Skip to main content

Starch Metabolism in Leaves

  • Chapter
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 9))

Summary

Starch is a carbohydrate reserve used by many higher plants. Transitory starch is synthesized in the chloroplasts of higher plants both as an overflow for newly-assimilated carbon and as a reserve of carbohydrate for periods of darkness when photosynthesis is not possible. Starch is present in the chloroplast as insoluble granules consisting of two types of glucose polymer: amylopectin and amylose. The pathway of synthesis has been well defined and involves the action of phosphoglucomutase, ADPglucose pyrophosphorylase, starch synthases, and branching enzymes. However, there are multiple isoforms of starch synthases and branching enzymes and the extent to which different isoforms play distinct roles in determining starch structure is not clear. The simultaneous action of degradative enzymes may also play a role in determining the structure of starch during its synthesis. It is likely that starch synthesis is regulated through the allosteric control of ADPglucose pyrophosphorylase. Many enzymes have beenimplicated in the process of transitory starch degradation although few have been confirmed to play a role in vivo. It is not clear whether the initial attack on the starch granules is hydrolytic—catalyzed by amylases—or phosphorolytic—catalyzed by starch phosphorylase. The route by which sugar is released from shorter soluble glucan chains also remains unclear. There is physiological evidence that the process of starch degradation is subject to regulation. However, given the uncertainty about the mechanism of starch degradation, it is not possible to develop hypotheses about its regulation. The products of degradation may be exported from the chloroplast as sugars or as triose phosphate, but there is evidence that sucrose synthesis in the cytosol at night is supported by the export from the chloroplast of sugars rather than triose phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

3-PGA:

3-phosphoglycerate

AGPase:

ADPglucose pyrophosphorylase

GBSSI:

granule-bound starch synthase I

PGM:

phosphoglucomutase

Pi:

inorganic phosphate

SSI:

starch synthase I

SSII:

starch synthase II

SSIII:

starch synthase III

TPT:

triose-phosphate translocator

References

  • Abel GJW, Springer F, Willmitzer L and Koβmann J (1996) Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). Plant J 10: 981–991

    Article  CAS  PubMed  Google Scholar 

  • ap Rees T (1995) Where do plants make ADPglc? In: Pontis HG, Salerno GL and Echeverria EJ (eds) Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology. Am Soc Plant Physiologists Symp 14, pp 143–155. Am Soc Plant Physiologists, Baltimore

    Google Scholar 

  • ap Rees T and Hill SA (1994) Metabolic control analysis of plant metabolism. Plant Cell Env 17: 587–599

    CAS  Google Scholar 

  • Baba T, Nishihara M, Mizuno K, Kawasaki T, Shimada H, Kobayashi E, Ohnishi S, Tanaka K and Arai Y (1993) Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiol 103: 565–573

    Article  CAS  PubMed  Google Scholar 

  • Badenhuizen NP (1969) The Biogenesis of Starch Granules in Higher Plants. Appleton-Century Crofts, New York

    Google Scholar 

  • Ball S, Guan H-P, James M, Myers A, Keeling P, Mouille G, Buléon A, Colonna P and Preiss J (1996) From glycogen to amylopectin: A model for the biogenesis of the starch granule. Cell 86: 349–352

    Article  CAS  PubMed  Google Scholar 

  • Ballicora MA, Laughlin MJ, Fu Y, Okita, TW, Barry GF and Preiss J (1995) Adenosine 5’-diphosphate-glucose from potato tuber. Significance of the N terminus of the small subunit for catalytic properties and heat stability. Plant Physiol 109: 245–251

    Article  CAS  PubMed  Google Scholar 

  • Barnes SA, Knight JS and Gray JC (1994) Alteration of the amount of the chloroplast phosphate translocator in transgenic tobacco affects the distribution of assimilate between starch and sugar. Plant Physiol 106: 1123–129

    CAS  PubMed  Google Scholar 

  • Beck E (1985) The degradation of transitory starch granules in chloroplasts. In: Heath RL and Preiss J (eds) Regulation of Carbon Partitioning in Photosynthetic Tissue, pp 27–44. Waverley Press, Baltimore

    Google Scholar 

  • Beck E and Ziegler P (1989) Biosynthesis and degradation of starch in higher plants. Ann Rev Plant Physiol Plant Mol Biol 40: 95–117

    CAS  Google Scholar 

  • Beers EP, Duke SH and Henson CA (1990) Partial characterization and subcellular localisation of three α-glucosidase isoforms in pea (Pisum sativum L.) seedlings. Plant Physiol 94: 738–744

    CAS  Google Scholar 

  • Bhattacharyya MK, Smith AM, Ellis THN, Hedley C and Martin C (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch branching enzyme. Cell 60: 115–121

    Article  CAS  PubMed  Google Scholar 

  • Borland AM and Farrar JF (1988) Compartmentation and fluxes of carbon in leaf blades and leaf sheaths of Poa annua L. and Poa x jemtlandica (Almq.) Richt. Plant Cell Env 11: 535–546

    Google Scholar 

  • Boyer CD and Preiss J (1978a) Multiple forms of (1-4)-α-D-glucan, (1-4)-m α-D-glucan-6-glycosyl transferase from developing maize kernels. Carbohydr Res 61: 312–334

    Article  Google Scholar 

  • Boyer CD and Preiss J (1978b) Multiple forms of starch branching enzyme of maize: Evidence for independent genetic control. Biochem Biophys Res Commun 80: 169–175

    Article  CAS  PubMed  Google Scholar 

  • Briggs DE (1967) A modified assay for α-amylase in germinating barley. J Inst Brewing 73: 361–370

    CAS  Google Scholar 

  • Brisson N, Giroux H, Zollinger M, Camirand A and Simard C (1989) Maturation and subcellular Compartmentation of potato starch phosphorylase. Plant Cell 1: 559–566

    Article  CAS  PubMed  Google Scholar 

  • Bulpin PV and ap Rees T (1978) Starch breakdown in the spadix of Arum maculatum. Phytochemistry 17: 391–396

    Article  CAS  Google Scholar 

  • Burton RA, Bewley JD, Smith AM, Bhattacharyya MK, Tatge H, Ring S, Bull V, Hamilton WDO and Martin C (1995) Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J 7: 3–15

    Article  CAS  PubMed  Google Scholar 

  • Buttrose MS (1960) Submicroscopic development and structure of starch granules in cereal endosperms. J Ultrastruct Res. 4: 231–257

    CAS  PubMed  Google Scholar 

  • Buttrose MS (1962) The influence of environment on the shell structure of starch granules. J Cell Biol 14: 159–167

    Article  CAS  PubMed  Google Scholar 

  • Buttrose MS (1963) Electron microscopy of acid degraded starch granules. Starch-Stärke 15: 85–92

    CAS  Google Scholar 

  • Caspar T, Huber SC and Somerville CR (1986) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase. Plant Physiol 79: 11–17

    Google Scholar 

  • Caspar T, Lin T-P, Monroe J, Benbow L, Preiss J and Somerville CR (1991) Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol 95: 1181–1188

    CAS  Google Scholar 

  • Chang CW (1979) Starch and its component ratio in developing cotton leaves. Plant Physiol 63: 973–977

    CAS  Google Scholar 

  • Chatterton NJ and Silvius JE (1980) Photosynthate partitioning into leaf starch as affected by daily photosynthetic period duration in six species. Physiol Plant 49: 141–144

    Google Scholar 

  • Copeland L and Preiss J (1981) Purification of spinach leaf ADPglucose pyrophosphorylase. Plant Physiol 68: 996–1001

    CAS  Google Scholar 

  • Corbesier L, Lejeune P and Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana—comparison between the wild type and a starchless mutant. Planta 206: 131–137

    Article  CAS  PubMed  Google Scholar 

  • Craig J, Lloyd JR, Tomlinson K, Barber L, Edwards A, Wang TL, Martin C, Hedley CL and Smith AM (1998) Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. Plant Cell 10: 413–246

    Article  CAS  PubMed  Google Scholar 

  • Dang PL and Boyer CD (1988) Maize leaf and kernel starch synthases and starch-branching enzymes. Phytochemistry 27: 1255–1259

    Article  CAS  Google Scholar 

  • Dang PL and Boyer CD (1989) Comparison of soluble starch synthases and starch branching enzymes from leaves and kernels of normal and amylose-extender maize. Biochem Genet 27: 521–532

    Article  CAS  PubMed  Google Scholar 

  • Denyer K and Smith AM (1992) The purification and characterisation of two forms of soluble starch synthase from pea embryos. Planta 186: 609–617

    Article  CAS  Google Scholar 

  • Denyer K, Sidebottom C, Hylton CM and Smith AM (1993) Soluble isoforms of starch synthase and starch branching enzyme also occur within starch granules in developing pea embryos. Plant J 4: 191–198

    Article  CAS  PubMed  Google Scholar 

  • Denyer K, Barber LM, Burton R, Hedley CL, Hylton CM, Johnson S, Jones DA, Marshall J, Smith AM, Tatge H, Tomlinson K and Wang TL (1995a) The isolation and characterisation of novel low-amylose mutants of Pisum sativum. Plant Cell Env 18: 1019–1026

    CAS  Google Scholar 

  • Denyer K, Hylton CM, Jenner CF and Smith AM (1995b) Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta 196: 256–265

    Article  CAS  Google Scholar 

  • Denyer K, Clarke B, Hylton C, Tatge H and Smith AM (1996a) The elongation of amylose and amylopectin chains in isolated starch granules. Plant J 10: 1135–1143

    Article  CAS  Google Scholar 

  • Denyer K, Dunlap F, Thørbjornsen T, Keeling P and Smith AM (1996b) The major form of ADP-glucose pyrophosphorylase in maize endosperm is extraplastidial. Plant Physiol 112: 779–785

    Article  CAS  PubMed  Google Scholar 

  • Denyer K, Barber LM, Edwards EA, Smith AM and Wang TL (1997) Two isoforms of the GBSSI class of granule-bound starch synthase are differentially expressed in the pea plant (Pisum sativum L), Plant Cell Env 20: 1566–1572

    CAS  Google Scholar 

  • Doehlert DC and Knutson CA (1991) Two classes of debranching enzymes from developing maize kernels. J Plant Physiol 138: 566–572

    CAS  Google Scholar 

  • Doehlert DC, Kuo TM, Juvik JA, Beers EP and Duke SH (1993) Characteristics of carbohydrate metabolism in sweet corn (sugary-1) endosperms. J Amer Soc Hort Sci 188: 661–666

    Google Scholar 

  • Doi A, Doi K and Nikuni Z (1965) ADP-D-glucose-α-1∶4-glucan α-4-glucosyltransferase in spinach chloroplasts. Partial purification and some properties of the enzyme. Biochim Biophys Acta 113: 312–320

    Google Scholar 

  • Dry I, Smith AM, Edwards EA, Bhattacharyya M, Dunn P and Martin C (1992) Characterisation of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs. Plant J 2: 193–202

    CAS  PubMed  Google Scholar 

  • Duwenig E, Steup M, Willmitzer L and Kossmann J (1998) Antisense inhibition of cytosolic phosphorylase in potato plants (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism. Plant J 12: 323–333

    Google Scholar 

  • Edwards A, Marshall J, Sidebottom C, Visser RGF, Smith AM and Martin C (1995) Biochemical and molecular characterisation of a novel starch synthase from potato tubers. Plant J 8: 283–294

    Article  CAS  PubMed  Google Scholar 

  • Edwards A, Marshall J, Denyer K, Sidebottom C, Visser RGF, Martin C and Smith AM (1996) Evidence that a 77-kilodalton protein from the starch of pea embryos is an isoform of starch synthase that is both soluble and granule bound. Plant Physiol 112: 89–97

    Article  CAS  PubMed  Google Scholar 

  • Farrar JF and Williams ML (1991) The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant Cell Env 14: 819–830

    CAS  Google Scholar 

  • Fisher DK, Gao M, Kim K-N, Boyer CD and Guiltinan MJ (1996) Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiol 110: 611–619

    CAS  PubMed  Google Scholar 

  • Fliege R, Flügge U-I, Werdan K and Heldt HW (1978) Specific transport of inorganic phosphate, 3-phosphoglycerate and triose phosphate across the inner membrane of the envelope in spinach chloroplasts. Biochim. Biophys Acta 502: 232–247

    CAS  PubMed  Google Scholar 

  • Flügge U-I and Heldt HW (1991) Metabolite translocators of the chloroplast envelope. Ann Rev Plant Physiol Plant Mol Biol 42: 129–144

    Google Scholar 

  • Fondy BR and Geiger DR (1982) Diurnal pattern of translocation and carbohydrate metabolism in source leaves of Beta vulgaris L. Plant Physiol 70: 671–676

    CAS  Google Scholar 

  • Fondy BR, Geiger DR and Servaites JC (1989) Photosynthesis, carbohydrate metabolism and export in Beta vulgaris L. and Phaseolus vulgaris L. during square and sinusoidal light regimes. Plant Physiol 89: 396–402

    CAS  Google Scholar 

  • Franceschi VR and Giaquinta RT (1983) The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. Planta 157: 422–431

    CAS  Google Scholar 

  • French D (1984) Organisation of starch granules. In: Whistler RL, BeMiller JN and Paschall FF (eds) Starch: Chemistry and Technology, pp 183–247. Academic Press, Orlando

    Google Scholar 

  • Frydman RB and Cardini CE (1964) Soluble enzymes related to starch synthesis. Biochem Biophys Res Commun 17: 407–411

    Article  CAS  Google Scholar 

  • Frydman RB and Cardini CE (1967) Studies on the biosynthesis of starch. J Biol Chem 242: 312–317

    CAS  PubMed  Google Scholar 

  • Fukui T, Nakano K, Tagaya M and Nakayama H (1987) Phosphorylase isozymes of higher plants. In: Korpela T and Christen P (eds) Biochemistry of Vitamin B6, pp 267–276. Birkhauser Verlag, Basel

    Google Scholar 

  • Galliard T (1987) Starch: Properties and potential. John Wiley and Sons, Chichester

    Google Scholar 

  • Gao M, Fisher DK, Kim K-N, Shannon JC and Guiltinan MJ (1996) Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests specialization. Plant Mol Biol 30: 1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Fisher DK, Kim K-N, Shannon JC and Guiltinan MJ (1997) Independent genetic control of maize starch-branching enzymes IIa and IIb. Plant Physiol 114: 69–78

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Wanat J, Stinard PS, James MG and Myers AM (1998) Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell 10: 399–412

    Article  CAS  PubMed  Google Scholar 

  • Geiger DR., Shieh W-J and Yu X-M (1995) Photosynthetic carbon metabolism and translocation in wild-type and starch-deficient mutant Nicotiana sylvestris L. Plant Physiol 107: 507–514

    CAS  PubMed  Google Scholar 

  • Gerhardt R, Stitt M and Heldt HW (1987) Subcellular metabolite levels in spinach leaves. Plant Physiol 83: 399–407

    CAS  Google Scholar 

  • Ghiena C, Schulz M and Schabl H (1993) Starch degradation and distribution of the starch degrading enzymes in Vicia faba leaves. Plant Physiol 101: 73–79

    CAS  PubMed  Google Scholar 

  • Gordon AJ, Ryle GJA, Powell CE and Mitchell D (1980) Export, mobilisation and respiration of assimilates in uniculm barley during light and darkness. J Exp Bot 31: 461–473

    Google Scholar 

  • Guan HP and Preiss J (1993) Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol 102: 1269–1273

    CAS  PubMed  Google Scholar 

  • Guan H, Kuirki T, Sivak M and Preiss J (1995) Maize branching enzyme catalyzes synthesis of glycogen-like polysaccharide in glgB-deficient Escherichia coli. Proc Natl Acad Sci USA 92: 964–967

    CAS  PubMed  Google Scholar 

  • Hanson KR and McHale NA (1988) A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase. Plant Physiol 88: 838–844

    CAS  Google Scholar 

  • Harn C, Knight M, Ramakrishnan A, Guan HP, Keeling PL and Wasserman BP (1998) Isolation and characterization of the Ss2 starch synthase cDNA clones from maize endosperm. Plant Molec Biol 37: 629–637

    Google Scholar 

  • Harrison CJ, Hedley CL and Wang TL (1997) Evidence that the rug3 locus of pea (Pisum sativum L.) encodes plastidial phosphoglucomutase confirms that the imported substrate for starch synthesis in pea amyloplasts is glucose 6-phosphate. Plant J 13: 753–762

    Google Scholar 

  • Häusler RE, Schlieben NH, Schulz B and Flügge UI (1998) Compensation of decreased triose phosphate/phosphate translocator activity by accelerated starch turnover and glucose transport in transgenic tobacco. Planta 204: 366–376

    PubMed  Google Scholar 

  • Hawker JS, Ozbun JL, Ozaki H, Greenberg E and Preiss J (1974) Interaction of spinach leaf ADPglucose starch synthase and branching enzyme in the synthesis of branched α-glucan. Arch Biochem Biophys 160: 530–551

    Article  CAS  PubMed  Google Scholar 

  • Heineke D, Kruse A, Flügge U-I, Frommer WB, Riesmeier JW, Willmitzer L and Heldt HW (1994) Effect of antisense repression of the chloroplast translocator on photosynthesis metabolism in transgenic potato plants. Planta 193: 174–180

    Article  CAS  Google Scholar 

  • Heldt HW, Chon CJ, Maronde D, Herold A, Stankovic ZS, Walker DA, Kraminer A, Kirk MR and Heber U (1977) Role of orthophosphate and other factors in regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol 59: 1146–1155

    CAS  Google Scholar 

  • Herold A, Leegood RC, McNeil PH and Robinson SP (1981) Accumulation of maltose during photosynthesis in protoplasts isolated from spinach leaves treated with mannose. Plant Physiol 67: 85–88

    CAS  Google Scholar 

  • Hewitt JD, Casey LL and Zobel RW (1985) Effect of day length and night temperature on starch accumulation and degradation in soybean. Ann Bot 56: 513–522

    CAS  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147: 342–347

    Article  CAS  Google Scholar 

  • Hovenkamp-Hermelink JHM, de Vries JN, Adamse P, Jacobsen E, Witholt B and Feenstra WJ (1988) Rapid estimation of the amylose/amylopectin ratio of small amounts of tuber and leaf tissue of the potato. Potato Res 31: 241–246

    CAS  Google Scholar 

  • Huber SC and Hanson KR (1992) Carbon partitioning and growth of a starchless mutant of Nicotiana sylvestris. Plant Physiol 99: 1449–1454

    CAS  Google Scholar 

  • Hylton CM, Denyer K, Keeling P, Chang M-Y and Smith AM (1996) The effect of waxy mutations on the granule-bound starch synthases of barley and maize endosperms. Planta 198: 230–237

    Article  CAS  Google Scholar 

  • Imberty A, Buléon A, Tran V, Pérez S (1991) Recent advances in knowledge of starch structure. Starch-Stárke 43: 375–384

    CAS  Google Scholar 

  • Ishizaki Y, Taniguchi H and Nakamura M (1978) A debranching enzyme of the isoamylase-type from potato (Solanum tuberosum L.). Agr Biol Chem 42: 2433–2435

    CAS  Google Scholar 

  • Ishizaki Y, Taniguchi H, Maruyama Y and Nakamura M (1983) Debranching enzymes of potato tubers (Solanum tuberosum L.) I. Purification and some properties of potato isoamylase. Agr Biol Chem 47: 771–779

    CAS  Google Scholar 

  • Jablonski LM and Geiger DR (1987) Responses of sugar beet plant morphology and carbon distribution to shortened days. Plant Physiol Biochem 25: 787–796

    Google Scholar 

  • Jacobsen E, Hovenkamp-Hermelink JMH, Krigsheld HT, Nijdam H, Pijnacker LP, Witholt B and Feenstra WJ (1989) Phenotypic and genotypic characterisation of an amylose-free starch mutant of potato. Euphytica 44: 43–48

    Article  Google Scholar 

  • Jacobsen JV, Hanson AD and Chandler PC (1986) Water stress enhances expression of α-amylase gene in barley leaves. Plant Physiol 80: 350–359

    CAS  Google Scholar 

  • James MG, Robertson DS and Myers AM (1995) Characterization ofthe maize gene sugary1:A determinant of starch composition in kernels. Plant Cell 7: 417–429

    Article  CAS  PubMed  Google Scholar 

  • Jenkins PJ, Cameron RE and Donald AM (1993) A universal feature in the structure of starch granules from different botanical sources. Starch-Stárke 45: 417–420

    CAS  Google Scholar 

  • Kacser H and Burns JA (1973) The control of flux. Symp Soc Exp Biol 27: 65–104

    CAS  PubMed  Google Scholar 

  • Kacser H, Burns JA and Fell DA (1995) The control of flux. Biochem Soc Trans 23: 341–366

    CAS  PubMed  Google Scholar 

  • Kakefuda G and Preiss J (1997) Partial purification and characterization of a diurnally fluctuating novel endoamylase from Arabidopsis thaliana leaves. Plant Physiol Biochem 35: 907–913

    CAS  Google Scholar 

  • Kakefuda G, Duke SH and Hostak MS (1986) Chloroplast and extrachloroplastic starch-degrading enzymes in Pisum sativum. Planta 168: 175–182

    CAS  Google Scholar 

  • Kalt-Torres W and Huber SC (1987) Diurnal changes in maize leaf photosynthesis. Plant Physiol 83: 294–298

    CAS  Google Scholar 

  • Kleczkowski LA, Villand P, Preiss J and Olsen O-A (1993) Kinetic mechanism and regulation of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) leaves. J Biol Chem 268: 6228–6233

    CAS  PubMed  Google Scholar 

  • Knight ME, Harn C, Lilley CE, Guan HP, Singletary GW, Mu-Foster C, Wasserman BP and Keeling PL (1998) Molecular cloning of starch synthase I from maize (W64) endosperm and expression in Escherichia coli. Plant J 14: 613–622

    Article  CAS  PubMed  Google Scholar 

  • Krishnan HB, Reeves CD and Okita TW (1986) ADPglucose pyrophosphorylase is encoded by different mRNA transcripts in leaf and endosperm of cereals. Plant Physiol 81: 642–645

    CAS  Google Scholar 

  • Kruckeberg AL., Neuhaus HE, Feil R, Gottlieb LD and Stitt M (1989) Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Biochem J 261: 457–467

    CAS  PubMed  Google Scholar 

  • Kruger NJ and ap Rees T (1983a) Maltose metabolism by pea chloroplasts. Planta 158: 179–184

    Article  CAS  Google Scholar 

  • Kruger NJ and ap Rees T (1983b) Properties of α-glucan phosphorylase from pea chloroplasts. Phytochemistry 22: 1891–1898

    CAS  Google Scholar 

  • Kruger NJ, Bulpin PV and ap Rees T (1983) The extent of starch degradation in the light in pea leaves. Planta 157: 271–273

    Article  Google Scholar 

  • Kühn C, Quick WP, Schulz A, Riesmeier JW, Sonnewald U and Frommer WB (1996) Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant Cell Env 19: 1115–1123

    Google Scholar 

  • La Cognata U, Willmitzer L and Müller-Röber B (1995) Molecular cloning and characterization of novel isoforms of potato ADP-glucose pyrophosphorylase. Mol Gen Genet 246: 538–548

    Article  PubMed  Google Scholar 

  • Leidreiter K, Heineke D, Heldt HW, Müller-Röber B, Sonnewald U and Willmitzer L (1995) Leaf-specific antisense inhibition of starch biosynthesis in transgenic potato plants leads to an increase in photoassimilate exportfrom source leaves during the light period. Plant Cell Physiol 36: 615–624

    CAS  Google Scholar 

  • Li B, Servaites JC and Geiger DR (1992a) Characterization and subcellular localization of debranching enzyme and endoamylase from leaves of sugar beet. Plant Physiol 98: 1277–1284

    CAS  Google Scholar 

  • Li B, Geiger DR and Shieh W-J (1992b) Evidence for circadian regulation of starch and sucrose synthesis in sugar beet leaves. Plant Physiol 99: 1393–1399

    CAS  Google Scholar 

  • Lin T-P and Preiss J (1988) Characterisation of D-enzyme (4-alpha glucanotransferase) in Arabidopsis leaf. Plant Physiol 86: 260–265

    CAS  Google Scholar 

  • Lin T-P, Spilatro SR and Preiss J (1988a) Subcellular localization and characterization of amylases in Arabidopsis leaf. Plant Physiol 86: 251–259

    CAS  Google Scholar 

  • Lin T-P, Caspar T, Somerville C and Preiss J (1988b) Isolation and characterization of a starchlessmutant of Arabidopsis thaliana (L.) Heynh lacking ADPglucose pyrophosphorylase activity. Plant Physiol 86: 1131–1135

    CAS  Google Scholar 

  • Lin T-P, Caspar T, Somerville C and Preiss J (1988c) A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol 88: 1175–1181

    CAS  Google Scholar 

  • Lorbeth R, Ritte G, Willmitzer L and Kossmann J (1998) Inhibition of a starch-granule bound protein leads to modified starch and repression of cold sweetening. Nature Biotech 6: 473–477

    Google Scholar 

  • Lorenzen JH and Ewing EE (1992) Starch accumulation in leaves of potato (Solanum tuberosum L.) during the first 18 days of photoperiod treatment. Ann Bot 69: 481–485

    CAS  Google Scholar 

  • Ludewig F, Sonnewald U, Kauder F, Heineke D, Geiger M, Stitt M, Müller-Röber B, Gillissen B, Kuhn C and Frommer WB (1998) The role of transient starch in acclimation to elevated atmospheric CO2. FEBS Lett 429: 147–151

    Article  CAS  PubMed  Google Scholar 

  • Ludwig I, Ziegler P and Beck E (1984) Purification and properties of spinach leaf debranching enzyme. Plant Physiol 74: 856–861

    CAS  Google Scholar 

  • Manners, DJ and Rowe KL (1969) Studies on carbohydrate-metabolising enzymes. Carbohydr. Res. 9: 107–121

    CAS  Google Scholar 

  • Marshall J, Sidebottom C, Debet M, Martin C, Smith AM and Edwards A (1996) Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell 8: 1121–1135

    Article  CAS  PubMed  Google Scholar 

  • Martin C and Smith AM (1995) Starch biosynthesis. Plant Cell 7: 971–985

    Article  CAS  PubMed  Google Scholar 

  • Matheson NK (1996) The chemical structure of amylose and amylopectin fractions of starch from tobacco leaves during development and diurnally-nocturnally. Carbohydr Res 282: 247–262

    Article  CAS  PubMed  Google Scholar 

  • Matheson NK and Wheatley JM (1962) Starch changes in developing and senescing tobacco leaves. Aust J Biol Sci 15: 445–458

    CAS  Google Scholar 

  • Matheson NK and Wheatley JM (1963) Diurnal-nocturnal changes in the starch of tobacco leaves. Aust J Biol Sci 16: 70–76

    CAS  Google Scholar 

  • Mizuno K, Kimura K, Arai Y, Kawasaki T and Shimada H (1992) Starch branching enzyme from immature rice seeds. J Biochem 112: 643–651

    CAS  PubMed  Google Scholar 

  • Mizuno K, Kawasaki T, Shimada H, Satoh H, Kobayashi E, Okumura S, Arai Y and Baba T (1993) Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J Biol Chem 268: 19084–19091

    CAS  PubMed  Google Scholar 

  • Monroe JD, Salminen MD and Preiss J (1991) Nucleotide sequence of a cDNA clone encoding a beta-amylase from Arabidopsis thaliana. Plant Physiol 97 1599–1601

    CAS  Google Scholar 

  • Morell, MK, Bloom M and Preiss J (1988) Affinity labelling of the allosteric activator site(s) of spinach leaf ADP-glucose pyrophosphorylase. J Biol Chem 263: 633–637

    CAS  PubMed  Google Scholar 

  • Morell MK, Blennow A, Kosar-Hashemi B and Samuel MS (1997) Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiol 113: 201–208

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Tanizawa K and Fukui T (1991) Potato tuber type H phosphorylase isozyme: molecular cloning, nucleotide sequence and expression of a full-length complementary DNA in Escherichia coli. J Biol Chem 266: 18446–18453

    CAS  PubMed  Google Scholar 

  • Mouille G, Maddelein M-L, Libessart N, Tagala P, Decq A, Delrue B and Ball S (1996) Pre-amylopectin processing: A mandatory step for starch biosynthesis in plants. Plant Cell 8: 1353–1366

    Article  CAS  PubMed  Google Scholar 

  • Mullen JA and Koller HR (1988a) Trends in carbohydrate depletion, respiratory carbon loss, and assimilate export from soybean leaves at night. Plant Physiol 86: 517–521

    CAS  Google Scholar 

  • Mullen JA and Koller HR (1988b) Daytime and nighttime carbon balance and assimilate export in soybean leaves at different photon flux densities. Plant Physiol 86: 880–884

    CAS  Google Scholar 

  • Müller-Röber B, Kossman J, Hannah LC, Willmitzer L and Sonnewald U (1990) Only one of two different ADPglucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet 224: 136–146

    PubMed  Google Scholar 

  • Müller-Röber B, La Cognata U, Sonnewald U and Willmitzer U (1994) A truncated version of an ADP-glucose pyrophos-phorylase promoter from potato specifies guard cell-selective expression in transgenic plants Plant Cell 6: 601–612

    PubMed  Google Scholar 

  • Nakamura Y (1996) Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci 121: 1–18

    Article  CAS  Google Scholar 

  • Nakamura Y, Umemoto T, Ogata N, Kuboki Y, Yano M and Sasaki T (1996) Starch debranching enzyme(R-enzyme or pullulanase from developing rice endosperm: Purification, cDNA and chromosomal localization of the gene. Planta 199: 209–218

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Mori H and Fukui T (1989) Molecular cloning of cDNA encoding potato amyloplast α-glucan phosphorylase and the structure of its transit peptide. J Biochem 106: 691–695

    CAS  PubMed  Google Scholar 

  • Nakata PA and Okita TW (1995) Differential regulation of ADP-glucose pyrophosphorylase in the sink and source tissues of potato. Plant Physiol 108: 361–368

    CAS  PubMed  Google Scholar 

  • Neuhaus HE and Stitt M (1990) Control analysis of photosynthate partitioning—impact of reducedactivity of ADPglucose pyrophosphorylase or plastid phosphoglucomutase on the fluxes to starch and sucrose in Arabidopsis thaliana (L.) Heynh. Planta 182: 445–454

    CAS  Google Scholar 

  • Neuhaus HE, Kruckeberg AL, Feil R and Stitt M (1989) Reduced activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. II Study of the mechanisms which regulate photosynthate partitioning. Planta 178: 110–122

    Article  CAS  Google Scholar 

  • Okita TW, Greenberg E, Kuhn DN and Preiss J (1979) Subcellular localization of the starch degradative and biosynthetic enzymes of spinach leaves. Plant Physiol 64: 187–192

    CAS  Google Scholar 

  • Olive MR, Ellis RJ and Schuch WW (1989) Isolation and nucleotide sequences of cDNA clones encoding ADPglucose pyrophosphorylase polypeptides from wheat leaf and endosperm. Plant Mol Biol 12: 525–538

    Article  CAS  Google Scholar 

  • Ozbun JL, Hawker JS and Preiss J (1971) Multiple forms of α-1∶4 glucan synthetase from spinach leaves. Biochem Biophys Res Commun 43: 631–636

    Article  CAS  PubMed  Google Scholar 

  • Ozbun JL, Hawker JS and Preiss J (1972) Soluble adenosine diphosphate glucose-α-1∶-glucosyltransferases from spinach leaves. Biochem J 126: 953–963

    CAS  PubMed  Google Scholar 

  • Pan D and Nelson OE (1984) A debranching enzyme deficiency in endosperms of the sugary-1 mutants of maize. Plant Physiol 74: 324–328

    CAS  Google Scholar 

  • Paul MJ and Stitt M (1993) Effects of nitrogen and phosphorous deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedlings of tobacco and their response to exogenous sucrose. Plant Cell Env 16: 1047–1057

    CAS  Google Scholar 

  • Pongratz P and Beck E (1978) Diurnal oscillations of amylolytic activity in spinach chloroplasts. Plant Physiol 62: 687–689

    CAS  Google Scholar 

  • Preiss J (1982) Regulation of the biosynthesis and degradation of starch. Ann Rev Plant Physiol 33: 431–448

    CAS  Google Scholar 

  • Preiss J and Sivak M (1996) Starch synthesis in sinks and sources. In: Zamski E and Schaffer AA (eds) Photoassimilate Distribution in Plants and Crops, pp 63–94. Marcel Dekker, New York

    Google Scholar 

  • Prioul J-L, Jeannette E, Reyss A, Grégory N, Giroux M, Hannah LC and Causse M (1994) Expression of ADP-glucose pyrophosphorylase in maize (Zea mays L.) grain and source leaf during grain filling. Plant Physiol 104: 179–187

    Article  CAS  PubMed  Google Scholar 

  • Quick WP, Scheibe R and Neuhaus HE (1995) Induction of hexose-phosphate translocator activity in spinach chloroplasts. Plant Physiol 109: 113–121

    CAS  PubMed  Google Scholar 

  • Radwan MA and Stocking CR (1957) The isolation and characterization of sunflower leaf starch. Amer. J Bot. 44: 682–686

    CAS  Google Scholar 

  • Riesmeier JW, Flügge U-I, Schulz B, Heineke D, Heldt HW, Willmitzer L and Frommer WB (1993) Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants. Proc Natl Acad Sci USA 90: 6160–6164

    CAS  PubMed  Google Scholar 

  • Robinson SP and Walker DA (1979) The control of 3-phosphoglycerate reduction in isolated chloroplasts by the concentrations of ATP, ADP and 3-phosphoglycerate. Biochim Biophys Acta 545: 528–536

    CAS  PubMed  Google Scholar 

  • Rost S, Frank C and Beck E (1996) The chloroplast envelope is permeable for maltose but not for maltodextins. Biochim Biophys Acta 1291: 221–227

    CAS  PubMed  Google Scholar 

  • Rufty TW, Huber SC and Volk RJ (1988) Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol 88: 725–730

    CAS  Google Scholar 

  • Sanwal GG, Greenberg E, Hardie J, Cameron EC and Preiss J (1968) Regulation of starch biosynthesis in plant leaves: Activation and inhibition of ADPglucose pyrophosphorylase. Plant Physiol 43: 417–427

    CAS  PubMed  Google Scholar 

  • Schäfer G, Heber U and Heldt HW (1977) Glucose transport into spinach chloroplasts. Plant Physiol 60: 286–289

    Google Scholar 

  • Schnarrenberger C (1990) Characterization and compartmentation in green leaves of hexokinases with different specificities for glucose, fructose and mannose and for nucleoside triphosphates. Planta 181: 249–255

    CAS  Google Scholar 

  • Scholes JD and Farrar JF (1987) Development of symptoms of brown rust of barley in relation to the distribution of fungal mycelium, starch accumulation and localized changes in the concentration of chlorophyll. New Phytol. 107: 103–117

    Google Scholar 

  • Schulze W, Stitt M, Schulze E-D, Neuhaus HE and Fichtner K (1991) A quantification of the significance of assimilatory starch for growth of Arabidopsis thaliana L. Heynh. Plant Physiol 95: 890–895

    CAS  Google Scholar 

  • Scott P and Kruger NJ (1994) Fructose-2,6-bisphosphate levels in mature leaves of tobacco (Nicotiana tabacum) and potato (Solanum tuberosum). Planta 193: 16–20

    Article  CAS  Google Scholar 

  • Scott P and Kruger NJ (1995) Influence of elevated fructose-2,6-bisphosphate levels on starch mobilisation in transgenic tobacco leaves in the dark. Plant Physiol 108: 1569–1577

    CAS  PubMed  Google Scholar 

  • Scott P, Lange AJ, Pilkis SJ and Kruger NJ (1995) Carbon metabolism in leaves of transgenic tobacco (Nicotiana tabacum L.) containing elevated fructose-2,6-bisphosphate levels. Plant J 7: 461–469

    Article  CAS  PubMed  Google Scholar 

  • Servaites JC, Geiger DR, Tucci MA and Fondy BR (1989) Leaf carbon metabolism and metabolite levels during a period of sinusoidal light. Plant Physiol 89: 403–408

    CAS  Google Scholar 

  • Shannon JC, Pien F-M, Cao H and Liu K-C (1998) Brittle-1, an adenylate transloctor, facilitates transfer of extraplastidial synthesized ADP-glucose into amyloplasts of maize endosperms. Plant Physiol 117, 1235–1252

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD and Vanderveer PJ (1989) Stromal phosphate concentration is low during feedback limited photosynthesis. Plant Physiol 91: 679–684

    CAS  Google Scholar 

  • Sharkey TD, Berry JA and Raschke K (1985) Starch and sucrose synthesis in Phaseolus vulgaris as affected by light, CO2, and abscisic acid. Plant Physiol 77: 617–620

    CAS  Google Scholar 

  • Sharkey TD, Savitch LV, Vanderveer PJ and Micallef BJ (1992) Carbon partitioning in a Flaveria linearis mutant with reduced cytosolic fructose bisphosphatase. Plant Physiol 100: 210–215

    CAS  Google Scholar 

  • Shimomura S, Nagai M and Fukui T (1982) Comparative glucan specificities of two types of spinach leaf phosphorylase. J Biochem 91: 703–717

    CAS  PubMed  Google Scholar 

  • Singletary GW, Banisadr R and Keeling P (1997) Influence of gene dosage on carbohydrate synthesis and enzyme activities in endosperm of starch-deficient mutants of maize. Plant Physiol 113: 293–204

    CAS  PubMed  Google Scholar 

  • Smith AM (1988) Major differences in isoforms of starch-branching enzyme between developing embryos of round-and wrinkled-seeded peas (Pisum sativum L.). Planta 175: 270–279

    CAS  Google Scholar 

  • Smith AM and Martin C (1993) Starch biosynthesis and the potential for its manipulation. In: Grierson D (ed) Biosynthesis and manipulation of plant products, pp 1–54. Blackie Academic Press, Glasgow

    Google Scholar 

  • Smith AM, Neuhaus HE and Stitt M (1990) The impact of decreased activity of starch-branching enzyme on photosynthetic starch synthesis in leaves of wrinkled-seeded peas. Planta 181: 310–315

    Article  CAS  Google Scholar 

  • Smith AM, Denyer K and Martin C (1997) The synthesis of the starch granule. Ann Rev Plant Physiol Plant Mol Biol 48: 65–87

    Google Scholar 

  • Smith-White BJ and Preiss J (1992) Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol 34: 449–464

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Basner A, Greve B and Steup M (1995) A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition, and expression analysis. Plant Mol Biol, 27: 567–576

    Article  CAS  PubMed  Google Scholar 

  • Steup M (1988) Starch degradation. In: Preiss J (ed) The Biochemistry of Plants, Vol 14, pp 255–296. Academic Press, London, UK

    Google Scholar 

  • Steup M (1990) Starch degrading enzymes. In: Lea PJ (ed) Methods in Plant Biochemistry, Vol 3, pp 103–128. Academic Press, London

    Google Scholar 

  • Steup M and Latzko E (1979) Intracellular localisation of phosphorylases in spinach and pea leaves. Planta, 145: 69–75

    Article  CAS  Google Scholar 

  • Steup M and Schächtele C (1981) Mode of glucan degradation by purified phosphorylase forms from spinach leaves. Planta 153: 351–361

    Article  CAS  Google Scholar 

  • Steup M, Robenek H and Melkonian M (1983) In vitro degradation of starch granules isolated from spinach chloroplasts. Planta 158: 428–436

    Article  CAS  Google Scholar 

  • Stitt M (1984) Degradation of starch in chloroplasts: A buffer of sucrose metabolism. In: Lewis DH (ed) Storage Carbohydrates in Vascular Plants, pp 205–229. Cambridge University Press, Cambridge

    Google Scholar 

  • Stitt M (1990) Fructose-2,6-bisphosphate in plants. Ann Rev Plant Physiol Mol Biol 41: 153–185

    Article  CAS  Google Scholar 

  • Stitt M and ap Rees T (1980) Carbohydrate breakdown by chloroplasts of Pisum sativum. Biochim. Biophys Acta 627: 131–143

    CAS  PubMed  Google Scholar 

  • Stitt M and Heldt HW (1981) Physiological rates of starch breakdown in isolated chloroplasts. Plant Physiol 68: 755–761

    CAS  Google Scholar 

  • Stitt M and Steup M (1985) Starch and sucrose degradation. In: Douce R and Day DA (eds) Encyclopaedia of Plant Physiol, Vol. 18, pp 347–390. Springer-Verlag, Berlin

    Google Scholar 

  • Stitt M and Quick WP (1989) Photosynthetic carbon partitioning: Its regulation and possibilities for manipulation. Physiol Plant. 77: 633–641

    CAS  Google Scholar 

  • Stitt M, Bulpin PV and ap Rees T (1978) Pathway of starch breakdown in photosynthetic tissues of Pisum sativum. Biochim. Biophys Acta 544: 200–214

    CAS  PubMed  Google Scholar 

  • Stitt M, Kurzel B and Heldt HW (1984) Control of photosynthetic sucrose synthesis by fructose-2,6-bisphosphate. II. Partitioning between sucrose and starch. Plant Physiol 75: 554–560

    CAS  Google Scholar 

  • Stitt M, Wirtz W, Gerhardt R, Heldt HW, Spencer C, Walker DA and Foyer C (1985) A comparative study of metabolite levels in plant leaf material in the dark. Planta 166: 354–364

    Article  CAS  Google Scholar 

  • Sun Z, Duke SH and Henson CA (1995) The role of pea chloroplast α-glucosidase in transitory starch degradation. Plant Physiol 108: 211–217.

    CAS  PubMed  Google Scholar 

  • Tacke M, Yang Y and Steup M (1991) Multiplicity of soluble glucan-synthase activity in spinach leaves: Enzyme pattern and intracellular location. Planta 185: 220–226

    Article  CAS  Google Scholar 

  • Taira T, Vermatsu M, Nakano Y and Morikawa T (1991) Molecular comparison and identification of the starch synthase bound to starch granules between endosperm and leafblades in rice plants. Biochem Genet 29: 301–311

    Article  CAS  PubMed  Google Scholar 

  • Takaha T, Yanase M, Otkada S and Smith SM (1993) Disproportionating enzyme 4-alpha glucanotransferase (EC 2.4.1.25) of potato: purification, molecular cloning, and potential role in starch metabolism. J Biol Chem 268: 1391–1396

    CAS  PubMed  Google Scholar 

  • Takaha T, Yanese M, Takata H, Okada S and Smith SM (1996) Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J Biol Chem 271: 2902–2908

    CAS  PubMed  Google Scholar 

  • Takaha T, Critchley J, Okada S and Smith SM (1998) Normal starch content and composition in tubers of antisense potato plants lacking D-enzyme (4-a-glucanotransferase). Planta 205: 445–451

    Article  CAS  Google Scholar 

  • Takeda Y, Guan H-P and Preiss J (1993) Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr Res 240: 253–263

    CAS  Google Scholar 

  • Técsi LI, Wang D, Smith AM, Leegood RC and Maule AJ (1992) Red clover mottle virus infection affects sink-source relationships and starch accumulation in pea plants. J Exp. Bot. 43: 1409–1412

    Google Scholar 

  • Técsi LI, Maule AJ, Smith AM and Leegood RC (1994) Complex localized changes in CO2 assimilation and starch content associated with the susceptible interaction between cucumber mosaic virus and a cucurbit host. Plant J 5: 837–847

    Google Scholar 

  • Thorbjørnsen T, Villand P, Denyer K, Olsen O-A and Smith AM (1996) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J 10: 243–250

    Google Scholar 

  • Tomlinson KL (1996) Starch synthesis in leaves of pea (Pisum sativum L.) PhD Thesis, University of East Anglia

    Google Scholar 

  • Tomlinson KL, Lloyd JR and Smith AM (1997) Importance of isoforms of starch-branching enzyme in determining the structure of starch in pea leaves. Plant J 11: 31–43

    Article  CAS  Google Scholar 

  • Tomlinson KL, Craig J and Smith AM (1998) Major differences in isoform composition of starch synthase between leaves and embryos of pea (Pisum sativum L.) Planta 204: 109–119

    Google Scholar 

  • Trethewey RN and ap Rees T (1994a) A mutant of Arabidopsis thaliana lacking the ability to transport glucose across the chloroplast envelope. Biochem J 301: 449–454

    CAS  PubMed  Google Scholar 

  • Trethewey RN and ap Rees T (1994b) The role of the hexose transporter in the chloroplasts of Arabidopsis thaliana L. Planta 195: 168–174

    Article  CAS  Google Scholar 

  • Usuda H, Kalt-Torres W, Kerr PS and Huber SC (1987) Diurnal changes in maize leaf photosynthesis. Plant Physiol 83: 289–293

    CAS  Google Scholar 

  • Vally KJM and Sharma R (1995) Light-induced chloroplast α-amylase in pearl millet (Pennisetum americanum) Plant Physiol 107: 401–405

    CAS  PubMed  Google Scholar 

  • von Schaewen A, Stitt M, Schmidt R, Sonnewald U and Willmitzer L (1990) Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9: 3033–3044

    Google Scholar 

  • Waigh TA (1997) The structure and side-chain liquid-crystalline polymeric properties of starch. PhD Thesis, University of Cambridge

    Google Scholar 

  • Walker DA and Sivak MN (1986) Photosynthesis and phosphate: A cellular affair? Trends Biol Sci 11: 176–179

    CAS  Google Scholar 

  • Wang Q, Monroe J and Sjolund D (1995) Identification and characterization of a phloem-specific beta-amylase. Plant Physiol 109 743–750

    CAS  PubMed  Google Scholar 

  • Weber H, Heim U, Borisjuk L and Wobus U (1995) Cell-type specific, coordinate expression of two ADP-glucose pyrophosphorylase genes in relation to starch biosynthesis during seed development of Vicia faba L. Planta 195: 352–361

    Article  CAS  PubMed  Google Scholar 

  • Weier E (1936) The structure of the chloroplast of Pellionia pulchra. Cytologia 7: 504–509

    Google Scholar 

  • Weiner H, Stitt M and Heldt HW (1987) Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. Biochim Biophys Acta 893: 13–21

    CAS  Google Scholar 

  • Williams ML, Farrar JF and Pollock CJ (1989) Cell specialization within the parenchymatous bundle sheath of barley. Plant Cell Env 12: 909–918

    Google Scholar 

  • Wirtz W, Stitt M and Heldt HW (1980) Enzymic determination of metabolites in the subcellular compartments of spinach protoplasts. Plant Physiol 66: 187–193

    CAS  Google Scholar 

  • Witt W and Sauter JJ (1995) In vitro degradation of starch grains by phosphorylases and amylases from poplar wood. J Plant Physiol 146: 35–40

    CAS  Google Scholar 

  • Witt W and Sauter JJ (1996) Purification and characterization of alpha-amylase from poplar leaves. Phytochemistry 41: 365–372

    Article  CAS  Google Scholar 

  • Yamanouchi H and Nakamura Y (1992) Organ specificity of isoforms of starch-branching enzyme (Q enzyme) in rice. Plant Cell Physiol 33: 985–991

    CAS  Google Scholar 

  • Zeeman S, Umemoto T, Lue W L, Au-Yeung P, Martin C, Smith AM and Chen J (1998a) A mutant of Arabidopsis thaliana lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10: 1699–1711

    Article  CAS  PubMed  Google Scholar 

  • Zeeman S, Northrop F, Smith AM and ap Rees T (1998b) A starch-accumulating mutant of Arabidopsis thaliana deficient in a starch-hydrolysing enzyme. Plant J 15: 357–365

    Article  CAS  PubMed  Google Scholar 

  • Ziegler P and Beck E (1986) Exoamylase activity in vacuoles isolated from pea and wheat leafprotoplasts. Plant Physiol 82: 1119–1121

    CAS  Google Scholar 

  • Zhu ZP, Hylton CM, Roessner U and Smith AM (1998) Characterisation of starch-debranching enzymes in pea embryos. Plant Physiol 118: 581–590

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Krause KP, Apel P and Sonnewald U (1996) Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on tuber growth and plant yield. Plant J 9: 671–681

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Trethewey, R.N., Smith, A.M. (2000). Starch Metabolism in Leaves. In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 9. Springer, Dordrecht. https://doi.org/10.1007/0-306-48137-5_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48137-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6143-5

  • Online ISBN: 978-0-306-48137-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics