valadier MH, Brugière N, Morot-Gaudry JF and Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211: 510–518

    Article  CAS  PubMed  Google Scholar 

  • Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A and Stitt M (2001) The immediate cause of the diurnal changes of nitrogen metabolism in leaves of nitrate-replete tobacco: A major imbalance between the rate of nitrate reduction and the rates of nitrate uptake and ammonium metabolism during the first part of the light period. Plant Cell Environ 24: 177–190

    CAS  Google Scholar 

  • Miflin BJ and Lea P (1982) Ammonia assimilation. In: Miflin BJ (ed), The Biochemistry of Plants, pp. 169–202, Vol 5. Academic press, New York

    Google Scholar 

  • Migge A, Bork C, Hell R and Becker TW (2000) Negative regulation of nitrate reductase gene expression by glutamine or asparagine accumulating in leaves of sulfur-deprived tobacco. Planta 211: 587–595

    Article  CAS  PubMed  Google Scholar 

  • Mita S, Hirano H and Nakamura K (1997a) Negative regulation in the expression of a sugar inducible gene in Arabidopsis thaliana—A recessive mutation causing enhanced expression of a gene for beta amylase. Plant Physiol 114: 575–582

    Article  CAS  PubMed  Google Scholar 

  • Mita S, Murano N, Akaike M and Nakamura K (1997b) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J 11: 841–851

    Article  CAS  PubMed  Google Scholar 

  • Moorhead G, Douglas P, Cotelle V, Harthill J, Morrice N, Meek S, Deiting U, Stitt M, Scarabel M, Aitken A and MacKintosh C (1999) Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J 18: 1–12

    Article  CAS  PubMed  Google Scholar 

  • Morcuende R, Krapp A, Hurry V and Stitt M (1998) Sucrose feeding leads to increased rates of nitrate assimilation, increased rates of α-oxoglutarate synthesis, and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Planta 206: 394–409

    Article  CAS  Google Scholar 

  • Morot-Gaudry JF, Job D and Lea PJ (2001) Amino acid metabolism. In: Lea PJ and Morot-Gaudry JF (eds) Plant Nitrogen, pp 167–211. Springer Verlag, Berlin

    Google Scholar 

  • Müller C, Scheible WR, Stitt M and Krapp A (2001) Influence of malate and 2-oxoglutarate on the NIA transcript and nitrate reductase activity in tobacco leaves. Plant Cell Environ 24: 191–203

    Google Scholar 

  • Murchie EH, Ferrario-Méry S, Valadier MH and Foyer CH (2000) Short-term nitrogen-induced modulation of phosphoenolpyruvate carboxylase in tobacco and maize leaves. J Exp Bot 51: 1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L and Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 11: 471–482

    Google Scholar 

  • Noctor G, Novitskaya L, Lea PJ and Foyer CH (2002a) Coordination of leaf minor amino acid contents in crop species: Significance and interpretation. J Exp Bot 53: 939–945

    CAS  PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S., Novitskaya L and Foyer CH (2002b) Drought and oxidative load in wheat leaves: A predominant role for photorespiration? Ann Bot 89: 841–850

    Article  CAS  PubMed  Google Scholar 

  • Novitskaya L, Trevanion S, Driscoll SD, Foyer CH and Noctor G (2002) How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. Plant Cell Environ 25: 821–835

    Article  CAS  Google Scholar 

  • Pace GH, Volk RJ and Jackson WA (1990) Nitrate reduction in response to CO2-limited photosynthesis. Relationship to carbohydrate supply and nitrate reductase activity in maize seedlings. Plant Physiol 92: 286–292

    CAS  Google Scholar 

  • Pärnik T and Keerberg O (1995) Decarboxylation of primary and end products of photosynthesis at different oxygen concentrations. J Exp Bot 46: 1439–1447

    Google Scholar 

  • Paul JS, Cornwell KL and Bassham JA (1978) Effects of ammonia on carbon metabolism in photosynthesizing isolated mesophyll cells from Papaver somniferum L. Planta 142: 49–54

    Article  CAS  Google Scholar 

  • Pego JV, Kortstee AJ, Huijser G and Smeekens SGM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51: 407–416

    Article  CAS  PubMed  Google Scholar 

  • Reed AJ, Canvin DT, Sherrard JH and Hageman RH (1983) Assimilation of [15N]nitrate and of [15N]nitrite in leaves of five plant species under light and dark conditions. Plant Physiol 71: 291–294

    CAS  Google Scholar 

  • Rufty TW, Huber SC and Volk RJ (1988) Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol 88: 725–730

    CAS  Google Scholar 

  • Rufty TW, MacKown CT and Volk RJ (1989) Effects of altered carbohydrate availability on whole plant assimilation of 15NO 3 Plant Physiol 89: 457–163

    CAS  Google Scholar 

  • Sattlegger E, Hinnebusch AG and Barthelmess IB (1998) cpc-3, the Neurospora crassa homologue of yeast GCN2, encodes a polypeptide with juxtaposed eIFα kinase and histidyl-tRNA synthetase-related domains required for general amino acid control. J Biol Chem 273: 20404–20416

    Article  CAS  PubMed  Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M and Stitt M (1997a) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11: 671–691

    Article  CAS  Google Scholar 

  • Scheible WR, Gonzáles-Fontes A, Lauerer M, Müller-Röber B, Caboche M and Stitt M (1997b) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9: 783–798

    Article  CAS  PubMed  Google Scholar 

  • Scheible WR, Gonzáles-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze ED, Caboche M and Stitt M (1997c) Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta 203: 304–319

    Article  CAS  PubMed  Google Scholar 

  • Scheible WR, Krapp A and Stitt M (2000) Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ 23: 1155–1167

    Article  CAS  Google Scholar 

  • Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73: 147–152

    CAS  Google Scholar 

  • Signora L, De Smet, I, Foyer CH and Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28: 655–662

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S and Rook F (1997) Sugar sensing and sugar mediated signal transduction in plants. Plant Physiol 115: 7–13

    CAS  PubMed  Google Scholar 

  • Somerville SC and Ogren WL (1983) An Arabidopsis thaliana mutant defective in chloroplast dicarboxylate transport. Proc Natl Acad Sci USA 80: 1290–1294

    CAS  Google Scholar 

  • Stitt M and Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant Cell Environ 22: 583–621

    Article  CAS  Google Scholar 

  • Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR and Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53: 959–970

    Article  CAS  PubMed  Google Scholar 

  • Sudgen C, Donaghy P, Halford N and Hardie D (1999) Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-Coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Plant Physiol 120: 257–274

    Google Scholar 

  • Trevanion SJ (2000) Photosynthetic carbon metabolism in wheat (Triticum aestivum L.) leaves: Optimization of methods for determination of fructose 2,6-bisphosphate. J Exp Bot 51: 1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, Schuller KA, Smith RG, Feil R, Plaxton WC and Turpin DH (1990) Relationship between NH +4 assimilation rate and in vivo phosphoenolpyruvate carboxylase activity. Regulation of anaplerotic carbon flow in the green alga Selenastrum minutum. Plant Physiol 94: 284–290

    CAS  Google Scholar 

  • Van Oosten JJ and Besford RT (1996) Acclimation of photosynthesis to elevated CO2 through feedback regulation of gene expression: Climate of opinion. Photosynth Res 48: 353–365

    Article  Google Scholar 

  • Van Oosten JJ, Gerbaud A, Huijser C, Dijkwel PP, Chua N-H and Smeekens SCM (1997) An Arabidopsis mutant showing reduced feedback inhibition of photosynthesis. Plant J 12: 1011–1020

    PubMed  Google Scholar 

  • Vincentz M and Caboche M (1991) Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants. EMBO J 10: 1027–1035

    CAS  PubMed  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker MT Vaucheret H and Caboche M (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3: 315–324

    Article  CAS  PubMed  Google Scholar 

  • Wek RC, Jackson BM and Hinnebusch, AG (1989) Juxtaposition of domains homologous to protein kinases and histidyl-transfer RNA-synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino-acid availability. Proc Natl Acad Sci USA 86: 4579–4583.

    CAS  PubMed  Google Scholar 

  • Zhang H, Jennings A, Barlow PW and Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96: 6529–6534

    CAS  PubMed  Google Scholar 

  • Zhang H and Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51: 51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Williams CC and Last RL (1998) Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10: 359–370

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Foyer, C.H., Noctor, G. (2002). Photosynthetic Nitrogen Assimilation: Inter-Pathway Control and Signaling. In: Foyer, C.H., Noctor, G. (eds) Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. Advances in Photosynthesis and Respiration, vol 12. Springer, Dordrecht. https://doi.org/10.1007/0-306-48138-3_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48138-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6336-1

  • Online ISBN: 978-0-306-48138-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics